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Abstract
Infection-induced periodontal disease has been pri-
marily focused on a small group of periodontal 
pathogens. A paradigm shift, based on data emerg-
ing from the oral microbiome project, now suggests 
the involvement of as-yet-unculturable and fastidi-
ous organisms. Collectively, these studies have 
demonstrated that there are changes in the periodon-
tal status associated with shifts in the composition 
of the bacterial community in the periodontal 
pocket. In addition, it is likely that the emerging 
new pathogens may play a more significant role in 
the disease. One of the organisms previously unrec-
ognized is Filifactor alocis. While this Gram-
positive anaerobic rod has been identified in 
peri-implantitis, in endodontic infections, and in 
patients with localized aggressive periodontitis, its 
presence is now observed at significantly higher 
levels in patients with adult periodontitis or refrac-
tory periodontitis. Its colonization properties and its 
potential virulence attributes support the proposal 
that F. alocis should be included as a diagnostic 
indicator of periodontal disease. Moreover, these 
emerging characteristics would be consistent with 
the polymicrobial synergy and dysbiosis (PSD) 
periodontal pathogenesis model. Here, unique char-
acteristics of F. alocis are discussed. F. alocis has 
specific factors that can modulate multiple changes 
in the microbial community and host cell proteome. 
It is likely that such variations at the molecular level 
are responsible for the functional changes required 
to mediate the pathogenic process.
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Introduction

In the United States, over 49 million people are affected by periodontitis, a chronic 
inflammatory condition of an infectious nature involving the tissues supporting 

the teeth (Oliver et al., 1991; Eke et al., 2012; Thornton-Evans et al., 2013). In 
addition to the heavy health care burden that this occurrence may impose, it is 
likely to increase given the emerging association of periodontitis with other sys-
temic diseases, including cardiovascular diseases (Genco and Van Dyke, 2010) 
and rheumatoid arthritis (Bingham and Moni, 2013). Even though the human oral 
cavity is home to more than 700 species, only a subset of microbes, which now 
includes previously unrecognized and uncultivated species, is associated with dis-
ease (Dewhirst et al., 2010; Kolenbrander et al., 2010; Griffen et al., 2012). The 
“red complex”, consisting of Porphyromonas gingivalis, Tannerella forsythia, and 
Treponema denticola, is well-established as being associated with adult periodon-
tal disease (Kumar et al., 2003; Dewhirst et al., 2010). Furthermore, P. gingivalis, 
now designated as a “keystone” species, is able to manipulate the host immune 
system, thus eliciting a major effect on the composition of the oral microbial com-
munity and to the pathology of periodontitis (Darveau et al., 2012; Hajishengallis 
and Lamont, 2012). Because colonization of germ-free mice by P. gingivalis 
failed to induce the pathology associated with the disease (Hajishengallis et al., 
2011), this suggests that while it may be necessary (reviewed in Darveau et al., 
2012), it is insufficient to trigger the periodontitis-associated pathology. This is 
also observed in localized aggressive periodontitis (LAP) in young adults where 
Aggregatibacter actinomycetemcomitans was proposed to be a keystone pathogen 
that could set up the subgingival environment by producing toxins, resulting in 
immune paralysis and permitting the overgrowth of specific organisms at spe-
cific time-points that would otherwise be controlled and regulated by the host. 
Collectively, these observations have raised questions on the role other pathogens 
may play in the disease process. In the current emerging paradigm, periodonti-
tis is believed to be initiated by synergistic and dysbiotic microbial communities 
(Hajishengallis and Lamont, 2012).

Yet-to-be-cultured Bacterial Communities

Oral microbiome studies conducted over the last several years have modified 
and enhanced our understanding of the oral multispecies microbial communi-
ties in health and disease. Current theories on the etiology of periodontitis 
favor a shift in microbial composition that is caused by a decrease in benefi-
cial symbionts and an increase in organisms with enhanced pathogenic poten-
tial. Hence, there is an increase in microbial diversity and its composition, and 
thus pathogenic communities contain higher levels of fastidious and yet-to-
be-cultivated taxons than previously recognized (Dewhirst et al., 2010; 
Griffen et al., 2012).

