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. Abstract
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paper begins with one-way designs, including overall tests of significance,
step-down analyses, and thé use of latent variables. Next a general test of
homogeneity is described and a procedure considered that is applicable even
under heterogeneity conditions. Two-way designs are then derived as special
cases of the more general n-way case. Finally, advantages and disadvantagés of

the new methods are considered.
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INTRODUCTION

Structural equation models have been used extensively in substantive re-

search in the social sciences for well over a decade., 1In marketing, scarcely
an issue passes by in the major journals without one or more articles employ-
ing structural equation models. Indeed, it is safe to say that structural
equation models are a mainstay of multivariate statistical analysis in market-
ing (e.g., Fornell 1987).

Nevertheless, virtually all the studies to date using these methods have
occurred in nonexperimental, survey contexts., Various authors over the years
have discussed the use of structural equation models for experimental data
(e.g., Alwin and Tessler 1974; Bagozzi 1977; Bray and Maxwell 1982), but few
applications are to be found.1 Why is this so? |

One reason may be that the procedures are relatively new and time is
needed to overcome the inertia associated with the traditional methods, ANOVA
and MANOVA. We think the problem, however, is deeper seated than this., Previ-
ous expositions have tended to address primitive and less useful models, not to
consider the formal specifications needed to perform analyses, and to neglect
a full accounting of why one should consider the use of structural equation
models in experimental research., For example, Alwin and Tessler (1974) and
Bagozzi (1977) treat only one-way ANOVA analyses and the case where the inde-
pendent variable is interval-like with enough categories to ensure robustness
of the estimation procedures.2 Bray and Maxwell (1982, 1985) suggest that path
analysis can be used for MANOVA designs but limit discussion to introductory
remarks and rudimentary causal diagrams. Finally, in neither the social
science nor marketing literatures does one find a clear rationale for prefer-

ring structural equation models to traditional analyses of experimental data.
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The purpose of this paper is to formally develop and illustrate appropri-
ate structural equation models for various experimental designs.3 We begin
with a recent exposition of a one-way MANOVAAproposed by Kuhnel (1988) and
then extend it to accommodate a number of useful MANOVA designs. Next, we in-
troduce a model for one-way MANCOVA analyses. Following this, a structural
equation procedure is shown for testing the assumption of homogeneity in vari-
ances and covariances of multiple dependent variables, and a methoa for relax-
ing the homogeneity assumption is considered. The two-way MANOVA design is
then derived. Finally, the assumptions, advantages, and disadvantages of the
new methods are discussed. Throughout the presentation of experimental de-

signs, examples are provided using data derived from real experiments.
ONE-WAY MANOVA

Basic Design

In the usual MANOVA design, one desires to simultaneously test mean dif-
ferences across two or more groups on two or more dependent variables. The
main advantage that MANOVA provides over ANOVA is the ability to a) control the
overall alpha level at a chosen value, b) test mean differences in the depend-
ent variables simultaneously while controlling for their interdependencies, and
c) consider the relationships among the dependent variables, rather than exam-
ining each of them in isolation (e.g., Bock 1975; Bray and Maxwell 1985).

The analysis of MANOVA designs can be accomplished with structural equa-
tion models but requires a reparameterization of the specifications common to
most statistical packages. The objective is to create a system of equations
analagous to interconnected dummy variable regressions. The reparameterization

expresses hypotheses among manifest, as opposed to latent, variables and
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focuses upon the means of, instead of covariances among, measures so as to
properly analyze experimental effects.

Building on Sorbom's (1982) specification of structured means in simulta-
neous equation systems, Kuhnel (1988) recently showed how programs such as
LISREL can be used to test one-way MANOVA designs. Figure 1 presents our
adaptation of Kuhnel's model applied to the case where three dependent varia-
bles are present for two groups: experimental and control groups. We have
used the notation common to LISREL (Joreskog and Sorbom 1986), but a similar

specification is possible with EQS (Bentler 1985).
[Figure 1 about here]

Notice that the experimental manipulation and control groups are repre-
sented with a dummy variable which is expressed as an exogenous latent varia-
ble (51) with a single indicator and no corresponding residual. This effec-
tively transforms the latent variable into a manifest variable. The dummy
variable could be a 0,1 indicator representing two groups (e.g., experimental
and control groups), or several dummy variables could be used to represent n
groups in the more general case. Note further that a pseudovariable (i.e.,
"one") is shown as an indicator of a second latent variable (g,). The pseudo-
variable is a constant added either to the sample moment matrix as another
variable having 1 in the diagonal and the means of all other variables as off-
diagonal elements4 or to the raw data as a column of 1ls, which is needed for
computing the correct likelihood function and standard errors of estimates
(Sorbom 1974)., This specification permits one to analyze the means of observed
dependent variables as a function of the categorical indepedent variables. To

do this, the augmented moment matrix must be analyzed and not the more usual

correlation or covariance matrices. Because the moments will be sums of
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covariances and products of means, the parameter ¢, shown in Figure 1l as the
association between the dummy variable and the constant term, will be in gen-
eral nonzero.

