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Protection of hair cells by HSP70 released by supporting cells is reported 
by May et al. in this issue of the JCI. Their findings suggest a new way to 
reduce ototoxicity from therapeutic medications and raise larger questions 
about the role and integration of heat shock proteins in non–cell-autono-
mous responses to stress. Increasing evidence suggests an important role 
for extracellular heat shock proteins in both the nervous system and the 
immune system. The work also suggests that defective chaperones could 
cause ear disease and supports the potential use of chaperone therapeutics.
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Heat shock proteins
Heat shock proteins (HSPs) are the prod-
uct of heat shock genes, initially defined 
as genes induced by a short, sudden tem-
perature elevation above normal; however, 
many HSP genes are induced by stressors 
other than heat shock, and some are con-
stitutively expressed essential proteins. 
Initially, HSP70 was recognized as an 
intracellular chaperone with a central role 
in protein folding of nascent and dena-
tured proteins (1–4), and extracellular 
HSP70 was thought to be the result of cell 
death. A body of work has now demon-
strated that HSP70 is released from a wide 

variety of cells via a noncanonical secretion 
pathway (5, 6), as the sequence is devoid of 
a consensus secretory signal, and inhibitors 
of the common secretory pathway fail to 
block secretion. HSP70 is thought to share 
secretion pathways used by other leader-
less proteins that are nevertheless secreted, 
such as IL-1β, but this remains an area of 
active research.

HSP70 is a highly evolutionarily con-
served molecule, from bacteria to people. 
In humans, it has expanded from the single 
DNAK protein found in bacteria to a fam-
ily of at least 17 members in humans (7). 
Further, some of the genes likely produce 
more than one mRNA and protein variant. 
Because it is such an ancient protein and 
because it has always been involved with 
stress sensing and stress resistance, it is not 
surprising that it also participates with two 

organ systems that have evolved to sense 
environmental challenges and respond to 
them, the nervous system and the immune 
system. Indeed, it is especially in these two 
systems that HSP70 roles beyond the clas-
sical intracellular locations have begun to 
be revealed.

HSP70 has been shown to have many 
paracrine effects, especially in the setting 
of injury and repair. Extracellular HSP70, 
both free and endosome/vesicle-associated, 
provides information about stress and cell 
injury. It acts as an alarmin or damage-
associated molecular pattern; activates 
signaling cascades, including the cytokine-
inducing MyD88/IRAK/NF-κB pathway 
(8); regulates signaling pathways, includ-
ing FOXO and the MAPK p38 (9); and acts 
on numerous cell types, including immune 
cells, epithelial cells, hepatocytes, and neu-
rons. For example, HSP70 plays a central 
role in the regulation of inflammation and 
regeneration following muscle injury (9).

The article by May et al. reports that 
HSP70 release from supporting cells is 
necessary and sufficient to protect mecha-
nosensory hair cell neurons from the toxic 
effects of aminoglycoside antibiotics (10). 
This is of broad importance, as there are 
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often the case, the picture that is develop-
ing is complex. HSP70 has been shown 
to be both strongly immunostimulatory 
and immunosuppressive, depending on 
the cell type and context. Much of this 
work has focused on the ability of HSP70 
to modify the response to tumors, facili-
tating the elimination of tumor cells, 
but there are also intriguing data in the 
setting of chronic inflammatory disease, 
including rheumatoid arthritis, diabetes, 
and atherosclerosis, in which HSP70 may 
exert immune modulatory antiinflamma-
tory effects via T regulatory lymphocytes 
(19, 20). HSP70 can induce proinflamma-
tory cytokine production in a calcium- 
and NF-κB–dependent manner via TLR2 
and 4 (8), as well as inhibit inflammatory 
cytokine production by inhibiting NF-κB 
activation (17).

