Reviews, critiques, and simulation studies are available for the chi-square and
other measures of goodness of fit for structural equation models. The main
exception is Hoelter’s critical N (CN) statistic. In this article we present some of the
properties of CN, explain why a fixed cutoff value for CN often favors large
samples over small ones, and illustrate some of these characteristics with simulated
and empirical data. We also describe the ambiguities involved in treating CN as a
gauge of the power of the chi-square test.
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major controversial issue in applying covariance struc-

ture models is deciding whether a model adequately
matches the data. A chi-square (Likelihood Ratio) test of statisti-
cal significance for a model is available. It is (N — 1)F where N is
sample size and F is the value of the fitting functions at the final
estimates for maximum likelihood and generalized least squares
estimators (see Joreskog and Sorbom, 1986; Bentler, 1985). The
null hypothesis is that the covariance matrix of the observed
variables, 3, equals the covariance matrix predicted by the model,
3, (0), where 0 is a vector that contains the unknown and unre-
stricted parameters of the model. Joreskog (1969), Bentler and
Bonett (1980), and many others have noted that even trivial
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departures of % from X, (6) can lead to the rejection of the null
hypothesis (% = % (0) if N is sufficiently large. The difficulty is that
a model is typically meant as an approximation while the chi-
square tests whether 2, exactly matches X (6). The power of the
chi-square test to detect false models increases with N, so that
even minor departures of X from 3, (6) often are detectable with a
large sample. Alternatively with smaller samples, the power is
reduced and a false null hypothesis is less likely to be rejected.

Given this situation, researchers have proposed other goodness-
of-fit measures to supplement the chi-square test. These include
the normed and nonnormed fit indices (Tucker and Lewis, 1973;
Bentler and Bonett, 1980; Bollen, 1986), the Goodness of Fit
Index (GFI) and Root Mean Square Residual (RMR) (Joreskog
and Sorbom, 1986), and the chi-square estimate divided by its
degrees of freedom (Joreskog, 1969). Recently, in SM R Hoelter
(1983) has suggested another fit measure, Critical N (CN).

Reviews, critiques, and simulation studies are available for the
chi-square test, the nonnormed index, GFI, and the RMR (e.g.,
Anderson and Gerbing, 1984; Boomsma, 1983). Saris and
Stronkhorst (1984), Satorra and Saris (1985), and Matsueda and
Bielby (1986) have proposed ways of estimating the power of the
chi-square test against specific alternative models. But, Hoelter’s
CN has not been included in simulation studies and other than
Hoelter’s (1983) original paper little has been written on its char-
acteristics.! The purposes of this note are to (1) present some of
the properties of CN, (2) to explain why a fixed cutoff value for
CN (e.g. CN = 200) often favors large samples over small ones,
and (3) to illustrate some of these characteristics with simulated
and empirical data. We do not review and compare the other
goodness-of-fit measures since this is readily available in the
works cited above.

HOELTER’S CN

Hoelter (1983: 330) proposes CN as a means to “estimate the
size that a sample must reach in order to accept the fit of a given
model on a statistical basis.” The CN value is2
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critical x*
CN TN=1) +1 [1]
where “critical x*” is the critical chi-square value at a selected o
value and for degrees of freedom (df) equal to the model’s df; and
T is the chi-square estimate for the hypothesized model. Note that
(T/(N - 1)) equals F, the value of the fitting function at the
parameter estimates, so that equation 1 is equivalent to

.y 2
CN = Crltl(;llx +1 2]

Rearranging equation 2 shows the justification for the measure:
(CN - 1)F = critical x* [3]

The left-hand side of equation 3 is similar to the usual chi-square
estimate of (N - 1)F except that CN replaces N. The right-hand
side is the critical x> value. CN is the sample size at which we
would reject H,: 3, = 3, (0) at significance level « and the model’s
df, given the estimated value of F for the ML or GLS estimator.
With multigroup analyses, Hoelter suggests that equation 2 be
modified so that the +1 on the right-hand side be replaced by +G
where G is the number of groups.

Hoelter’s (1983) initial presentation as well as most applica-
tions of CN treat it as a goodness-of-fit measure that assesses the
closeness of the sample covariance matrix (S) to the model pre-
dicted covariance matrix (3). A few researchers (e.g., Matsueda
and Bielbey, 1986: 130-131) have suggested that CN is a crude
gauge of the statistical power of the chi-square test. We consider
both viewpoints starting with CN as a goodness-of-fit measure.

