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Members of the PPARγ coactivator-1 (PGC-1) family of transcriptional coactivators serve as inducible coregulators 
of nuclear receptors in the control of cellular energy metabolic pathways. This Review focuses on the biologic and 
physiologic functions of the PGC-1 coactivators, with particular emphasis on striated muscle, liver, and other organ 
systems relevant to common diseases such as diabetes and heart failure.

Members of the nuclear receptor (NR) superfamily relay physi-
ologic and nutritional cues to critical gene regulatory responses. 
The molecular links between external stimuli, cellular signaling 
events, and NR-mediated transcriptional control are currently 
being unraveled. New information emerging over the past decade 
has demonstrated that NRs receive regulatory input through mul-
tiple mechanisms including levels of endogenous ligand, availability 
of heterodimeric NR partners, and posttranslational modifications. 
Activating signals trigger the recruitment of coactivator complexes 
onto the NR platform, leading to enzymatic modification of chro-
matin, increased access of the RNA polymerase II machinery to RNA, 
and activation of target gene transcription (Figure 1). Availability of 
certain coactivator proteins also serves critical regulatory functions 
linking physiologic stimuli to NR activity. Perhaps the best example 
of this latter mechanism involves the PPARγ coactivator-1 (PGC-1) 
family of transcriptional coactivators. PGC-1 coactivators serve as 
inducible NR “boosters” to equip the organism to meet the energy 
demands of diverse physiologic and dietary conditions. This Review 
will focus on the role of this interesting coactivator family in the 
control of organ-specific biologic responses to the physiologic and 
pathophysiologic milieu. Emphasis will be given to tissue-specific 
regulatory features relevant to heart failure and diabetes.

The PGC-1 family: inducible transcriptional coactivators 
orchestrating control of cellular energy metabolism
The transcriptional coactivator PGC-1α was identified through its 
functional interaction with the nuclear receptor PPARγ in brown 
adipose tissue (BAT), a mitochondria-rich tissue specialized for 
thermogenesis (1). Thereafter, 2 related coactivators, PGC-1β 
(also termed PERC) and PGC-1–related coactivator (PRC), were 
discovered (Figure 1) (2–4). PGC-1α and PGC-1β are preferentially 
expressed in tissues with high oxidative capacity, such as heart, 
slow-twitch skeletal muscle, and BAT, where they serve critical 
roles in the regulation of mitochondrial functional capacity and 
cellular energy metabolism (1, 3, 5–7). Less is known about the 
expression patterns and biologic roles of PRC (2, 8).

PGC-1 coactivator docking to specific transcription factors pro-
vides a platform for the recruitment of regulatory protein com-
plexes that exert powerful effects on gene transcription (Figure 
1). The amino-terminal region of PGC-1 coactivators interacts 
with proteins containing histone acetyltransferase (HAT) activity, 
including CREB-binding protein/p300 and steroid receptor coact-
ivator-1 (SRC-1) (9). The HAT activity of this complex remodels 
histones within chromatin, increasing access of the transcriptional 
machinery to target genes. A second activating complex, the thy-
roid hormone receptor–associated protein/vitamin D receptor–
interacting protein (TRAP/DRIP, or Mediator) complex, docks 
on the carboxy terminus of PGC-1α (10). In addition, PGC-1α 
contains several domains within the carboxy-terminal region that 
couple pre-mRNA splicing with transcription (11).

Earlier studies involving forced overexpression of PGC-1α or 
PGC-1β in mammalian cells in culture demonstrated that these 
coactivators are sufficient to activate gene regulatory programs 
that drive increased capacity for cellular energy production (3, 
5, 7, 12). PGC-1 coactivators effect biologic responses that equip 
the cell to meet the energy demands of a changing environment, 
including augmentation of mitochondrial biogenesis, cellular 
respiration rates, and energy substrate uptake and utilization. 
The PGC-1 coactivators exert these pleiotropic effects by direct-
ly coactivating a specific array of NR and non-NR transcription 
factors involved in the control of cellular metabolism. Following 
its discovery as a PPARγ coactivator, Wu et al. demonstrated that 
PGC-1α coactivates nuclear respiratory factor-1 (NRF-1) and -2 
(NRF-2) (5). NRFs regulate expression of mitochondrial transcrip-
tion factor A (Tfam), a nuclear-encoded transcription factor essen-
tial for replication, maintenance, and transcription of mitochon-
drial DNA (13–15). NRF-1 and NRF-2 also control the expression 
of nuclear genes encoding respiratory chain subunits and other 
proteins required for mitochondrial function (16, 17). These dis-
coveries provided mechanistic insight into how PGC-1α activates 
the broad program of mitochondrial biogenesis and revealed that 
PGC-1 coactivators were capable of interacting with both NR and 
non-NR transcription factors.