Filifactor alocis: The Newly 
Discovered Kid on the Block with 
Special Talents
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The previously accepted “red complex”—along with other 
cultivable bacteria species, such as Prevotella intermedia, 
Aggregatibacter actinomycetemcomitans, Fusobacterium nuclea-
tum, Selenomonas noxia, and Eubacterium nodatum—is associ-
ated with periodontitis (Kolenbrander et al., 2002, 2006; Saito  
et al., 2009). In addition, organisms such as Selenomonas, 
Synergistes, Desulfobulbus, TM7 (new candidate bacterial divi-
sion), and Filifactor alocis have been identified as potential 
pathogens in a number of independent studies (Dewhirst et al., 
2010; Griffen et al., 2012). Moreover, of the phylotypes identified 
in the oral cavity, between 20% and 60% have yet to be cultivated 
(Dewhirst et al., 2010; Griffen et al., 2012). This has raised ques-
tions on the relative significance of these microbes in the disease 
process. This review introduces the new organism F. alocis and its 
unique characteristics, virulence potentials, capacity to act in 
community dynamics, and, ultimately, its role in periodontitis.

F. alocis: General Characteristics

F. alocis, a Gram-positive, asaccharolytic, obligate anaerobic 
rod (Figs. 1A, 1B), shows surface punctations resembling min-
ute projections (Fig. 1C). This is one of the marker organisms 
and is considered an important periodontal pathogen. The  
organism is now identified to be significant to the pathogenic 
structure of biofilms associated with periodontal inflammation 
(Kumar et al., 2003, 2006; Schlafer et al., 2010). In comparison 
with the other traditional periodontal pathogens, the high inci-
dence of F. alocis in the periodontal pocket compared with its 
absence in healthy individuals or those who are periodontitis-
resistant has highlighted its importance in the infectious disease 
process (Kumar et al., 2003, 2006; Wade, 2011). This organism 

was first isolated in 1985 from the gingi-
val sulcus in patients with gingivitis and 
periodontitis and was originally classified 
as Fusobacterium alocis (Cato et al., 
1985) then reclassified into the genus 
Filifactor (Jalava and Eerola, 1999).

F. alocis, while heterogenous, has 
virulence properties that may enhance its 
ability to survive and persist in the peri-
odontal pocket (Aruni et al., 2011). Its 
relative resistance to oxidative stress and 
stimulated growth under those condi-
tions are considered to be important attri-
butes (Aruni et al., 2011). Furthermore, F. 
alocis has been shown to induce secretion 
of pro-inflammatory cytokines, trigger-
ing apoptosis of gingival epithelial cells 
(Moffatt et al., 2011). Additionally, colo-
nization and survival of F. alocis in a 
mouse model showed pro-apoptotic local 
infection that is rapidly resolved by host 
neutrophil influx (Wang et al., 2014). 
Moreover, in co-culture with P. gingiva-
lis, F. alocis showed an increased inva-
sive capacity of HeLa cells (Aruni  
et al., 2011).

In silico analysis of F. alocis has shown close relatedness to 
Clostridium and Fusobacterium (Aruni et al., 2011). Similarities 
in virulence attributes among these organisms have been notably 
due to the presence of a battery of proteases. This characteristic, 
also present in F. alocis, would be consistent with the asaccha-
rolytic nature of this organism, where specific amino acids 
including arginine are shown to stimulate its growth (Uematsu 
et al., 2003). Even though F. alocis showed low gingipain-type 
activity, it had increased non-gingipain protease activity (Aruni 
et al., 2011). The amino acids mostly utilized by F. alocis 
include arginine and lysine, followed by cysteine. The F. alocis 
arginine metabolic pathway predicts the enzymatic degradation 
of arginine by arginine deaminase, leading to the conversion of 
arginine to ornithine and ammonia (Uematsu et al., 2003). 
Arginine degradation could favor increase in the pH that would 
counteract acidic conditions generated from carbohydrate catab-
olism in a mixed bacterial oral flora. In the periodontal pocket, 
these amino acids can also be made available from the degrada-
tion of various protein substrates by other bacteria and host-
derived proteases for nutritional support, survival, and virulence 
(Eley and Cox, 1992).