A key question in using CN as a fit measure is what should be
the cutoff value for an acceptable model? Hoelter (1983) tenta-
tively suggests a criterion of CN = 200G and all the applications
that we are aware of follow his lead (e.g., Abbey and Andrews,
1985; Krause, 1987). Also, in practice, researchers seem to view
models with CNs much higher than the cutoff as better than ones
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that are only slightly above it (see Hoelter, 1984: 258). The appro-
priateness of 200G or any other fixed criterion depends on the
mean of the sampling distribution of the fit measure across differ-
ent sample sizes. For instance, Anderson and Gerbing (1984)
found the mean of the sampling distributions of GFI and AGFI
(see Joreskog and Sorbom, 1986) to increase with sample size.
This implies that any fixed cutoff for GFI or AGFI would tend to
favor large samples over small ones even if the same model is valid
for all sample sizes. Hoelter (1983) does not describe the behavior
of CN across sample sizes. However, his applications to a small
(N = 23) and a large (N = 17,205) sample use the same 200G
criterion.

If the mean of the sampling distribution of CN is roughly the
same for a given model across sample sizes, then an invariant
cutoff might be reasonable. To analyze the mean of CNs sampling
distribution, we distinguish two cases. The first is when the struc-
tural equation model is valid and the second is when it is not. Of
course, we recognize that perfectly valid models are rare, but we
believe that part of understanding a fit measure is knowing its
properties under ideal conditions as well as under less than
ideal ones.

When H,: 3 = 3(0) is correct, a criterion of CN = 200 or any
fixed cutoff value tends to favor large samples over small ones. To
understand this consider equation 2. The critical x* value in the
numerator stays the same once the df and « are specified. The
value of F is constant for a given model estimated for a given
sample. However, the mean of the sampling distribution of F
decreases with N. When 3, = 3,(0) is true, the value of F goes to
zero as N gets larger, that is, F — 0 as N — oo (Browne, 1982). If the
values of the chi-square estimator approximate a x’, their mean
equals the degree of freedom (df) for the model. This follows since
the expected value of x’ is its df. Thus for sufficiently large
samples the mean of F approximates df/ (N - 1) (Bollen, 1987). As
this relationship shows, the mean value of F for smaller samples is
bigger than the mean value of F for larger samples for a given
degrees of freedom. Smaller F values lead to larger CN values so
the implication is that CN tends to be higher for large samples
than for small ones. Using a fixed cutoff of 200 leads to the
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frequent rejection of true models for small samples. In fact, the
identical valid model can be rejected if estimated with a co-
variance matrix from a small sample and accepted when the
covariance matrix is from a large sample. A related characteristic
is that for a valid model, CN goes to infinity as N goes to infinity.
Thus, unlike some model fit indices (e.g., GFI, A), CN has no
finite upper limit.

We constructed a simple example to illustrate the properties of
CN for a valid model. Figure 1 is the path diagram of the model.
Following Joreskog and Sorbom’s (1986) LISREL notation, the
latent variable model is

n=Bn+T¢+{ [4]

where {is uncorrelated with £, (I - B) is nonsingular, E({) =0, and
n and £ are deviated from their means. The measurement model is

y=Am+te (3]
Xx= AL+ [6]

where ¢, 8, and { are uncorrelated, € is uncorrelated with 7, 8 is
uncorrelated with ¢, E(e) = O, E(8) = 0, and y and x are deviated
from their means.