Although PPARγ, NRF-1, and NRF-2 are key targets of PGC-1α–
mediated coactivation, the diverse effects of this coactivator could 
not be explained by these interactions alone. Multiple PGC-1α 
partners have now been identified, indicating that this coactivator 
serves as a pleiotropic regulator of multiple pathways involved in 
cellular energy metabolism within and outside of the mitochon-
drion (Figure 2) (18, 19). Since the identification of PPARγ as a 
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PGC-1α transcription factor target, a variety of additional PGC-1  
target NRs have been identified. This list includes PPARα (20), 
PPARβ (21), thyroid hormone receptor (1), retinoid receptors (1), 
glucocorticoid receptor (22), estrogen receptor (1, 22, 23), farne-
syl X receptor (FXR) (24), pregnane X receptor (PXR) (25), hepatic 
nuclear factor-4 (HNF-4) (26), liver X receptor (LXR) (27), and the 
estrogen-related receptors (ERRs) (28, 29). In addition, several 
non-NR PGC-1 partners have been identified, including myocyte 
enhancer factor-2 (MEF-2) (30), forkhead box O1 (FOXO1) (31), 
SREBP1 (27), and Sry-related HMG box-9 (Sox9) (32). Through 
these transcription factor partners, PGC-1 exerts strong effects on 
many aspects of mitochondrial energy metabolism. For example, 
PGC-1α coactivates PPARα, a key regulator of genes involved in 
mitochondrial fatty acid oxidation (20). The PGC-1 target ERRα 
is an important regulator of mitochondrial energy transduction 
pathways including fatty acid oxidation and oxidative phosphory-
lation. In addition, ERRα is capable of cooperating with or directly 
activating the expression of NRF-1, NRF-2, and PPARα, defining 
an ERR “cross-regulatory circuit” that theoretically serves as an 
internal “amplifier” for the PGC-1α cascade (Figure 2). Finally, sev-
eral of the PGC-1 coactivation targets regulate pathways outside 
of the mitochondrion — such as HNF-4 and FOXO1 (gluconeo-
genesis), MEF-2 (glucose transport), SREBP1 (lipogenesis), and 
Sox9 (chondrogenesis). In addition to serving a booster function, 
there is evidence that PGC-1 coactivators also confer target gene 
specificity. For example, selective activation of PPARγ target genes 
encoding aP2, uncoupling protein-1, and glycerol kinase is dictat-
ed, in part, by the PGC-1α/PPARγ interaction on these promoters 
(1, 33). The mechanisms involved in the selection of specific tar-
gets by PGC-1α among tissues in a given physiologic context are 
an important area of investigation.

The discovery of PGC-1α as a cold-inducible coactivator 
prompted studies to determine whether its expression is regulated 
by developmental, physiologic, and dietary cues. One of the first 
clues that PGC-1α and PGC-1β serve diverse functions in mul-
tiple organ systems was the observation that they are expressed 
in broad, but tissue-enriched, patterns. PGC-1α and PGC-1β are 
highly expressed in mitochondria-enriched tissues with high ener-
gy demands, including BAT, heart, and slow-twitch skeletal mus-
cle (1, 3, 4). PGC-1α is also enriched in brain and kidney. PGC-1α 
expression is induced in the heart after birth in parallel with a post-
natal burst of mitochondrial biogenesis and a shift toward reliance 
on mitochondrial fatty acid oxidation as the major source of ATP 
production (12). The PGC1A gene is highly inducible in response 
to physiologic conditions that demand increased mitochondrial 
energy production. For example, PGC-1α expression is stimulated 
by exercise in skeletal muscle (34–38) and by fasting in the heart 
and liver (12, 26). Interestingly, PGC-1β expression is also induced 
by fasting, but not cold exposure, indicating that factor-specific 
upstream regulatory circuits exist (3, 39).