F. alocis Involvement in Other Oral  
Disease Conditions

The environment surrounding the sulcus of patients with peri-
implantitis is well-suited for the growth of both Gram-negative 
and asaccharolytic anaerobic Gram-positive rods (AAGPRs). 
Among the AAGPRs, F. alocis is one of the most prominent 
bacteria (Tamura et al., 2013). F. alocis has also been discovered 
in the canals of root-filled teeth with periapical lesions, is  

Figure 1.  F. alocis – surface morphology. (A) Transmission electron micrograph showing  
F. alocis, a Gram-positive, asaccharolytic, obligate anaerobic rod. (B) Transmission electron 
micrograph of F. alocis showing membrane and cell wall structures. (C) Scanning electron 
micrograph of F. alocis showing surface punctations resembling minor projections.
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associated with signs and symptoms of endodontic infections 
(Gomes et al., 2006), and has been identified as one of the 
prevalent phylotypes in cases of failed endodontic treatment 
(Zhang et al., 2012).

The Virulence Potential of F. alocis
Because of the presence of other microbial species, chronic 
inflammation, and other prevailing conditions, including fluc-
tuations in nutrient availability, temperature, pH, and oxygen 
tension, F. alocis must have properties that will allow it to colo-
nize, survive, and out-compete other traditional periodontal 
pathogens in the stress environment of the periodontal pocket.

Biofilm Formation

Oral biofilms are primary initiating factors of periodontal dis-
ease. Biofilm formation involving F. alocis has been demon-
strated in both periodontic and endodontic cases (Schlafer et al., 
2010). While some interspecies interaction can inhibit biofilm 
formation, P. gingivalis ATCC 33277 co-cultured with F. alocis 
showed significant increase in biofilm formation (Aruni et al., 
2011). This enhanced biofilm-forming capacity may be due to 
the ability of both species to autoaggregate and express unique 
components. This may also indicate a symbiotic relationship 
between F. alocis and P. gingivalis. Thus, F. alocis and P. gingi-
valis, each with different growth rates, could form a mixed-
species biofilm and co-exist (Aruni et al., 2011). As a result,  
F. alocis proteins could enable P. gingivalis to proliferate and 
disseminate from these biofilms, thus facilitating its virulence 
(Pöllänen et al., 2013).

A recent in vitro study, evaluating the community interactions 
of two strains of F. alocis with Streptococcus gordonii, F. nuclea-
tum, P. gingivalis, and A. actinomycetemcomitans, which are 
organisms of differing pathogenic potential in the oral cavity, 
suggests that F. alocis is likely to interact with a variety of oral 
bacteria and participate in community development (Wang et al., 
2013). Further, F. alocis colonization seemed to be dictated by the 
spatial composition of microbial microenvironments that involves 
quorum-sensing, and the organism may preferentially accumulate 
at sites rich in F. nucleatum. Streptococcus gordonii was antago-
nistic to the accumulation of F. alocis in a dual-species commu-
nity. This was consistent with the observation that streptococci-rich 
dental plaques were resistant to colonization by F. alocis (Wang 
et al., 2013). In three-species communities of S. gordonii,  
F. nucleatum, and F. alocis, the antagonistic effects of S. gordonii 
superseded the synergistic effects of F. nucleatum toward F. alocis 
(Wang et al., 2013). The interaction between A. actinomycetem-
comitans and F. alocis was strain-specific, and A. actinomycetem-
comitans could either stimulate F. alocis accumulation or have no 
effect, depending on the strain. P. gingivalis and F. alocis formed 
heterotypic communities, with the abundance of P. gingivalis 
being enhanced in the presence of F. alocis (Wang et al., 2013). It 
is likely that F. alocis proteins induced under those conditions 
may facilitate adhesion and nutrient support for P. gingivalis. 
While the mechanism of the interaction is complex, with inhibi-
tory and counterbalancing measures, the question of how arginine 

deiminase affects the community dynamics can be raised. The 
inhibitory effect of P. gingivalis on F. alocis was observed to be 
partially dependent on the minor fimbriae (Wang et al., 2013). 
The arginine deiminase of S. cristatus is known to suppress fim-
brial production in P. gingivalis (Xie et al., 2007; Wang et al., 
2009). Based on the relative abundance of F. alocis in the peri-
odontal pocket compared with P. gingivalis, it is unclear if the  
F. alocis arginine deiminase is induced in that microenvironment 
and could have an effect on P. gingivalis fimbrial expression.