The population parameters are

[ 3
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These parameter values lead to a population implied covariance
matrix, %(6) (see Joreskog and Sorbom, 1986: 1.8). With this as
the population covariance matrix, we simulated 50 sample co-
variance matrices for each sample size of 50, 75, 100, 200, 500, and
1,000. We used the IMSL GGNSM subroutine that is a multi-
variate normal random variable generator with a given co-
variance matrix. We exclude all nonconvergent and improper
solutions. Table 1 lists the mean, standard deviation, number of
CNs less than 200, and the minimum and maximum CN values
for each sample size. The df = 24 and the critical x” is 36.415 at the
.05 level. It is evident that CN tends to increase with sample size.
For instance, when N is 50 the mean CN is 77.5 while an N of 500
leads to a mean CN of 776.0. The range of CN values is wider and
the minimum and maximum are much higher values for the big
samples compared to the small ones. Using the cutoff of 200
would lead us to reject nearly all models estimated for sample
sizes of 100, 75, and 50, and not to reject those with Ns of 200 or
more. This is true even though the same model is valid for all
samples. The dramatic change in the number of CNs less than 200
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between sample sizes of 100 and 200 is not surprising since we
would expect roughly 95% of the sample CNs to exceed 200 when
N is 200 and « is .05. A much lower percentage of CNs should
exceed 200 when N is only 100. Also, the standard deviation of
CN greatly increases with N. An implication of this is that confi-
dence intervals around CN should be wider for large Ns than for
small ones. Finally, we noted some propensity for CN to produce
outliers. However, the general characteristics we describe here
(e.g., positive relation of mean CN and N) were not changed by
their presence.

What happens when an incorrect model is estimated? Does the
mean of the sampling distribution of CN still have a positive
association with N? The answer to this question is not only
unresolved for CN, but equally unresolved for other measures of
goodness of fit such as the GFI, AGFI, and so on. Most Monte
Carlo simulation works assume correct specifications when
examining fit measures (e.g., Anderson and Gerbing, 1984). The
behavior of CN under misspecification is likely to depend on the
seriousness and nature of the errors, so that generalizations are
difficult. In some situations CN in a poorly specified model may
stay considerably below 200 for the typical sample sizes encoun-
tered in practice. To illustrate this we estimate a seriously flawed
model for the same simulation data used above. The model forces
all covariances between the nine observed variables to zero, with
only their variances as free parameters (df = 36). This corresponds
to the null model used in some fit measures (Bentler and Bonett,
1980; Bollen, 1986). The mean CNs for the sample sizes of 50, 75,
100, 200, 500, and 1,000 are 42.6, 58.9, 64.7, 88.3, 104.2, and
114.9, respectively. For this implausible model we still find a
positive relation between the mean of CN and N, but all mean
values are less than 200.

Between the extremes of a perfectly valid model and a totally
unrealistic one lie most of the empirical applications of structural
equations. Without much effort we have found published exam-
ples that illustrate a positive association between CN and N. It is
reasonable to assume that these models contain some specifica-
tion errors and fall between the extremes of a valid and null
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TABLE 1

Mean and Standard Deviation of CN for Simulated Data
with 50 Replications for Each Sample Size

Sample Size Mean Standard Minimum Maximum Number of CN's
Deviation <200

50 77.5 21.3 35.6 155.6 50

75 128.9 31.6 74.2 217.5 48

100 153.3 35.6 100.9 266.1 47
200 307.3 115.8 174.4 796.4 3
500 776.0 191.2 378.7 1359.5 0
1000 1484.7 387.1 519.9 2546.0 0

model. The first example is an 11-item model that involves three
first-order and one second-order factors (Liang, 1984). We
divided the original large sample into six independent, random
subsamples of 50, 75, 100, 200, 500, and 1,000. The CNs for these
samples are 60.9, 78.0, 119.5,210.9, 265.4, and 701.4, respectively.
We can see that our assessment of fit would depend on whether we
had a large or small sample.

Wheaton’s (1987) recent work provides additional empirical
illustrations of CN’s relation to sample size for approximate
models. For a confirmatory factor analysis in a sample of 132, he
finds that CN never reaches 200 even though several versions of
the model have high p-values for the chi-square estimates and
appear to fit well by other criteria. Wheaton also estimates a
covariance structure model in a sample of 2,568 and a random
subsample of 355. He found that the CNs were generally higher in
the large sample than in the small one even though the identical
models were used. Furthermore, he argues that some of the
models with “acceptable” (i.e., = 200) CN values were clearly
inadequate.

We do not expect that all empirical examples will show a
moderate to strong positive association between CN and N. These
examples, however, illustrate that this can occur for misspecified
models as well as for correct ones. Thus using CN as a measure of
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goodness of fit may lead to a systematic bias in favor of models
estimated with large samples. One consequence may be that
researchers seeking a CN = 200 will tend to overfit models in
small samples and underfit those estimated in large samples.
Furthermore, comparing the CNs may be misleading if the mod-
els are fit to different sample sizes.