As would be predicted by its inducibility, the expression and 
activity of PGC-1α are linked to a variety of upstream cellular sig-
naling pathways (Figure 2). In BAT and liver (and likely other tis-
sues), the β-adrenergic/cAMP pathway activates PGC1A gene tran-
scription (1). Calcineurin A and calcium/calmodulin–dependent 
protein kinase (CaMK) activate PGC-1α expression in striated 
muscle (40–42). The AMP-activated protein kinase (AMPK) has 
also been implicated in the control of muscle PGC-1α expression 
(43). p38 MAPK has been shown to activate PGC-1α by releasing 
p160-mediated repression and by increasing PGC-1α protein sta-
bility (44–46). More recently, NO was shown to activate mitochon-
drial biogenesis coincident with increased PGC-1α expression in 
a variety of cell types, including adipocytes and HeLa cells (47). 
Given the known role of NO as a vasodilator, it is tempting to 
speculate that this key upstream regulatory pathway coordinately 
regulates downstream events including an increase in the capac-
ity to utilize oxygen in mitochondria. In addition to phosphoryla-
tion, other posttranslational modifications, including acetylation, 
arginine methylation, and interaction with repressor proteins (e.g., 
p160), modulate PGC-1α activity (45, 48, 49).

The transcriptional regulatory factors that link upstream sig-
naling pathways to PGC1A gene expression are being delineated. 

Figure 1
The PGC-1 coactivator family: inducible boosters of gene transcription. 
(A) The schematic uses generic NRs as an example of how inducible 
PGC-1 coactivators dock to transcription factor targets and recruit pro-
tein complexes that activate transcription via either enzymatic modifica-
tion of chromatin, such as histone acetylation (e.g., by steroid receptor 
coactivator-1 [SRC-1] or p300), or direct interaction with the transcrip-
tion initiation machinery (e.g., the thyroid hormone receptor–associated 
protein/vitamin D receptor–interacting protein [TRAP/DRIP] coactiva-
tor complex). The NR binds cognate NR response elements (NRREs) 
within the promoter region of the target gene. Specific histone modifica-
tions, including acetylation (Ac) and methylation (Me), are shown, as 
is the RNA polymerase II (Pol II) complex. (B) The schematic depicts 
the relative length and shared domains of the 3 members of the PGC-1 
coactivator family. The nature of the domains is indicated in the key. (C) 
A schematic of the PGC-1α molecule is shown to denote several key 
functional domains involved in the interaction with specific target tran-
scription factors including NRs, nuclear respiratory factor-1 (NRF-1), 
MEF-2, and FOXO1. MAPK phosphorylation (P) sites are also shown.
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The calcineurin A–mediated activation of the PGC1A promoter is 
dependent on MEF-2 response elements, whereas CaMK-mediated 
regulation requires CREB-binding sites (40–42). The transcription 
factor CREB activates PGC1A gene transcription in hepatocytes, 
implicating this factor in the PGC-1α–mediated control of gluco-
neogenesis (50). The forkhead transcription factor FOXO1 acti-
vates the human PGC1A promoter in a hepatoma cell line (51), an 
effect that is suppressed by protein kinase B/Akt signaling, sug-
gesting a mechanism for negative regulation of PGC-1α expres-
sion by insulin in the liver.

Given that PGC-1α integrates regulatory input from a variety 
of upstream regulatory pathways among multiple tissues, in vivo 
studies have been necessary to define the bona fide biologic func-
tions downstream of this powerful transcriptional coactivator. In 
vivo studies have been empowered by the development of general-
ized and conditional transgenic PGC-1α gain-of-function mouse 
models. In addition, 2 independent generalized PGC-1α–deficient 
mouse lines (Pgc1a–/– mice) have been generated using gene target-
ing strategies (52, 53). Both lines are viable and exhibit multisys-
tem energy metabolic abnormalities that were unveiled by physi-
ologic or nutritional stressors.