To test the multivariate null hypothesis of equality in means of the de-
pendent variables across groups versus the alternative hypothesis that one or
more groups have a mean different from the others, we can use the likelihood
ratio chi square tests provided by the maximum likelihood or generalized least
squares procedures in LISREL or EQS. The full model as specified in Figure 1
will be exactly identified and thus will fit any data perfectly (i.e., XZ(O) =
0.00, p = 1.00). A test of the null hypothesis analogous to the omnibus tests
commonly used in tradifional MANOVA analyses (e.g., the Pillai's V or Wilks' A)
consists of an examination of the paths from the dummy exogenous variable to
the dependent variables. That is, Yl*’ Yz*, and 73* are the differences in the
means of dependent variables between the two groups. In particular, if the
means of the dependent variables are equal across groups, then Yl* = 72* =
Y3* = 0., Thus, by testing the model of Figure 1 with these constraints im-
posed, we obtain an overidentified model. The difference in chi-square values
between the overidentified and full models provides a test of the null hypothe-
sis. A significant chi-square difference sﬁggests that the mean vectors of
dependent variables are different across groups, whereas a nonsignificant value

implies a failure to reject the null hypothesis of equal means.

An Illustration

To demonstrate the use of structural equation models in MANOVA designs,
we applied the procedures to data derived from an experiment on decision making
(Bagozzi, Yi, and Baumgartner 1988). In this experiment, the authors desired

to create conditions where choice behaviors would be directly and indirectly

influenced by one's preferences. It was predicted that, under low impedance
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conditions where little effort and planning are needed, choices would be di-
rectly affected by preferences with little or no impact of an explicit voli-
tion (i.e., decision). Under high impedance conditions, in contrast, explicit
decisions are required to overcbme obstacles, and therefore preferences were
expected to influence choices primarily through their effect on these deci-
sions. 1In the current context, one question might be: What are the effects
of impedance on choice béhavior? That is, are choice behaviors different be-
tween low and high impedance groups? The three behavior measures represented
alternative self-report and indicators of actual choices of the decision makers.
Two different measures of decisions were obtained as well. Table 1 presents
the means, standard deviations, and within-group correlations for the data.

First, the SPSS-X program was used for the traditional MANOVA analysis,

We have chosen to use the test for Wilks' A because it is the most frequently
employed statistic of four commonly found in literature. It might be argued
that one should use Pillai's V because of its robustness to violations of as—
sumptions (Olson 1976). However, in this and subsequent analyses, the F-tests
based on these statistics are equal, although they will in general be different
when three or more groups are examined. The results of this analysis suggest a
rejection of the null hypothesis that the means of choice behaviors are equal
across the low and high impedance groups: Wilks' A = .727, F(3, 148) = 18.56,
p < .001,

Next, the LISREL program was employed for the structural equation analysis
of the same data., The full model allowing for the differences in means, as
specified in Figure 1, is exactly identified and gives a perfect fit to the
data: XZ(O) = 0,00, p = 1.00. The restricted model, constraining the mean
difference parameters to zero (i.e., Yl* = YZ* = Y3* = 0), gives the following

results: x2(3) = 48,21, p < .001. These findings suggest that the null
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hypothesis of equal means be rejected. Therefore, the impedance manipulation
affected significantly the behavior measures in one or more instances. In
fact, ;he estimates for the mean difference were all significant: Yl* =

3.84 (5.7), yz* = 1.42 (6.7), and y3* = 3.54 (7.2), with the t-values in paren-

theses. Note that these are equal to the mean differences revealed in the

bottom of Table 1.
[Table 1 about herel

Extension #1: Latent Variable MANOVA

Kuhnel (1988) considered only models where each variable has one and only
one measure, and in this sense his approach 1s equivalent to the traditional
analysis of MANOVA designs. We wish to extend the structural equation approach
to accommodate multiple measures of one or more criteria. This represents a
straightforward use of LISREL and is motivated by three considerations. First,
if individual measures of the variables show excessive random error, the tests
may be too lacking in power to detect valid experimental effects. Second, cer-
tain criterion variables may, in fact, be theoretically indicated by two or
more measures. For example, measured variables might reflect variation in an
underlying theoretical construct which is inherently unobservable. Third,
one's goal may be more concerned with explanation and understanding of latent
variables or constructs as opposed to prediction and description of observed
variables or measures, per se. That is, one may desire to test hypotheses im-
plied by a theory containing latent variables as opposed to focusing directly
on individual measures. Each of these issues leads to a need for taking into
account multiple measures of constructs and possible causal orderings among
constructs. We focus upon the former issue in this subsection and treat the

latter in the next.