Rather than measuring goodness of fit like the other fit mea-
sures, we could argue that CN is a crude measure of the power of
the chi-square test. A big CN in alarge sample may indicate that a
model is adequate. A statistically significant chi-square estimate
in this case is due to the excessive power of the chi-square test for
large samples, so that even minor misspecifications are detect-
able. A small CN in a small sample is a warning to the researcher
that even though the chi-square test leads to a high p-value, the
test lacks the power to reveal even substantial specification errors
because of the small sample size.

We see several problems in using CN as an indicator of statisti-
cal power. First, the power of a statistical test is the probability of
rejecting a false null hypothesis. We know of no way to transform
the CN value into a probability. Second, the power of a statistical
test should be determined with respect to a particular alternative
model. The power of the chi-square test usually varies depending
upon the true alternatives for which the power is being assessed
and it is highly unlikely that a single number can summarize the
power of the chi-square test against all alternative models. Third,
sample size often is an important determinant of the statistical
power but it is not the only influence. For example, the number of
indicators and the reliability of measures can affect statistical
power (see Matsueda and Bielby, 1986). Exclusive attention to
sample size can be misleading.

A large CN in a large sample does not always mean that a
significant chi-square is due to excessive power rather than due to
a substantively inadequate specification. The Wheaton (1987)
examples show that CNs greater than 200 can occur with
seriously flawed models. Hoelter (1984: 259) also rejects a model
with a CN of 1,014 (CN cutoff = 400 since G = 2), judging it to be
severely misspecified. In small samples, a large CN may be more
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an indicator of overfitting the data than of having a chi-square
test with sufficient power.

CONCLUSIONS

Hoelter’s (1983) CN is used as a measure of goodness of fit and
sometimes as a crude gauge of statistical power. Our results show
that the mean of the sampling distribution of CN is positively
related to N for valid models and for some misspecified models.
For these cases, any fixed cutoff value (e.g., 200G) of CN tends to
favor models estimated in large samples. It is likely that for some
misspecified models the positive association of CN and N is much
weaker or near zero and that CN is less than 200G for the most
typical sample sizes. But we do not know when this is true. The
possible positive association of CN and N is important to
remember when using CN as a goodness-of-fit measure. One
might desire this property for an indicator of statistical power
since large samples generally have greater power than small ones.
But as we explained earlier, CN’s relation to the statistical power
of the chi-square test is ambiguous.

One response to these properties of CN is to develop a set of
cutoff values applicable under different sample sizes or types of
models. However, we think it would be difficult to form a typol-
ogy of model types and to define unambiguously an adequate fit
across various sample sizes.

It might be argued that researchers should only apply CN to
large samples. This is not a fully satisfactory response for several
reasons. One is that we still do not know when the sample is large
enough. We have some simulation work on the behavior of the
chi-square estimate for different sample sizes (Boomsma, 1983),
but it is not clear whether these results hold for CN. Second, even
for large samples, CN shows the same tendency to favor bigger
samples over smaller ones for some models, so that the identical
model will have a better CN value on average if the N is 1,000
compared to an N of 500. Again, any fixed cutoff point favors big
Ns over small ones. Third, CN’s variance can increase with N as
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we found with the first simulation model. In this situation confi-
dence regions around CN will grow with sample size. Indeed the
bounds can be quite large for big samples.

From an applied point of view we believe that researchers
should not rely on CN or any other single measure of model fit, a
position that Hoelter’s (1983) paper also would support. If a
researcher is concerned about the excessive power of the chi-
square test in large samples, the procedures described in Saris and
Stronkhorst (1984), Satorra and Saris (1985), and Matsueda and
Bielby (1986) provide more direct means of estimating the power
of the chi-square test with respect to specific alternative hy-
potheses than does the CN value. We recommend multiple-fit
indices and when possible the analysis of the power of the chi-
square test as aids in evaluating model fit.

NOTES

1 Matsueda and Bielby (1986: 130-131) have a brief treatment of CN.

2. As Matsueda and Bielby (1986) note, Hoelter’s (1983) formula for CN uses an
approximation for estimating the critical X*, so his formula differs from ours. Equation 1
or 2 is more accurate, particularly for models with low df.
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