PGC-1 signaling and the heart
The extraordinary energy demands of the heart are met by a high-
capacity mitochondrial system. Accordingly, it is not surprising 
that PGC-1α and PGC-1β are highly expressed in this organ (1, 3, 
54). Although the exact roles of PGC-1β and PRC in heart have not 
been defined, several lines of evidence indicate that PGC-1α con-
trols cardiac energy metabolic pathways during development and in 
response to physiologic stressors. First, cardiac PGC-1α expression 
is induced after birth as the heart turns toward mitochondrial fatty 
acid oxidation as the chief energy source (12). PGC-1α expression is 
also activated in the heart by fasting (12), a physiologic stimulus that 
markedly increases the reliance of the heart on mitochondrial fat 
oxidation for ATP production. Second, PGC-1α coactivates PPARα 
and ERRα, NRs that control genes involved in cardiac fatty acid oxi-
dation and mitochondrial respiratory function (55). Third, forced 
overexpression of PGC-1α in cardiac myocytes in culture activates 
mitochondrial biogenesis (12). Interestingly, in contrast to the BAT, 
where PGC-1α drives uncoupled respiration, PGC-1α overexpression 
drives coupled respiration in the cardiac myocyte (12).

Gain-of-function studies in transgenic mice have demonstrated 
potential biologic functions of PGC-1α in the heart in vivo. Two 

Figure 2
The PGC-1 gene regulatory cascade. The schematic indicates the upstream signaling events and downstream gene regulatory actions of the induc-
ible PGC-1 coactivators, using PGC-1α as the representative factor. The interaction of PGC-1α with its cognate transcription factor targets is shown 
linked to specific organ systems. For example, PGC-1α coactivates members of the PPAR nuclear receptor transcription factor family, to activate 
the expression of genes involved in mitochondrial fatty acid oxidation. The signaling pathways shown at the top of each organ system transduce 
extracellular physiologic and nutritional stimuli to the expression and/or activity of PGC-1α. LXR, liver X receptor; TAG, triacylglycerol; RXR, retinoid 
X receptor; mtDNA, mitochondrial DNA; OXPHOS, oxidative phosphorylation.
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transgenic mouse models with cardiac-restricted overexpression 
of PGC-1α have been developed. In the first model, mice with 
constitutive, postnatal cardiac overexpression of PGC-1α under 
control of the cardiac α-myosin heavy chain promoter (MHC–
PGC-1α mice) were generated (12). The hearts of MHC–PGC-1α 
mice exhibit marked activation of cardiac myocyte mitochondrial 
biogenesis, leading, ultimately, to death from heart failure (12). 
Subsequently, a bitransgenic, tissue-specific, tetracycline-induc-
ible PGC-1α mouse was established (the cs-tet-on PGC-1α mouse) 
(56). Studies of cs-tet-on PGC-1α mice revealed developmental 
stage-specific effects of PGC-1α. Overexpression of PGC-1α in 
neonatal heart triggers dramatic expansion of mitochondria with-
in the cardiac myocytes. In contrast, acute cardiac overexpression 
of PGC-1α in adult mice results in a modest mitochondrial bio-
genic response and, after several weeks, cardiomyopathy associ-
ated with mitochondrial ultrastructural abnormalities. The basis 
for cardiomyopathy following PGC-1α activation is unknown but 
likely involves dysregulated mitochondrial metabolism.

