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Fibrinogen, Riboflavin, and UVA to Immobilize a Corneal
Flap – Molecular Mechanisms

Stacy L. Littlechild,1,2 Yuntao Zhang,1 John M. Tomich,3 and Gary W. Conrad1,2

PURPOSE. Tissue glue containing fibrinogen (FIB) and riboflavin
(RF), upon exposure to long wavelength ultraviolet light (UVA,
365 nM) has been proposed potentially to solve long-standing
problems presented by corneal wound and epithelial ingrowth
side-effects from laser-assisted in situ keratomileuis (LASIK).
Data presented in a previous study demonstrated an ability of
FIB þ RF þ UVA to adhere two stromal surfaces; however, to
our knowledge no molecular mechanisms have been proposed
to account for interactions occurring between corneal
extracellular matrix (ECM) and tissue glue molecules. Here,
we document several covalent and noncovalent interactions
between these classes of macromolecules.

METHODS. SDS-PAGE and Western blot techniques were used to
identify covalent interactions between tissue glue molecules
and corneal ECM molecules in either the presence or absence
of RF and UVA, in vitro and ex vivo. Surface plasmon resonance
(SPR) was used to characterize noncovalent interactions, and
obtain ka, kd, and KD binding affinity values.

RESULTS. SDS-PAGE and Western blot analyses indicated that
covalent interactions occurred between neighboring FIB
molecules, as well as between FIB and collagen type I (Coll-I)
proteins (in vitro and ex vivo). These interactions occurred
only in the presence of RF and UVA. SPR data demonstrated the
ability of FIB to bind noncovalently to corneal stroma
molecules, Coll-I, decorin, dermatan sulfate, and corneal
basement membrane molecules, laminin and heparan sulfate
– only in the presence of Zn2þ.

CONCLUSIONS. Covalent and (zinc-mediated) noncovalent mech-
anisms involving FIB and stromal ECM molecules contribute to
the adhesion created by FIB þ RF þ UVA. (Invest Ophthalmol

Vis Sci. 2012;53:5991–6003) DOI:10.1167/iovs.12-10201

The simultaneous presence of fibrinogen (FIB), riboflavin
(RF), and long wavelength ultraviolet light (UVA, 365 nm)

has been shown to aid in the immobilization of a corneal flap
modeled after that which results from laser assisted in situ
keratomileuis (LASIK) eye surgery.1 Based on data from the
previous publication, covalent and noncovalent interactions
appeared to contribute to adhesion between the studied
extracellular matrices, such as the corneal epithelial basement
membrane (Epi-BM), stroma, and Descemet’s membrane (DM).
Our study aims to identify some of the specific interactions that
are responsible for the adhesion observed in the former
publication.

In previous studies, the application of only RF þ UVA (no
FIB) has been shown to stop the progression of keratoconus, a
disease responsible for gradual corneal thinning, by increasing
the stiffness of the corneal tissue.2 This increased rigidity,
induced by RFþUVA, occurs because covalent intra- and inter-
molecular crosslinks are created between corneal collagen
fibrils,3,4 and collagen and proteoglycan core proteins,
respectively.5 The RF þ UVA treatment protocol includes
saturating the corneal stroma with an RF-containing solution
and subsequently irradiating the tissue with UVA to activate RF
to catalyze crosslink formation through a combination of Type
I and Type II mechanisms.6,7 In short, the Type I mechanism
proceeds by exciting the RF molecule to its triplet state; then,
the newly created RF triplet directly interacts with its substrate
to form substrate free radicals, which continue to react with
substrate available within the tissue. The Type II mechanism
also begins with the creation of triplet RF, but instead of
reacting immediately with a substrate, it reacts with molecular
oxygen to produce singlet oxygen.8,9 Similar to the RF þ UVA
treatment, use of a fibrinogen glue, FIB þ RFþ UVA, also uses
RF as a photosensitizer and UVA light as an activator, which, as
has been demonstrated previously, produces covalent bonds
by way of both Type I and Type II mechanisms, suggesting that
a reactive oxygen species-dependent mechanism is responsible
for the increased adhesion observed in ocular tissues.6

The observation made during our earlier study of tissue
strip adhesion indicated that the degree of adhesion from FIBþ
RF þ UVA treatment increased as more stromal extracellular
matrix (ECM) was exposed to the FIBþ RFþ UVA, suggesting
that either the FIBþ RFþ UVA treatment had a stronger effect
on the molecules that compose the ECM of the stroma than on
the molecules of the Epi-BM and DM, and/or that there simply
are more molecules in the corneal stroma that interact with FIB
compared to basement membranes (BMs).

In exploring the possible mechanisms by which FIBþRFþ
UVA treatment creates adhesion, one first must determine
which molecules in the target tissue (the cornea) are present
and available for potential interactions with the main
component of the tissue glue, FIB. Abundant molecules in
corneal basement membranes include such proteins as
laminin (LN), collagen type IV (Coll-IV), and the glycosami-
noglycan (GAG) chain, heparan sulfate (HS), and its core
protein.10–15 Next, the corneal stromal ECM is comprised
predominately of collagen type I (Coll-I)16–18 and macromol-
ecules, termed protoeoglycans (PGs) that consist of a protein
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core (keratocan [Ker], lumican [Lum], mimecan [Mim], or
decorin [Dec]) covalently linked to highly sulfated, thus,
negatively charged, GAG chains (keratan sulfate, dermatan
sulfate, or chondroitin sulfate-A).19–21 Specifically, Ker, Lum,
and Mim are core proteins linked to keratan sulfate (KS) GAG
chains, whereas decorin is bonded covalently to dermatan
sulfate (DS) and chondroitin sulfate-A (CSA) GAGs.20,21

Next, consideration of possible mechanisms should attempt
to address which interactions arise from covalent bonds and
which from interactions that are noncovalent. To this end, SDS-
PAGE and Western blot analyses were performed on the two
most abundant proteins of interest, Coll-I (in the cornea) and
FIB (in the glue), in the presence and absence of RF and UVA.
These techniques were conducted on isolated FIB and Coll-I
molecules in vitro, and on corneas ex vivo, from which
macromolecules subsequently were extracted. Next, surface
plasmon resonance (SPR) was used to characterize non-
covalent interactions between FIB and corneal proteins/GAGs.