Oxidative Stress Resistance

Our studies have shown that F. alocis is relatively resistant to 
oxidative stress compared with P. gingivalis and that its growth 
is stimulated under those conditions (Aruni et al., 2011). These 
observations may indicate an important attribute for the survival 
and relative abundance of F. alocis compared with other organ-
isms in the inflammatory microenvironment of the periodontal 
pocket. It is also likely that F. alocis may play a role as an “oxi-
dative sink” to stabilize the microbial community in the micro-
environment of the periodontal pocket. Preliminary observations 
from our laboratory suggest that the survival of P. gingivalis 
under hydrogen-peroxide-induced oxidative stress is enhanced 
in the presence of F. alocis (unpublished observations).

While the precise mechanism of oxidative stress resistance  
in F. alocis is yet to be elucidated, there are likely several  
possibilities that will need confirmation. Not only will the pres-
ence of sialidase activity in F. alocis satisfy its asaccharolytic 
property by breakdown of sialated glycoproteins found in saliva, 
but the released sialic acid can also act as a ROS scavenger to 
reduce the oxidative stress in the inflammatory environment of 
the periodontal pocket (Iijima et al., 2004). F. alocis possesses a 
superoxide reductase (GenBank accession no. EFE28874) that 
could help to facilitate its growth in the presence of hydrogen 
peroxide (http://www.ncbi.nlm.nih.gov/bioproject/46625).

The interaction of F. alocis with other organisms can also 
enhance its oxidative stress resistance and hence its virulence 
potential. In co-culture with P. gingivalis, an up-regulation of 
many proteins involved in oxidative stress resistance—such as 
superoxide reductase, iron-sulfur cluster protein, iron permease, 
ruberythrin, ferrous hydrogenase family protein, and thiore-
doxin family proteins—was observed in F. alocis (Aruni et al., 
2012). One of the key attributes of F. alocis is the 3-methylad-
enine DNA glycosylase (HMPREF0389_1529), an enzyme 
reported to be involved in oxidative and nitrosative stress resis-
tance in other pathogenic bacteria (Slade and Radman, 2011) 
(although its function under those conditions is unclear). The 
genome of F. alocis also includes genes that encode for a well-
developed group of iron-sulfur cluster proteins and a ferrous 
iron transport system which are unique to this organism com-
pared with other “red complex” bacteria. Additionally, F. alocis 
seems to possess a well-developed protein-sorting/-transport 
system which is evident by the presence of a large number of 
membrane proteins (Aruni et al., 2012). It is likely that surface 
and secretory proteins from F. alocis may play a role in this 
protein transport process. Together, these systems could possi-
bly facilitate the efflux of reactive oxygen species.
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Neutrophil and Macrophage Evasion

In the inflammatory response, neutrophils and macrophages are 
the most abundant cell types encountered at the site of infection 
and are responsible for the death and phagocytosis-mediated 
clearance of invaders (reviewed in Srinivasan, 2013); thus, 
immune evasion is an important mechanism in pathogen sur-
vival. In periodontitis, the attachment of planktonic bacterial 
species to form complex biofilm communities causes them to 
evade the host defense mechanisms, including neutrophils and 
macrophages. This affects the host, causing bacterial-induced 
damage that further progresses to host-mediated factors in 
enhancing the disease (Fig. 2). F. alocis infection in the mouse 
chamber model generated significant neutrophil recruitment, but 
selective neutrophil response was found to be dysfunctional 
(Wang et al., 2013). Our previous studies have shown that  
neutrophil-activating protein A, a possible contributor to neutro-
phil modulation, was abundant in the F. alocis secretome and/or 
associated membrane (Aruni et al., 2012). Taken together, these 
results suggest that F. alocis may have unique characteristics 
that can modulate neutrophil function leading to evasion and 
hence may be an important survival strategy.

Adhesion and Invasion

The genome characteristics and phenotypes attributed to F. alocis, 
such as adherence and invasion of host cells, are considered 
important to its success as a pathogen. Genes encoding for  
proteins such as CaaX aminopeptidases may be crucial for 
masking the host ubiquitin system and facilitate invasion of host 
cells (Price and Kwaik, 2010).