Figure 2 presents a diagram of a simple latent structural equation MANOVA
model appropriate to the data shown in Table 1. Here we have interpreted the

three behavioral measures as indicators of a single, latent dépendent varia-

ble.S The hypothesis is that the experimental manipulation affects the mean
of the underlying theoretical construct as measﬁred by three indicators. Spe-
cifically, yl*, is now difference in the means of the behavioral construct
~(n). The full model in Figure 2 gave the following goodness-of-fit measures:
XZ(A) = 5.77, p = +22. It can be noted that the full model is not exactly
identified, but overidentified (cf. Figure 1). The restricted model with the
constraint (i.e., Yl* = 0) ylelded the following results: XZ(S) = 48,89,

p = .00. Performing the proper test, we find that one must reject the hy-
pothesis of equal means of n across the two groups (xi(l) = 43,12, p < .001).
Indeed the estimate of Yl* is 3.21 with t = 6,43, Thus, the experimental mani-
pulation produced its hypothesized effect.

We have so far examined two types of MANOVA analyses: MANOVA on manifest
variables (Figure 1) and MANOVA on latent variables (Figure 2). One benefit
of the latter approach would be taking into consideration measurement errors
explicitly in analyses. Notice that the mean difference of n, as revealed by
Y * in Figure 2 (latent MANOVA), is greater than the average of the sums of
Y* = y4* in Figure 1 (manifest MANOVA), showing the gain due to a correction
for attenuation as a consequence of random error. We should stress that such

analyses are not possible with traditional MANOVA procedures.

[Figure 2 about here]

Extension #2: Step-down Analyses

Kuhnel (1988) considered only the chi-square test analogue to the omnibus

MANOVA tests. Of course, finding that differences do occur in the means for
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different groups is only the first step in any analysis. A second and essen-
tial step is that one explains the differences. Given that an ominibus test
has indicated the difference in means, one may wish to determine which of the
dependent variables are responsible for the global significance. An inspection
of the y parameters linking the dummy variable to the dependent variables is
useful for uncovering which criteria the manipulation(s) affected. This test
of statistical significance for each parametér individually is equivalent to
the univariate ANOVA on the dependent variable.

An even more powerful and insightful breakdown that is useful to perform
when there is an a priori ordering of the dependent variables is the step-down
analysis. In the classic step-down analysis (e.g., Roy 1958; Stevens 1973),
each dependent variable is analyzed in succession in order to control for a
causal ordering among them. Step-down analyses provide useful information,
since they test whether variation in a certain dependent variable is due to a
direct association with the manipulation or due to its dependence on other de-
pendent variables.

The first stage of step-down analysis begins with a MANOVA test performed
on all dependent variables. If the omnibus test points to a rejection of equal
means, then the final variable in a hypothesized chain of dependent variables
is tested with the variance due to all remaining dependent variables partialled
out as covariates. A significant omnibus test here suggests that the final
criterion differs across groups, even controlling for the effects of the other
cfiteria as covariates. If this happens, the testing stops, as no further
unconfounded testing is possible. 1In contrast, a nonsignificant omnibus test
signals that the final criterion does not differ significantly across groups,

after controlling for the other criteria. Therefore, the difference in the
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final criterion, if any, is wholly due to the causal relations between the
final criterion and the other criteria. If this happens, one moves backward in
the hypothesized chain to the preceding criterion and performs a similar test.
The process stops again when a significant omnibus test results,

The structural equation approach to MANOVA can be used to perform step-
down analyses. To illustrate, we applied the procedures to the data in Table 1
where 5 dependent variables are now considered: decision measures 1 & 2 and
behavior measures 1-3. Table 2 shows the findings for the initial stage in the
step-down analysis: the omnibus test with all variables included but no causal
ordering as yet implied among them. The results lead us to reject the hypothe-
sis of equal means of the dependent variables across the two groups (X§(5) =
51.04, p < .001). 1Indeed, the groups differ on the means of all five manifest
variables (see the bottom of Table 2).

Now that we know that the groups differ on all variables, we can ask
whether or not these differences are directly affected by the manipulation or
indirectly affected as a result of a causal ordering among the variables. A
plausible hypothesis is that decisions —> behavior. Thus, we would like to
test whéther or not the groups differ on the behavioral criteria with decisions
covaried out. We could do this by treating all five measures as manifest vari-
ables, as done in Table 2. But the intention of the experimenters was to treat
the two measures of decisions and the three measures of behavior as redundant
indicators of the respective constructs. Therefore, MANOVA was conducted on
latent variables, rather than on manifest variables.

Figure 3a represents an appropriate null hypothesis for doing this (i.e.,
Yl* = yz* = 0), the first stage in step-down analysis. The findings for the
omnibus test of this model are presented in the top half of Table 3 where it
can be seen that the hypothesls of equal means for thg constructs of decisions

and behaviors is again rejected. Note that this test is done on the latent



-10-

variables, not the manifest variables, because the experimenters were inter-
ested in the differences in the means for the constructs between the groups.
Next we desire to test the mean difference after considering the ordering
implied by Figure 3b (i.e., yz* = 0). Then yz* could be interpreted as the
effect of the experimental manipulation on behavior when decisions have been
controlled for. The results in the bottom of Table 3 reveal that the means of
behaviors differ across groups even with the effects of decisiéns covaried out.
Notice that the mean difference in behavior between the two groups has declined
from 72* = 3,20 to yz* = 2.74 when we go from stage one to stage two. This re-
flects the dependence of behavior on decisions, which is reflected by the path
from decision to behavior (i.e., B in Figure 3b). That is, a portion of the
difference in behavior between two groups is explained by the difference in the
preceding variable (i.e., the decision), rather than by the experimental manip-
ulation. Nevertheless, the groups still differ significantly in behavior even
after taking into account this dependence. It should be noted that the step-
down énalysis performed herein, which includes a formal correction for random
érror by using latent variables, cannot be accomplished with the traditional