Most of the potential HSP70 receptors 
identified thus far are best known for their 
function in the immune system, though 
they are also expressed on other cell types. 
Possible receptors include members of the 
Toll-like receptor family, especially TLR2 
and 4, as well as some scavenging receptors, 
including LOX-1, SREC-1, and FEEL1, rep-
resenting another family of pattern recogni-
tion receptors and C-type lectins (21). Also, 
the α2-macroglobulin receptor CD91 (22) 
was implicated in allowing highly efficient 
antigen presentation by the complex of anti-
genic peptide with HSP70, which requires 
APCs. Thus, extracellular HSP70 partici-
pates in both the innate immune response 
and the adaptive immune response.

A growing body of work documents many 
roles for extracellular HSP70, especially in 
immune regulation, but also increasingly in 
communication between cells and between 
tissues and the immune system. Key ques-
tions remain with regard to the receptors for 
HSP70 on different cells, including neurons, 
as well as to the signaling pathways involved 
and how this signaling alters the cell’s phe-
notype. The role of extracellular HSP70 in 
many disease states and in aging are also 
important outstanding questions. The pos-
sibilities of using HSPs for neuroprotec-
tion are tantalizing but will require greater 
understanding for successful translation 
into clinical use.
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the brain via soluble mediators (for review 
see ref. 12). This understanding has been in 
part a result of the recognition that neurons 
express receptors for immune mediators, 
and immune cells express receptors for neu-
rotransmitters. This raises the question of 
whether HSP70 signals to hair cell neurons 
via one of the known or suggested HSP70 
receptors discussed below, most of which 
have known immune system functions.

HSP70 and the nervous system
HSPs have been shown to play a role in 
neuronal survival and communication 
between glial cells and neurons. The report 
by May et al. (10) is consistent with a grow-
ing body of literature suggesting that 
HSP70 can be provided to neurons by glial 
cells (13). This is especially beneficial since 
neurons themselves have a reduced abil-
ity to induce HSP70 in response to stress, 
reflecting differences in transcription fac-
tor expression and regulation (14). Early 
work suggested that HSP70 could be trans-
ferred to axons from neighboring glia, and 
extracellular HSP70 was shown to protect 
motor neurons (13, 15). HSPs have been 
shown to protect the nervous system from 
a variety of stresses and neurodegenerative 
diseases (16, 17). Further interesting work in 
the nematode C. elegans describes a different 
interaction between the induction of HSP70 
and the nervous system, allowing the intact 
organism to distinguish acute stress from 
chronic stress. Heat-sensing neurons inhib-
ited induction of the heat shock response 
with chronic stress, demonstrating non–
cell-autonomous control of HSP induction 
(reviewed in ref. 18). The work by May et al. 
extends current knowledge of the roles of 
extracellular HSP70 in the CNS (10).

HSP70 and the immune system
The article by May et al. (10) raises an 
important question: which receptors 
transduce the protective signal carried by 
HSP70? This merits further investigation 
because the answer may indicate ways to 
improve, stimulate, or simulate the inter-
action of HSP70 with its surface receptor 
for therapeutic protective purposes. There 
are already clues in the literature point-
ing to a variety of possible receptors, some 
thought to mediate internalization and 
others thought to mediate signaling, but 
our understanding of this area is still in an 
early stage.

Much of the work to better understand 
the role of extracellular HSP70 has been 
performed in the immune system. As is 

currently no known ways to reduce the 
ototoxicity of aminoglycoside antibiotics, 
which are widely used and cause significant 
hearing loss or impaired balance in up to 
20% of patients receiving these drugs. It is 
estimated that 500,000 patients each year 
in the United States suffer hearing loss or 
balance impairment from the use of oto-
toxic therapeutic medications.

A unique organotypic utricle culture sys-
tem was used to investigate the mechanism 
of HSP70 protection in this setting, and 
the authors demonstrate that the release of 
HSP70 from the glia-like supporting cells 
that nestle at the base of the hair cells leads 
to this protection. There are two central 
findings here that advance understand-
ing in this field: first, that the neighboring 
glial cells release the HSP70 that provides 
protection; and second, that extracellular 
HSP70 appears sufficient to protect the 
neurons, without requiring significant 
uptake. This points to a critical role for sig-
naling by HSP70, rather than its canonical 
function as a direct molecular chaperone. 
The work extends the broader understand-
ing of the role of extracellular HSP70 as a 
molecule conveying signals from one cell 
to another, likely via binding to cell surface 
receptors; however, the receptor for HSP70 
in this setting is unknown.