F. alocis has been shown to adhere to and invade epithelial 
cells (Aruni et al., 2011). These abilities, which were enhanced 
in the presence of P. gingivalis, may result from protein interactions 
modulated by bacterium-bacterium communication/signaling. A 
similar enhancement of invasion was observed among P. gingivalis, 
F. nucleatum, and P. intermedia (Saito et al., 2009), between  
F. nucleatum and Streptococcus cristatus (Edwards et al., 2006), 
and between F. nucleatum and Pseudomonas aeruginosa (Pan  
et al., 2009).

Filapodial projections of host microvilli were noted during  
F. alocis invasion (Figs. 3A, 3B) and were believed to mediate 
the organism’s internalization (Amano et al., 2010). In addition, 
vesicle-mediated internalization of P. gingivalis and F. alocis 
was observed during invasion of epithelial cells in co-infection 
studies (Aruni et al., 2011). This process may protect the patho-
gen after invasion and facilitate its pathogenic potential. 
Although membrane-ruffling mechanisms are commonly noted 
among Gram-positive bacteria invasion strategies, this was not 
the case for F. alocis. Since vesicle-mediated endocytic internal-
ization of Gram-positive bacteria is generally mediated by types 
II and III exotoxins (Nitsche-Schmitz et al., 2007), it is likely 
that such exotoxins may contribute to the enhancement of inter-
nalization observed in the F. alocis-P. gingivalis co-culture inva-
sion study. In fact, several exotoxins have been identified in  
F. alocis, but their role in invasion remains unclear.

Proteases

To date, proteases have played a significant role in virulence 
modulation among the major oral pathogens (Lamont and 
Jenkinson, 1998; Guo et al., 2010). In Gram-positive bacteria, 
proteolysis plays a central role in many biological processes, 
such as post-translational regulation of gene expression and the 
processing and maturation of proteins (Laskowska et al., 1996; 
Gottesman et al., 1997). Expression of various surface proteins 
depends on proteolysis, which could strongly influence the lev-
els of activity of proteases and their cellular localization.

The F. alocis genome possesses 15 different proteases (Aruni 
et al., 2012), and our study identified variations in the expres-
sion of proteases among strains of F. alocis when a low-pas-
saged strain was compared with the type strain. Among the 
membrane-bound proteases of F. alocis, Caax protease 
(HMPREF0389_00590) could be involved in protein and/or 
peptide modification and secretion (Pei and Grishin, 2001). 
There was higher expression of Caax proteases during F. alocis 
co-culture (Aruni et al., 2012). Other than their metalloprotease 
activity, the Caax amino-terminal proteases in other oral bacte-
ria, such as S. gordonii, have been shown to play an important 
role in the transport of proteins and also protect the bacteria 
against bacteriocins. Additionally, the Xaa–pro-dipeptidase 
(HMPREF0389_01538), O-sialoendopeptidase (HMPREF0389 
_01445), Nlp/P60 family protein (peptidase M23/37) (HMPR 
EF0389_00239), and oligo endopeptidase M3 family (HMPR 
EF0389_00926) were shown to be present only in the membrane 
fraction of F. alocis. However, the protease (HMPRE 
F0389_00122) was identified only in the extracellular fraction. 
Additionally, this protease is predicted to possess a collagen 
peptidase function. The role of this enzyme could be important 
in F. alocis pathogenesis, since several oral pathogens are 
known to produce or induce host-derived collagenases that are 
implicated in tissue destruction in periodontal diseases (Kumagai 
et al., 2005). Some of the proteases are collagenolytic and could 
act as Microbial Surface Components Recognizing Adhesive 
Matrix Molecules (MSCRAMMs), which are known to play an 
important role in Gram-positive bacterial virulence by mediat-
ing adherence to and colonization of host tissues as an early step 
toward clinical infection (Patti et al., 1994). There is also evi-
dence to suggest that these extracellular matrix adhesion pro-
teins can be regulated by quorum-sensing (Pinkston et al., 
2011), which implies that some environmental signals can 
modulate their expression and hence promote adhesion and 
colonization.