MANOVA procedures.
[Tables 2 & 3 and Figure 3 about here]

MANCOVA
The step—~down analysis is, in reality, a special case of the analysis of
covariance.6 We can build upon this property to show that structural equation
models can be utilized to perform analyses of the general MANCOVA model. Fig-
ure 4 illustrates the case for a one-way analysis with 3 dependent variables
and a single covariate, Eqe We have shown £q with only one measure for sim-

plicity, but the accommodation of multiple measures is straightforward.
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To illustrate a MANCOVA analysis within the context of a structural equa-
tion model, we applied the model in Figure 4 to the data in Table 1. Prefer-
ences (X) are taken as the covariate., The findings from SPSS-X analysis show
that we must reject the hypothesis of equal means: Wilks' A = .715, F(3,147) =
19.54,.2 < «001. The chi-square difference test from structural equation anal-
ysis performed on the model in Figure 4 suggested the same conclusion: X§(3) =
50.67, p < .001. The estimates for the gamma parameters reveal that the exper-
imental manipulation affected all three behavioral dependent variables, even
after controlling for variation in preferences (Yl* = 3.77,>Yz* = 1.40, 73* =

3.48, with the t-values of 5.77, 6.85, and 7.39, respectively).

[Figure 4 about here]

HOMOGENEITY

Two important assumptions of the traditional MANOVA and MANCOVA procedures
are that the dependent variables have a multivariate normal distribution in
each group and that the distributions are equal across groups. With respect to
the former assumption, the procedures have been shown to be relatively robust
to violations of multivariate normality (e;g., Mardia 1971). With respect to
the latter assumption, Pillai's V has been found to be fairly robust to viola-
tions in equality of disfributions but only when sample sizes are equal across
groups (e.g., Olson 1976). A test of the equali;y of variances and covari-
ance can be performed within the context of traditional MANOVA analy;es with
Box's M test (Norusis 1988).

We performed this test on the data of Table 1 and found that Box's M =
339.07 with x2(6) = 331,71 and p < .00l. Therefore, we must reject the hypoth-
esis that the variance-covariance matrix for the dependent variables is equal
across groups. Thus, the assumptions of the traditional MANOVAianalysis are

violated. What can we do? One could accept on faith that the procedureé are
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robust and interpret Pillai's V accordingly. But strictly speaking, the tradi-
tional MANOVA analysis may be misleading. If we were limited to the tradi-
tional procedures, not much recourse is available.

Fortunately, structural equation models can be used not only to test the
homogeneity assumption, but even if it were rejected, to perform a proper test
of experimental effects (Kuhnel 1988). ~The test is appropriate whether or not
equal sample sizes occur across groups. To do this, we must reformulate the
experimental design as a multiple group analysis of the appropriate moment
matrices. Figure 5 illustrates Q proper specification for a MANOVA design with
the three dependent variables and two groups. Because each g variable is
defined as 1 through use of a psuedovariable in the moment matrix, it turns
out that the dependent variables (xis) are equal to the sum of the mean for
their respective group and error. The variance-covariance matrix for the error
terms is, in fact, the variance-covariance matrix for the dependent variables,
given this specification. The multiple group specification for the full model

shown in Figure 5 is exactly identified. To test for homogeneity, we must
(1) _ e(2) (1) _ (2) (1) _ (2) (1) _ (2) (1) _

specify: O § ¢ That s, Bc)) = 04175 9505 T 05220 9633 T 95330 Og) T
(2) (1) _ (2) (1) _ (2) _
6621’ 0632 = 6632’ and 9631 = 9531. This results in 6 overidentifying restric

tions, and the test of equal variances and covariances 1s performed by taking
the difference in chi-squares for the full and restricted models.

The multiple group approach shown in Figure 5 can be used to test the
MANOVA hypotheses on the means of the dependent variables and is, in fact,
equivalent to the dummy variable approach shown in Figure 1 except for one
important difference. The dummy variable approach, like the traditional MANOVA
analyses, assumes homogeneity. The multiple group approach does not. Indeed,
the latter is valid for, and can be used to test, instances where the variances
and covarlances are ;otally equal, totally unequal, or partially equal across

groups. To test for equality in means by use of the multiple group approach,
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we fix A(l) = A(z). More specifically, lil) = A§2), Xgl) = X§2), and Xgl) =
2
Ag ) in Figure 5, This yields three overidentifying restrictions, and again

the test of equal means is performed by taking the difference in chi-squares
for the full and restricted models.

To illustrate, we applied the model in Figure 5 to the data in Table 1.