Recent loss-of-function studies further support a role for 
PGC-1α in the control of myocardial metabolism and func-
tion. Interestingly, the severity of the cardiac phenotype varies 
between the 2 independently generated lines of PGC-1β–defi-
cient mice. Both lines demonstrate that PGC-1α is not essential 
for the fundamental process of mitochondrial biogenesis in the 
heart; myocardial mitochondrial volume density is not signifi-
cantly altered in either Pgc1a–/– line (53, 57). The PGC-1α–defi-
cient mice produced by the Spiegelman group exhibit moder-
ate, age-related base-line cardiac dysfunction as determined by 
echocardiography (57). Hearts isolated from this line of mice 
also exhibit a modest impairment in maintenance of ATP and 
phosphocreatine homeostasis in response to the β-adrenergic 
agonist dobutamine as determined by NMR spectroscopy. These 
metabolic abnormalities are associated with diminished expres-
sion of genes involved in mitochondrial fatty acid oxidation, 
the TCA cycle, and oxidative phosphorylation. In contrast, the 
PGC-1α–deficient mice produced by Leone et al. do not exhibit 
overt dysfunction by echocardiography under basal conditions; 
however, this second line of Pgc1a–/– mice exhibit a blunted heart 
rate response to exercise and β-adrenergic stimulation (53). The 
mechanistic basis for the dissimilarities between the 2 lines of 
Pgc1a–/– mice is unclear. It is possible that epigenetic effects due 
to differences in strain background or gene targeting strategies 
account for the divergent phenotypes.

Several lines of recent evidence implicate PGC-1α in the patho-
genesis of heart failure. First, in mouse models of chronic pressure 
overload such as occurs in long-standing hypertension, PGC-1α 
levels are downregulated along with the expression of PPARα tar-
get genes involved in mitochondrial fatty acid oxidation (58–60). 
Second, transcriptional profiling revealed downregulation of 
PGC-1α gene expression in the failing hearts of transgenic mice in 
which cyclin T/Cdk9, an RNA polymerase kinase, is overexpressed 
in the heart (61, 62). Forced expression of PGC-1α in the mutant 
cardiac myocytes prevented the apoptotic phenotype (62). These 
results are interesting given that mitochondrial respiratory func-
tion and high-energy phosphate stores are known to be reduced 
in end-stage heart failure (63). Lastly, chronic overexpression of 
PGC-1α in heart leads to a cardiomyopathic phenotype (12, 56). 
Thus, emerging evidence links altered PGC-1α activity to cardiac 
dysfunction. However, whether PGC-1α plays an etiologic role in 
the pathogenesis of heart failure remains to be determined.

PGC-1 signaling and skeletal muscle
The expression of PGC-1α is enriched in skeletal muscle, particu-
larly in oxidative fiber types. Studies in rodent models indicate that 
both short-term exercise and endurance training activate PGC-1α 
expression in skeletal muscle (34, 35, 64, 65). Subsequent studies 
in humans have further demonstrated remarkable inducibility of 
PGC-1α in response to acute bouts of exercise or endurance train-
ing (38, 66) and have indicated that PGC-1α levels are increased 
mainly in type IIa fibers after endurance training (66). Although 
the upstream signaling events involved in the activation of PGC-1α 
expression in exercising muscle are not well defined, several path-
ways have been implicated. The calcineurin A and CaMK pathways 
are linked to muscle PGC1A gene transcription through MEF-2 
factors (40–42). Recently, the p38 MAPK and AMPK pathways 
have also been implicated in the control of PGC-1α expression in 
skeletal muscle after exercise training (43, 67).

The biologic roles of PGC-1α in skeletal muscle have been eluci-
dated largely through murine gain-of-function and loss-of-func-
tion studies. Lin et al. developed mice with skeletal muscle–spe-
cific overexpression of PGC-1α driven by the muscle creatine 
kinase (MCK) promoter (68). Forced expression of PGC-1α at 
high physiologic levels in the MCK transgenic mice resulted in an 
increased proportion of oxidative or type I muscle fibers coinci-
dent with an increase in the expression of mitochondrial markers. 
This fiber type transition was also manifest by red muscle color-
ation, increased expression of contractile protein characteristic of 
type I fibers, and resistance to electrically stimulated fatigue (68). 
These results indicated that PGC-1α is sufficient to drive the slow-
twitch skeletal muscle program. Complementary loss-of-function 
studies demonstrated that Pgc1a–/– mice exhibit diminished mito-
chondrial number and respiratory capacity in slow-twitch skeletal 
muscle (53). In contrast, measures of mitochondrial function and 
density are normal in fast-twitch fibers of the PGC-1α–deficient 
mice. However, exercise capacity, as measured on a motorized 
treadmill, and fatigue resistance index in electrically stimulated 
muscle, are significantly reduced in the Pgc1a–/– mice (53). Taken 
together, these results strongly implicate PGC-1α signaling as a 
key mediator of the energy metabolic and structural adaptation 
of muscle to exercise.