In addition to being found in plasma in 
the setting of disease, it is now clear that 
stresses that do not induce substantial 
cell death, including psychological stress 
and exercise, lead to significant increases 
in extracellular HSP70 (5). The findings 
reported by May et al. (10) also suggest the 
possibility that defective chaperone secre-
tion or function could directly contribute to 
hearing loss/balance disturbance if the hair 
cell is not protected, similar to what hap-
pens in other conditions in which defective 
chaperones contribute to pathogenesis (11).

Immune and nervous system reflexes
Both functional and anatomic connections 
between the immune system and the CNS 
are now recognized. There are immune 
neuronal reflexes that allow communica-
tion of immune system information from 
the periphery to the CNS via sensory affer-
ents traveling through the vagus nerve, as 
well as neuronal efferents from the nucleus 
ambiguous and dorsal motor nucleus, again 
traveling through the vagus nerve to inner-
vate immune organs, including the spleen, 
lymph nodes, and thymus. In addition to 
signaling via sensory neurons, the periph-
eral immune system can communicate with 
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Chronic THC intake modifies fundamental 
cerebellar functions
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Delta9-tetrahydrocannabinol (THC), the principal bioactive component in 
the Cannabis plant, is truly a captivating drug. Acute and chronic THC intake 
produces a spectrum of biological effects ranging from transient psychotro-
pic effects to prolonged medicinal benefits, many of which have been fos-
tered for centuries by our society. In the July 2013 issue of the JCI, Cutando et 
al. combined mouse genetics with classic mouse behavioral analysis to deep-
en our understanding of the physiological consequence of subchronic THC 
intake on eyeblink reflexes, a fundamental neuronal adaptive response, 
revealing that this regimen leads to downregulation of the cannabinoid CB1 
receptor (referred to as CB1 in the Cutando et al. article) in cerebellar stress 
fibers and the activation of microglia, raising provocative new questions 
about the safety profile of regimented THC intake.

Consequences in the blink of an eye
Our detailed understanding of the molec-
ular mechanism of action of THC on 
neuronal activity began 20 years ago with 
the molecular identification of the gene 
encoding for CB1 receptors, which medi-
ate the psychoactive effects produced by 

this compound (1). CB1 receptors repre-
sent one of the most abundant G protein–
coupled receptors expressed in the brain, 
although the expression level and coupling 
mechanism vary according to neuron type 
(2). Activation of CB1 receptors by endog-
enous cannabinoid ligands, the endocan-
nabinoids (eCBs), modulates neuronal 
activity at 4 overarching levels: by guiding 
neuronal patterning and connectivity dur-
ing brain development (3); by modulating 
neurotransmitter release probability (4); by 

mediating short-term and long-term syn-
aptic plasticity and shaping neuronal net-
work connectivity (5, 6); and by controlling 
the expression of prosurvival proteins that 
promote neuronal endurance in response 
to brain injuries and pathologies (7). 
Unlike eCBs, THC activates CB1 receptors 
with its own pharmacodynamic profile and 
thus may impinge upon neuronal activity 
at these 4 levels (8).

The effect of THC on higher sensory, 
intentional, and memory processes has 
been intensely studied, but more recently, a 
major research focus has been on how THC 
affects neuronal activity at the systems level, 
revealing the breadth of THC’s impact on 
behavior. In the current study, Cutando et 
al. (9) investigated the effect of subchronic 
THC exposure on cerebellar function. The 
cerebellum represents a key relay structure 
involved in the fine tuning of motor coor-
dination, the implementation of associative 
learning, and the processing of temporal 
operations. Cutando et al. (9) found that 
subchronic THC exposure led to the impair-
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