‘Table 4 presents the findings. The top half of the table shows the goodness-
of-fit tests for the full, equal variance-covariance, equal means, and equal
variance-covariance/equal means models, respectively. The bottom half of the
table shows the appropriate chi-square difference tests. As revealed in
the table, we must reject the assumption of homogeneity in variances and
covariances of the three dependent variables (x§(6) = 339.23, p < .001). This
is the structural equation model analogue to Box's M test. The hypothesis of
equal means across groups is rejected whether we assume homogeneity (X§(3) =
47.88, p < .001) or heterogeneity (XZ(S) = 46,26, p < .001).

The above results seem to suggest that the violation of the homogeneity
assumption has little effect on the test of mean difference. However, a Monte
Carlo study by Kuhnel (1988) suggests that when the homogeneity assumption is
violated, the traditional MANOVA can provide misleading results. Kuhnel in-
vestigated two factors (equal versus unequal means and equal versus unequal
variances and covariances) in his study and compared the power of the tests.
When the variances and covariances were equal, the traditional MANOVA analysis
(via SPSS-X) performed well: At the .05 significance level, the test yielded
no false decisions as to the mean difference test. The group comparison test
(via LISREL) by assuming homogeneity gave the same results. However, when the
variances and covariances were not equal, the traditional MANOVA test performed
poorly. The rate of Type I error (i.e., rejection of a correct null hypothe-
sis) was 127, and the Type II error rate (i.e., not rejecting a false null

hypothesis) was 74%. When the LISREL test was conducted by allowing for
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different variances and covariances, the error rates were greatly reduced:

6% and 4% for Type I and Type II errors, respectively. Although more research
is needed for generalization, these results suggest that structural equation
model analyses can provide more powerful tests of mean differences, especially
when the homogeneity assumption is violated.

It might appear that the multiple group approach is to be always preferred
to the dummy variable approach because of its ability both to test for homoge-
neity and to apply to heterogeneous as well as homogeneous contexts. However,
because programs such as EQS cannot perform multiple group anmalyses, the dummy
variable approach may sometimes be the only way to conduct analyses (LISREL
does have multiple groub capabilities, however). Moreover, for complex designs

with many interactions, the dummy variable approach is more convenient.
[Figure 5 and Table 4 about here]

TWO-WAY MANOVA

Higher order experimental designs offer advantages in economy and power.
In this section, we will introduce a general structural equation approach for
the analysis of two-way MANOVA designs. The extension to the n-way case fol-
lows a parallel development.

As with the one-way design, two approaches can be taken: the dummy varia-
ble method or the multiple group method. For a two-way design, one can employ
two dummy variables to capture main effects and a product term of the two dummy
variables for the interaction effects. The dummy variable approach requires
that nonlinear constraints be imposed on the variance-covariance matrix for the
entire model. The variange of the product of two variables which will in gen-
eral be a function of the sums of products of means, vatiaqces, and covariances

of the two variables (Goodman 1960). Current versions of LISREL cannot



-15-

accommodate nonlinearity constraints, but COSAN can (Fraser 1980). The theo-
retical model underlying COSAN is described by McDonald (1978, 1980). Kenny
and Judd (1984) provide an illustration of a simple two-way interaction using
COSAN and simulated data but not for a MANOVA analysis. Given the complexity
of the COSAN specification and the greater availability of LISREL, we have
chosen to focus herein upon the multiple group approach which avoids the ne-
~ cessity of representing nonlinear constraints.7

Figure 6 displays a multiple group representation of the two-way MANOVA
design. Here we have assumed that two levels of each of two independent vari-
ables are manipulated and two dependent variabels are measured. This yields
four groups in total, but by expressing one of the independent variables as a
dummy separately for each of two groups, we have the model shown in Figure 6.
The hypothesis of no interaction effect between the two variables can be tested

by comparing the full model shown in Figure 6 to the restricted model with the

(D* _ (2)*, ()* _ (2)*
Yl = Yl ;YZ = Yz

of one independent variable on the dependent variables do not vary with the

followiné constraints: . That is, the effects
level of another independent variable. The difference in chi-square tests
between the two models will be distributed chi-square with corresponding de-
grees of freedom equal to the differences in degrees of freedom for the models.
To test for main effects, we compare the model with no interaction (i.e.,

Ygl)* = Y§2)*; Ygl)* = YgZ)*) to the model with no main effects an& no inter-

(% _ (% _ (L)% _ (2% _

] 8) =Y, Yy 0). Again the difference in chi-

action (i.e., y

square values for the two models provides the test statistic,

[Figure 6 about here]

To illustrate the procedures, we applied the model in Figure 6 to data

obtained from a second experiment in decision making (Bagozzi, forthcoming).
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In this experiment, low and high involvement and low and high emotions were
manipulated to see their effects on two decisions: the assessment of the prob-
ability of an event occurriné\to the subjects and their evaluation of the
event. Without going into the theory behind the hypotheses, it was predicted
that a high probability and a favorable evaluation would occur only when both
involvement and emotions are high. Thus, interactions between involvement and
emotions are predicted for both dependent variables.