Recent evidence also implicates PGC-1α in the regulation of 
muscle glucose metabolism. The first clue came from studies dem-
onstrating that PGC-1α robustly activates expression of glucose 
transporter 4 (GLUT4) in skeletal muscle cells in culture by coacti-
vating MEF-2c (30). More recently, PGC-1α was found to repress 
glucose oxidation in muscle cell lines by activating the expression 
of the gene encoding pyruvate dehydrogenase kinase 4 via its NR 
partner, ERRα (69). These latter results suggest that PGC-1α con-
trols muscle fuel selection by increasing fatty acid oxidation while 
temporarily shutting down glucose oxidation — a gene regulatory 
equivalent of the fatty acid–glucose cycle. Inhibition of glucose 
oxidation combined with increased muscle glucose uptake could 
serve to replenish muscle glycogen stores to prepare for the next 
bout of exercise.

PGC-1 signaling and hepatic function
Under normal, ad libitum–fed conditions, the expression of 
PGC-1α and PGC-1β is relatively low in liver compared with 
other tissues that rely on aerobic metabolism for ATP production 
(1, 39). However, hepatic PGC1A and PGC1B gene expression is 
robustly induced by fasting (39, 50, 70). During short-term star-
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vation, the fatty acid oxidation pathway is a key source of sub-
strates for ATP production, ketogenesis, and gluconeogenesis. 
PGC-1α and PGC-1β activate expression of PPARα target genes 
involved in hepatic fatty acid oxidation (39, 70, 71), and acute 
RNA interference–mediated (RNAi-mediated) PGC-1α knock 
down leads to profound downregulation of fatty acid oxidation 
gene expression (71). Rates of fatty acid oxidation are also dimin-
ished in hepatocytes isolated from PGC-1α–deficient mice (53). 
The reduction in fatty acid oxidative capacity likely contributes to 
the fasting-induced hepatic steatotic phenotype observed in one 
of the mutant lines (53). Surprisingly, the expression of PPARα 
target genes involved in β-oxidation is not reduced in general-
ized Pgc1a–/– mice (52, 53). However, hepatocytes isolated from  
PGC-1α–deficient mice exhibit diminished mitochondrial respi-
ration rates (53), providing one mechanistic explanation for the 
reduced capacity for hepatic fatty acid oxidation.

During periods of fasting, the liver catabolizes fatty acids to pro-
duce 3-carbon substrates for gluconeogenesis, the most impor-
tant source of de novo glucose production in higher organisms. 
PGC1A gene expression is activated in liver by fasting (50, 70) 
and glucocorticoids (72), and it is now recognized that it regu-
lates hepatic gluconeogenesis (31, 50, 70, 71). Ectopic expression 
of PGC-1α coactivates HNF-4α and FOXO1 to drive expression 
of genes involved in gluconeogenesis (31), whereas PGC-1β does 
not activate this pathway (39). The nutrient sensor SIRT1, which 
is linked to longevity in several animal models, also exerts criti-
cal posttranslational regulatory control of gluconeogenic gene 
expression via deacetylation of PGC-1α (48). Liver-specific PGC1A 
gene deletion studies (73) and acute RNAi-based PGC-1α hepatic 
knockdown strategies (71) in mice lead to diminished expres-
sion of genes encoding gluconeogenic enzymes. After short-term 
starvation, one of the lines of generalized Pgc1a–/– mice becomes 
hypoglycemic (52), consistent with a defect in the hepatic gluco-
neogenic response. However, the basal expression of key gluconeo-
genic genes such as PEPCK is either normal (53) or increased (52) 
in the PGC-1α–deficient lines. Accordingly, it is not clear whether 
the major regulatory effect of PGC-1α on this pathway occurs via 
direct transcriptional control of gluconeogenic genes or second-
arily to reductions in flux through fatty acid oxidation or the TCA 
cycle, which are coupled to, and required for, gluconeogenesis.