In our preliminary studies, F. alocis co-cultured with P. gin-
givalis showed adhesion to epithelial cells, altering their mor-
phology and leading to cell death. This was in contrast to 
mono-infections with either F. alocis or P. gingivalis that did not 
trigger the same morphological alteration, although these bacte-
ria were still able to induce cell death over a longer time period 
(Aruni et al., 2011). Additionally, proteomic analysis of F. alocis 
during co-infection of epithelial cells with P. gingivalis using a 
tandem-mass-tagging technique revealed an increase in several 
membrane adhesion proteins (unpublished observations).  
In silico analysis of the mass spectrometry data via database 
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search and domain prediction revealed some of these proteins  
to be known virulence factors; in other systems, however, the 
functions of several unique hypothetical proteins with trans-
membrane domains need to be elucidated. Taken together, this 
suggests that the interaction of F. alocis and P. gingivalis may 
result in the up-regulation of specific factor(s) that may enhance 
their virulence potential (Aruni et al., 2011).

Certain oral bacteria like F. nucleatum lack essential amino 
acid synthetic pathways and rely on the ability to import and 
degrade di and oligo peptides (Kapatral et al., 2002). Consistent 
with the asaccharolytic properties of F. alocis, several proteins 
that play an important role in amino acid metabolism, including 
many that may contribute to protein degradation, are present in 
its genome (http://www.ncbi.nlm.nih.gov/bioproject/46625). 
Even if many inherent amino acid synthesis pathways may be 
non-functional, the occurrence of a wide range of such dipepti-
dases, metalloproteases, and o-sialoglycoproteases could likely 
provide F. alocis with the appropriate substrates to compensate 
for its nutritional needs. Additionally, certain proteins—such as 
the oxy acyl carrier protein (HMPREF0389_ 01112), which is 
involved in fatty acid metabolism and not usually identified 
among the oral biofilm-forming pathogens, fibronectin-binding 
protein (HMPREF0389_00575), and dipicolinate reductase 
(HMPREF0389_01077), which are involved in amino acid 

metabolism and virulence (Berges et al., 1986)—were also iden-
tified in F. alocis (Aruni et al., 2012). Taken together, it is likely 
that F. alocis may be well-adapted to provide for its own nutri-
tional needs. However, the role these systems play in bacterial 
community dynamics should be further elucidated.

Proteome Associated with Microbe-Host 
Interaction

Host responses to bacterial infections may favor survival and  
play a role in pathogenesis through modulation of metabolic pro-
cesses. High amounts of arginine in the periodontal pocket and the 
abundance of F. alocis proteins involved in arginine metabolism 
and citrulline synthesis—such as arginine deiminase (HMPREF 
0389_01584), acetyl ornithine transferase (HMPREF0389_01570) 
(Aruni et al., 2012), aminotransferases (HMPREF0389_01352 
and HMPREF0389_01353), aminotransferase family protein 
(HMPREF0389_00349), arginine – tRNA ligase (HMPREF0389_ 
00390), and arginine decaroboxylase (HMPREF0389_00102) 
(http://www.ncbi.nlm.nih.gov/bioproject/46625)—indicate that 
the nutritional needs of the bacterium could be adequately met dur-
ing infection and are vital for its survival in the harsh microenviron-
ment of the periodontal pocket. Furthermore, its interaction with 
other microbes may collectively enhance their survival. Ammonia 

Figure 2.  F. alocis as an oxidative sink. Community dynamics may play an important role in microbial survival in an oxidative stress environment 
of the periodontal pocket. The high abundance of F. alocis in the periodontal pocket may be consistent with the relative resistance to oxidative 
stress and its enhanced growth under those conditions. The beneficial relationships via the interactions with other microbes in the biofilm would 
stabilize the heterotypic community, including protection from the host immune response. Tissue damage observed in periodontal disease is a 
combination of bacterial-induced and host-mediated damage (see text for details).