Table 5 presents a summary of the data for the analysis via the model
shown in Figure 6. Before we apply this model to the data, however, we would
like to test the homogeneity assumption. To do this, we performed a multiple
group test of homogeneity with two dependent variables, analogous to the model
displayed in Figure 5. According to this test by structural equation models,
we cannot reject the hypothesis of homogeneity x§(9) = 14,17, p = .12). This
result compares favorably with the Box's M test by SPSS-X (Box's M = 14.15,
2(9) = 13.82, p = .13).

First, the two-way MANOVA analyses were conducted by the traditional ap-
proach with SPSS-X. The results show that the main effects of emotion and in-
volvement are significant: Wilk's A = .951, F(2,155) = 3.98, p = .02 (Emo-
tion); Wilks' A = .947,.2(2,155) = 4.35, p = .02 (involvement). Furthermore,
the interaction effect between emotion and involvement is significant: Wilks'
A = .960, F(2,155) = 3.27, p = .04.

The two~way MANOVA analyses by use of structural equation models are shown
in Tables 6 and 7. Looking first at Table 6, which shows the results for
the model with high/low emotion as the dummy variable and high and low involve-
ment as the two groups (see Figure 6), we find that a significant interaction

occurs, as hypothesized (xi(Z) = 6.51, p = .04). Compare this finding to the
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corresponding results from the traditional analysis shown earlier (F(2,155) =
3.27, p = .04). Notice further that the highest mean occurs for the high
emotion/high involvement condition. The effect of emotion is 2.05 in the high
involvement condition (see bottom of Table 6). Recall that this is the mean
difference above the baseline which in this case fixes Yy in the low emotion
condition to 0 in both groups. Similarly, Table 7 presents the findings for
the model with high/low involvement as the dummy variable and high and low
emotion as the two groups. As before, we discover a significant involvement x

emotion interaction (xg(Z) = 6.51, p = .04).
[Tables 5, 6 and 7 about herel

We have introduced and illustrated a structural equation approach to two-
way MANOVA designs. A similar development applies to the two-way MANCOVA, par-
alleling the presentation made for the one-way case., Further, n-way MANOVA and
MANCOVA analyses can be performed with structural equation models. The models

represent straightforward extensions of those considered herein.

DISCUSSION

This study has considered structural equation models as an alternative
to traditional analyses of MANOVA and MANCOVA. We began with a specification
of the one-way MANOVA recently proposed by Kuhnel (1988) and illustrated it on
set of experimental data from a marketing study. The model was extended to
accommodate latent variables and to perform step-down analyses. Next the gen-
eral MANCOVA design was treated. Following this, a test for homogeneity was
investigated, and a test of mean difference even under heterogeneity was de-
rived. Finally, the case of the two-way MANOVA was developed.

The advantages of the structural equation approach over traditional anal-

yses are the following. First, the new procedures are more general and do not
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make the restrictive assumption of homogenelty in variances and covariances of
the dependent variables across groups. The procedures can handle the cases
where homogeneity assumptions are violated. Thus, the procedures overcome a
fundamental limitation in current methods of analysis. Second, the new pro-
cedures provide a natural way to correct for measurement error in the measures
of variables and thus reduce the chances of making Type Il errors. Standar&
analyses assume that measurement error is negligible. To the extent to which
such assumptions are violated, the new procedures will be useful. Third,
structural equation models allow for a more complete modeling of theoretical
relations, whereas traditional analyses are limited to associations among meas-
ures. Fourth, covariates in step-down and MANCOVA analyses can be treated as
latent variables with the new procedures, thereby permitting a correction fgk
attenuation and increasing the chances that valid experimental effect§ will be,
detected. The traditional procedures cannot take into account measurement
error in covariates. Finally, structural equation models constitute flexible,
convenient procedures. They not only perform tests of experimental effects
and homogeneity but are special cases of very general programs and easily
implemented.

In the way of caveats, we note the following. Structural equation models
assume that the dependent variables are multivariate normal. A similar as-
sumption is made by the traditional procedures. However, new developments in
asymptotic distribution free estimation, now available with LISREL and EQS,
make this assumption unnecessary. Nevertheless, to take advantage of these
developments, one needs a large sample. This is not always feasible in ex-
perimental designs. Finally, as the number of factors, the number of levels
with?n factors, and the number of measures increase, the number of free par-
ameters to estimate increases and the chances for improper solutions or non-

convergence will increase as well.
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An examination of the above arguments suggests the conditions under which
the use of structural equation models is approériate and useful in experimental
designs. First, when several theoretical constructs underlie dependent varia-
bles, one may focus on these latent variables by use of structural equation
models. Second, when basic measurements tend to be quite unreliable individ-
ually, the structural equation method may be useful. Third, if one knows a
priori theoretical relations among the dependent variables, one may explicitly
incorporate these relations into analysis. Fourth, structural equation analy-
sis will provide more powerful tests when consequences of violating the homo-
geneity assumption are serious, as when sample sizes are quite unequal across
groups. Fihally, it is appropriate when the sample size is large enough for
convergence and proper solutions in estimation.,