A striking example of gene target selectivity between PGC-1α 
and PGC-1β was recently unveiled in liver. Administration of a 
diet enriched in saturated or trans-fatty acids resulted in acute 
induction of hepatic PGC-1β expression without altering PGC-1α 
expression (27). PGC-1β overexpression in liver stimulated hepat-
ic triglyceride production and secretion, resulting in circulating 
hypertriglyceridemia and hypercholesterolemia. Conversely, it 
was previously shown that activation of PGC-1α in liver dimin-
ished triglyceride production and secretion (24). The mechanistic 
explanation for these surprising results came from gene regulatory 
studies demonstrating that PGC-1β, but not PGC-1α, activates the 
expression of genes involved in lipogenesis and triglyceride secre-
tion via direct coactivation of SREBP1c (27), a transcription factor 
that plays a critical role in the control of lipogenesis. The region of 
PGC-1β that mediates the protein-protein interaction with SREBP 
is not conserved among PGC-1 family members; this provides an 
explanation for the observed isoform selectivity. This work pro-
vides a potential mechanistic basis for the known association 
between diets high in saturated or trans-fat and hyperlipidemia.

In sum, evidence is mounting that induction of PGC-1α and 
PGC-1β expression in liver is a critical regulatory event leading to 
the activation of energy metabolic pathways that serve to increase 
ATP production and exert homeostatic control, especially in the 
context of fasting. Given the importance of hepatic lipid metabolic 
derangements in common diseases such as nonalcoholic steatotic 
hepatitis and alcoholic liver disease, as well as the link between liver 
insulin resistance and diabetes, the PGC-1 regulatory circuits repre-
sent potential new therapeutic targets for hepatic disease states.

Paradoxical roles for PGC-1α in insulin resistance  
and diabetes mellitus
Recent studies in animal models and in humans link altered PGC-1α  
signaling to glucose intolerance, insulin resistance, and diabetes. 
However, the role of PGC-1α as a protective factor versus media-
tor of disease progression is unclear, particularly given that its 
predicted effects on insulin sensitivity and glucose tolerance vary 
across tissues (Figure 3). Associations between PGC-1α and dia-
betes have been identified in studies of human genetic variants. A 
common polymorphism in the coding region of the PGC1A gene 
(Gly482Ser) and a specific promoter haplotype are associated with 

Figure 3
Potential contributions of organ-specific dysregulation of PGC-1α to the development of insulin resistance and type 2 diabetes. (A) PGC-1α 
expression and activity have been shown to be increased in the liver and pancreatic β cell in several animal models of diabetes mellitus. Converse-
ly, gene expression profiling indicates that PGC-1α expression is diminished in skeletal muscle of type 1 and 2 diabetic humans along with reduced 
expression of genes involved in oxidative phosphorylation (OXPHOS). This tissue-specific pattern of dysregulated PGC-1α activity is predicted 
to potentially contribute to systemic insulin resistance, glucose intolerance, and insulin deficiency. (B) The generalized PGC-1α–deficient mouse 
is relatively protected against diet-induced insulin resistance and glucose intolerance despite impairments in skeletal muscle OXPHOS capacity. 
Improved insulin sensitivity may stem from diminished hepatic glucose production, a principal constituent of whole-body glucose homeostasis. 
However, the relative contribution of individual organ systems to the systemic insulin-sensitive phenotype requires further investigation.
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an increased risk of type 2 diabetes (74–81). However, other stud-
ies have not found this association (82, 83). Additionally, the tar-
get tissues affected and whether these polymorphisms result in 
increased or decreased PGC-1α activity remain unclear.

PGC-1α activity is robustly activated in diabetic liver as it is in 
the fasted state (26, 31, 50, 70), potentially increasing hepatic glu-
cose production that contributes to circulating hyperglycemia. 
Moreover, PGC-1α may promote insulin resistance directly by 
inducing TRB-3, an inhibitor of Akt signaling, a critical down-
stream component of the insulin signaling pathway (71). The 
precise mechanisms involved in the regulatory cross-talk between 
insulin signaling and PGC-1α activity in the diabetic state repre-
sent an area of active research.