http://www.ncbi.nlm.nih.gov/bioproject/46625
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production from arginine metabolism has been identified as an 
important mechanism by which oral bacteria are protected against 
acid killing (Burne and Marquis, 2000). Among the three key 
enzymes important in arginine metabolism, namely, arginine deim-
inase, ornithine carbamoyltransferase, and carbamate kinase 
(Griswold et al., 2004), the F. alocis genome shows genes coding 
for arginine deiminase and carbamate kinase but not the ornithine 
carbamoyltransferase. It is noteworthy that P. gingivalis and  
F. alocis interspecies interaction resulted in the up-regulation of 
arginine deiminase (HMPREF_0389_01584) and carbamate kinase 
(HMPREF_0389_00535) in F. alocis (unpublished observations). 
While it may use a novel arginine catabolic pathway compared with 
other AAGPRs in the periodontal pocket (Uematsu et al., 2003), its 
relative abundance in the periodontal pocket and its enhanced abil-
ity to produce ammonia could promote species co-habitation and 
survival (Jakubovics et al., 2008). Because butyrate is a metabolic 
end-product from arginine, it could likely also have an impact on 
other microbial interactions, including viruses, in the oral cavity. 
Butyric acid produced by periodontopathic bacteria including P. 
gingivalis can lead to viral reactivation (Imai et al., 2012). The 
impact of viral infection on periodontal disease is now being recog-
nized, since the active inflamed lesion appears to be a major site for 
re-activation and accumulation of Herpes virus, resulting in 
enhanced tissue breakdown (reviewed in Slots, 2010).

Interrogation of the F. alocis genome also revealed tem-
plates for a well-developed citrulline synthesis mechanism 
using arginine (Uematsu et al., 2003). Citrullination of pro-
teins is understood to be an important post-translational modi-
fication with systemic implications (Chirivi et al., 2013). 
Previous studies have shown that up-regulation of peptidyl 
arginine deiminase (PAD) expression and the associated 
increase in citrullinated proteins were found in patients with 
rheumatoid arthritis (Foulquier et al., 2007). A mechanistic 
link between periodontal infection and rheumatoid arthritis has 
been established; collagen-induced arthritis was dependent on 
the expression of a unique P. gingivalis peptidylarginine 

deiminase (PPAD) (Maresz et al., 2013). The arginine deimi-
nase from pathogens was shown to possess multiple regulatory 
roles similar to PAD function (Touz et al., 2008). Bioinformatic 
analyses indicate that P. gingivalis PAD has major sequence 
and structural homology with the F. alocis arginine deiminase 
enzyme (unpublished observations). It is likely that, in F. alocis, 
arginine deiminase could have citrullination-induced systemic 
implications.

It is also important to note that protein ornithine transaminase 
(HMPREF0389_01570), acetyl glutamate kinase (HMPREF0389_ 
01569), glutamate racemase (HMPREF0389_ 00100), and amino-
transferase (HMPREF0389_00478) involved in ornithine biosyn-
thesis were identified in F. alocis. In fact, arginine deaminase 
(HMPREF0389_01584) involved in ornithine catabolism and urea 
breakdown was found in both the membrane and the extracel-
lular fractions of F. alocis (Aruni et al., 2012), suggesting a 
well-developed nitrogen-assimilatory pathway that may play a role 
as an alternative mode of amino acid synthesis in F. alocis.

A co-infection study from our laboratory has shown that F. alo-
cis has specific factors that could cause multiple changes in the host 
cell proteome (unpublished observations). It is likely that such 
changes may contribute to the functional modifications involved in 
the pathogenic process. With many unique properties, such as oxi-
dative stress resistance (Aruni et al., 2011), and a virulence poten-
tial when associated with other red complex bacteria, F. alocis 
should be considered a key periodontal pathogen.

Summary

Analysis of emerging data now shows that F. alocis is a marker 
organism for periodontitis. It has unique characteristics that may 
enhance its virulence potential (Fig. 4). F. alocis could be one of 
the organisms that can play a pivotal role in community dynam-
ics, establishing synergistic partnerships with other pathogenic 
oral bacteria during the disease state. In comparison with other 
Gram-positive bacteria of the oral cavity, the variations induced 

Figure 3.  Epithelial cell interaction of F. alocis during mono and co-culture with P. gingivalis. (A) F. alocis–infected epithelial cells. The bacteria 
adhere to the eukaryotic cell, causing surface variations (green arrows showing adhesion of F. alocis). (B) F. alocis–infected epithelial cells showing 
surface variations of filamentous projections noted during co-culture with P. gingivalis strains. Orange arrows = filamentous projections; green 
arrows = F. alocis; blue arrows = P. gingivalis.
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in the host proteome during F. alocis synergism could lead to 
many systemic host responses. Therefore, the significance of  
F. alocis putative virulence factors, which may trigger the key 
host response, deserves further intensive study. It is noteworthy 
that F. alocis is one of only a few organisms associated with 
both generalized and localized aggressive periodontitis (LAP) in 
addition to peri-implantitis and endodontic infections.
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