Marketers have used the experimental method to advantage over the years
in‘consumer behavior, advertising, sales management, and other areas of re-
search. Up until now, however, analyses have relied exclusively on classic
ANOVA or MANOVA methods. We have shown that structural equation procedures
can be used to test the same hypotheses that can be addressed by the tradi-
tional methods yet do so while taking into account measurement error and not
making the restrictive assumption of homogeneity. The new procedures also
offer advantages with respect to the scope of hypofheses that can be investi-
gated and under certain conditions can even be performed without assuming
multivariate normality. It is our hope that future experimental research in
marketing will utilize structural equation models and thereby increase the

power of analyses.,
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Footnotes
Some researchers in marketing have used structural equation models to ana-
lyze data derived from experiﬁents (e.g., MacKenzie, Lutz, and Belch 1986;
Ryan 1982). However, rather than employing the procedures to conduct anal-
yses of experimental effects, these authors performed causal analyses on
aggregate samples formed by collapsing across all cells in their designs.
The validity of these approaches rests on the assumptions that the measure-
ment properties and causal paths are invariant across cells. Because ex-
perimental manipulations are designed to influence one or more variables
and employ different stimuli to do this, it is unlikely that the required
invariances will hold when collapsing across cells. Further, information
on the means of variables was ignored by focusing on covariances only (see
also Bearden and Shimp 1982). In any event, these studies have not used
structural equation models in the senses developed inAthis paper (i.e., to
perform analyses of experimental effects on the means using analogues to
and generalizations of ANOVA and MANOVA).
To be fair, we should note that the programs available at the time of pub-
lication of these articles did not permit multiple group analyses; there-
fore, analyses of unordered category designs could not be performed because
of technological limitations.
Although our derivations and illustrations focus upon MANOVA and MANCOVA
designs, it should be pointed out that ANOVA and ANCOVA are special cases
and can be analyzed in a manner parallel to the development following in
the present paper.

' and it is the sample moment

This is called "the augmented moment matrix,'
matrix when the constant of 'one' has been added as the last variable for

every sample unit. The augmented moment matrix is needed whenever the
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model involves intercept terms or means of variables (Joreskog and Sorbom
1986, V.16).

Strictly speaking, Figure 2 is a hybrid model sharing features of the
classic ANOVA and MANOVA representations. It is similar to ANOVA if we
regard n as a single latent dependent variable. Yet it is similar to

MANOVA if we focus on ¥y ~ ¥y as three manifest dependent variables. We

3
might have labelled this (M)ANOVA to differentiate it from ANOVA and
MANOVA, but have refrained from doing so in the paper so as not to intro-
duce an additional point of confusion. We would like to point out that,
if two or more endogenous latent variables occur, each with multiple meas-
ures, then the approach can unambiguously be labelled a structural equation
model of MANOVA. We treat such a model in the following subsection.

The step-down analysis is a type of ANCOVA in that covariates are used for
analysis of variance. But it is a special case in that some of the depen-
dent variables are used as covariates in explaining other dependent varia-
bles, whereas the usual (M)ANCOVA uses some of the independent variables
for explaining the dependent variable(s).

Wothke and Browne (1988) have recently provided a linear formul;tion of
nonlinear constralnts by reparameterizing the direct product model for the
multitrait-multimethod (MTMM) matrix as a second order factor analysis.
However, thelr procedures are suitable for gorrelation matrices, and it is
unclear at this point how such procedures can be modified to analyze the
mean differences, a focus of our study. We thank an anonymous reviewer for

bringing our attention to Wothke and Browne (1988)'s work.
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Table 2

FINDINGS FOR STEP-DOWN ANALYSIS OF MANOVA APPLIED TO
DATA IN TABLE 1 TAKING TWO DECISION AND THREE BEHAVIORAL
MEASURES AS DEPENDENT VARIABLES: THE INITIAL STAGE

Traditional MANOVA Analysis

Test Value F df Error df P
Pillai's V .287 11.74 5 146 .000
Wilks' A o713 11.74 5 146 .000
Analysis by Structural Equation Methods
Model with

Full Model
2(0) = 0.00
p = 1.00

Y, * = 0.87 (3.69)°
Y,* = 0.83 (3.58)
Yy* = 3.84 (5.73)
v, * = 1.42 (6.72)

Ys* = 3.54 (7.23)

Yl* - YZ* = Y3* = Y4* = YS* =0

v2(5) = 51.04
p = 0.000
Hence:
xi(S) = 51.04
p = 0.000

aEfvalues in parentheses.