In the pancreatic β cell, rates of mitochondrial ATP synthesis are 
inexorably coupled to insulin secretion by ATP-sensing K+ chan-
nels, which control insulin release. PGC-1α is also activated in the β 
cell in several rodent models of obesity and type 2 diabetes (84), and 
PGC-1α overexpression suppressed glucose-stimulated membrane 
depolarization and insulin secretion in cultured islets or insulin-
oma cell lines (84). Moreover, whereas transplantation of normal 
islets into mice rendered diabetic by streptozotocin returned blood 
glucose levels to normal, PGC-1α–overexpressing islets were unable 
to reverse experimentally induced diabetes. The β cell phenotype of 
the PGC-1α–deficient mice and the effects of other PGC-1 family 
members in the β cell have not yet been delineated.

In contrast to results in liver and the β cell, the bulk of evi-
dence focused on skeletal muscle suggests that PGC-1α may be 
protective from the development of insulin resistance. First, as 
described above, PGC-1α activates expression of GLUT4 (30). 
Second, PGC-1β overexpression in skeletal muscle protects 
mice from high-fat diet–induced obesity and insulin resistance 
(6). Third, inherited mitochondrial deficiencies are linked with 
the development of systemic metabolic defects and diabetes 
(85). Accordingly, PGC-1α, a critical booster of mitochondrial 
function, is an excellent candidate for preventing insulin resis-
tance secondary to mitochondrial dysfunction. Fourth, a series 
of recent studies in humans have shown an interesting inverse 
correlation between muscle PGC-1α levels and mitochondrial 
activity with insulin resistance and diabetes (86–88). However, a 
separate recent study did not find a correlation between muscle 
mitochondrial derangements and PGC-1α levels in insulin-resis-
tant humans (89). Given that the published results focused on 
PGC-1α levels in insulin-resistant muscle are largely correlative, 
the role of alterations in PGC-1α activity as etiologic versus a 
secondary phenomenon remains unclear.

One approach to unraveling the paradoxical, tissue-specific 
actions of PGC-1α on systemic glucose metabolism and insulin 
sensitivity is through studies of recently developed genetically 
modified mouse models. Systemic glucose tolerance and insulin 
sensitivity have been characterized in both PGC-1α–deficient lines. 
Although some differences exist in the 2 lines, the results indicate 

that both Pgc1a–/– lines are modestly protected against insulin 
resistance caused by high-fat diet. Interestingly, this insulin-sen-
sitive phenotype occurs despite reduced respiratory capacity of 
mitochondria in the skeletal muscle of the mice (53). It is pos-
sible that reduced hepatic glucose production via the gluconeo-
genic pathway contributes to the enhanced glucose tolerance of  
PGC-1α–deficient mice (Figure 3). Indeed, as described above, 
liver-specific overexpression and knockdown strategies indicate 
that PGC-1α, when activated, drives hepatic glucose production, 
a potential contributor to the development of obesity-related dia-
betes. In addition, one of the PGC-1α–deficient lines exhibited 
increased activity and partial resistance to weight gain, which 
could contribute to the phenotype (52). Given the mounting evi-
dence of a link between diabetes and PGC-1α activity, this repre-
sents an important focus for future investigation.

PGC-1 coactivators: the future
A recent explosion of new information indicates that the PGC-1 
family of coactivators serves key functions in the dynamic tran-
scriptional control of energy metabolic pathways in a variety of 
mammalian tissues. The importance of PGC-1α and PGC-1β as 
boosters of NR function has provided exciting new avenues for 
understanding the fundamental connections between alterations 
in the external environment and adaptive metabolic responses of 
striated muscle and liver. Moreover, evidence is mounting that 
dysregulation of the PGC-1α regulatory axis contributes to the 
pathogenesis of common disease states including diabetes and 
heart failure. However, the role of these powerful and highly induc-
ible coactivators as protectors versus mediators of disease has not 
been well defined and will require additional translational studies 
bridging animal models, such as conditional genetically modified 
mouse models, and humans. Given the versatile and pleiotropic 
nature of the PGC-1 family regulatory circuit, it is envisioned that, 
after the elucidation of the precise roles of these coactivators in 
disease states, specific PGC-1/NR regulatory limbs could prove to 
be exciting new therapeutic targets.
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