Table 3

FINDINGS FOR STEP-DOWN ANALYSIS OF MANOVA APPLIED TO DATA
IN TABLE 1 WITH DECISION AND BEHAVIORAL CONSTRUCTS AS
DEPENDENT VARIABLES: THE FIRST AND SECOND STEP-DOWN STAGES

First Stage

Full Model Model with Yl* = YZ* =0
2 . 2 _
x“(10) =7.88 x (12) = 53.85
p = 0.64 p = 0.000
Hence:

Y * = 0.86 (3.76)3

Y,* = 3.20 (6.42) X5(2) = 45.97
_E = 00000

Second Stage

Full Model Model with y * = 0
2 2
x (10) = 7.88 x (11) = 39.57
R = 0064 B = 0.000
. Hence:
Y, * = 0.86 (3.76)2
Yp* = 274 (5.56) x5(1) = 31.69
p = 0.000

8t -values in parentheses.,

—



Table 4

FINDINGS FOR MANOVA APPLIED TO DATA FOR TABLE 1 TAKING THREE
BEHAVIORAL MEASURES AS THE DEPENDENT VARIABLE: ALTERNATIVE
TEST BASED ON MULTIPLE GROUPS AND A TEST OF HOMOGENEITY

Model Goodness—of-fit
A: Full, all 9 )
parameters free x (0) =0, p = 1.00
B: Equal Variance- 9 9
Covariance (gc = QG) x (6) = 339.23, p = 0.000
1 2 2 _
C: Equal Means (A" = 1) x (3) = 46.26, p =~ 0.000
D: Equal Means and 1 7 1 9 9
Variance-Covariance (96 =95 A A ) x (9) = 387.11, p = 0.00"

Test of

Homogeneity of Variances

and Covariances (B-A): x§(6) = 339.23, p = 0.000
Equal Means under assumption 9

of Homogeneity (D-B): Xd(3) = 47.88, p = 0.000
Equal Means under assumption 9

of Heterogeneity (C-A): Xd(3) = 46.26, p = 0.000




TABLE 5

DATA FOR TWO-WAY MANOVA EXAMPLES

Low Involvement (n = 80) High Involvement (n = 80)
Measure
Probability 1.000 1.000
Evaluation .066 1,000 -.193 1.000
Dummya .072 =-,271 1.000 .336 .036 1.000
Means 7.188 3.788 .500 6.625 3.413 .500
Std. Dev. 2,977  .791  .503 3.066 1.039 .503
Measure Low Emotion (n = 80) High Emotion (n = 80)
Probability 1.000 1.000
Evaluation -.029 1.000 -.061 1,000
Dummyb -.220 =-.,331 1.000 045 -,068 1.000
Means 6.288 3.688 . 500 7.525 3.513 . 500
Std. Dev. 3.147 . 949 .503 2.783 .928 .503

ap dummy variable for emotion (0 for low emotion, 1 for high emotion).

bA dummy variable for involvement (0 for low involvement, 1 for high
involvenent),

Note: The top portion gives the input data for analysis presented in
Table 6, whereas the bottom is the input data for the results

in Table 7.



Table 6

FINDINGS FOR TWO-WAY MANOVA APPLIED TO DATA OF
TABLE 5: STRUCTURAL EQUATION ANALYSIS WITH MULTIPLE
GROUP APPROACH (LOW AND HIGH INVOLVEMENT GROUPS)

Model

Goodness—-of-fit

A: Full, all parameters free

B: No interaction effects

Gl v e )

C: No main effects of emotion
and no interaction effects

(v} =v2=vy}=+2=0

x2(0) 0.00, p = 1.00

x2(2) 6051, _R = 004

x2(4) = 17.13, p = .002

Test of

Interaction (B-A)

Main effects of emotion (C-B)

.04

6.51, p

R

xj(z)

IO].

14

x§(2) = 10.52, p

Key Parameter Estimates

Parameter

"W*

*
b

Low Involvement

43 (.64)2

-.43 (2.50)

High Involvement

2.05 (3.17)

.07 (.32)

a
t-value in parentheses.



Table 7

FINDINGS FOR TWO-WAY MANOVA APPLIED TO DATA OF
TABLE 5: STRUCTURAL EQUATION ANALYSIS WITH MULTIPLE
GROUP APPROACH (LOW AND HIGH EMOTION GROUPS)

Model Goodness-of-fit
A: Full, all parameters free x2(0) = 0.00, p = 1.00
B: No interaction effects x2(2) = 6.51, p = .04
(i =v% vd =y
C: No main effects of involvement
and no interaction effects 9
(Y]]: = -Y% = Y% = Y% = O) X (4) = 14.49, p= .01
Test of
Interaction (B-A) x§(2) = 6,51, p = .04
Main effects of involvement (C-B) x§(2) =7.98, p= .03
Key Parameter Estimates
Parameter Low Emotion High Emotion
Y,* -1.38 (2.00)% .25 (.40)
Yz* "'.62 (3-11) —013 (.61)

aE;value in parentheses.
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STRUCTURAL EQUATION MODEL SPECIFICATION OF ONE-WAY MANOVA
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STRUCTURAL EQUATION MODEL SPECIFICATION OF ONE-
WAY MANOVA FOR THREE MEASURES OF A SINGLE LATENT
DEPENDENT VARIABLE: DUMMY VARIABLE APPROACH
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STRUCTURAL FEQUATION MODELS FOR ONE-WAY MANOVA STEP-DOWN
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WITH MULTIPLE INDICATORS: DUMMY VARIABLE APPROACH
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