Despite FIB þ RFþ UVA treatment showing promise to act
as a tissue adhesive, to our knowledge no molecular studies
have determined the specific interactions that generate
adhesion during corneal tissue treatment. Our study tests
molecules identified above, native to the cornea, for their
abilities to form covalent and/or noncovalent bonds with FIB
in an effort to understand the molecular mechanisms for
previously observed patterns of strong corneal tissue adhe-
sion.

MATERIALS AND METHODS

Materials

Frozen whole rabbit corneas were purchased commercially through

Pel-Freez Biologicals (Rogers, AR). Coll-I from bovine skin was

purchased from INAMED (Fremont, CA). Protease Inhibitor Cocktail,

Coll-IV from human placenta, calcium chloride dihydrate, N-ethyl-N0-(3-

dimethylaminopropyl)carbodiimide (EDC), biotin-X-hydrazide, heparin

(HEP) sodium salt from bovine intestinal mucosa, FIB from bovine

plasma, and riboflavin 50-monophosphate sodium salt (RF), CSA from

bovine trachea, HS proteoglycan, and chondroitin sulfate B (dermatan

sulfate, DS) from porcine intestinal mucosa were purchased from

Sigma-Aldrich (St. Louis, MO). KS from bovine cornea was purchased

from Seikagaku America (East Falmouth, MA), and was purified further

by chromatography and chondroitinase ABC (Na salt) treatment. The

average molecular weight of KS was approximately 15 kilodalton

(kDa). CSA was purified by chemical treatment. Recombinant human

lumican protein was purchased from Abnova Corporation (Taipei,

Taiwan). Recombinant human decorin and recombinant mouse laminin

proteins were purchased from R&D Systems (Minneapolis, MN). Goat

anti-bovine fibrinogen IgG was purchased from American Diagnostica,

Inc. (Stamford, CT), and rabbit polyclonal antibody to collagen type I

(ab34710) was purchased from Abcam Inc, (Cambridge, MA). NuPAGE

Novex Tris-Acetate 3 to 8% precast gels (8 cm 3 8 cm 3 1.5 mm), and

chromogenic Western blot kits were purchased from Invitrogen

Corporation (Carlsbad, CA). The EZ-Link Sulfo-NHS-LC-Biotinylation

Kit was purchased from Pierce (Rockford, IL). Amicon Ultra centrifugal

filter (regenerated cellulose 3000 MWCO) was purchased from

Millipore (Billerica, MA).

SPR analysis was conducted on a Biacore 3000 instrument, and

the data were analyzed using BIAevaluation software 4.1 supplied by

GE Healthcare, Biacore Life Sciences Division (Piscataway, NJ).

Carboxymethylated dextran (CM5) coated chips, Strep-avidin (SA)

coated chips, Biotin CAPture kits, and HEPES buffer with surfactant

P20 (HBS-P; 10 mM HEPES, pH 7.4, 150 mM NaCl, 0.005% [vol/vol]

Surfactant P20) running buffer also were purchased from GE

Healthcare/Biacore.

Solution Preparation

Experimental solutions used for rabbit cornea tissue treatment were

prepared fresh, and included ‘‘FIB only’’ and ‘‘FIBþ RF.’’ FIB solutions

contained 18% (wt/vol, 180 mg/mL, 530 lM) FIB. RF solutions

contained 0.26% (wt/vol, 2.6 mg/mL, 54.4 mM) of RF. De-ionized

water was used as the solvent in all experimental solutions, as per the

protocol of Khadem et al.6 All experimental solution tubes were

wrapped in aluminum foil following preparation to prevent premature

photoactivation of RF. A 20% (wt/vol, 400 nM) dextran in 13 PBS (pH

7.2) solution was applied topically to keep rabbit corneas from drying

during experimentation.

Ex Vivo Cornea Treatment

To study covalent interactions caused by the FIBþRFþUVA treatment

in actual corneal tissue, Western blots were performed on samples

from rabbit corneas treated and untreated ex vivo with RF þ UVA.

These rabbit corneas were prepared as follows: Before extraction,

frozen whole rabbit eye globes were placed in 13 PBS to thaw. Once

thawed, 8 mm corneal strips were excised from the centermost region

of the eye globe, and all surrounding sclera was discarded. Next, the

epithelium was removed from the anterior surface of each strip using a

spatula, and the DM was removed from the posterior surface using

jeweler’s forceps, thus exposing the posterior stromal surface. Next, 30

lL of the experimental solution (FIB only or FIB þ RF) was applied

evenly on the exposed stromal surface of one strip. Finally, a second

rabbit corneal strip was placed directly on top of the bottom strip

containing the layer of experimental solution, so that both exposed

stromal surfaces were in contact with each other.

The corneal pairs were allowed to incubate in this orientation for

30 minutes and were kept from drying by administering topically a 20%

dextran solution at 10 lL/min using a syringe pump. Experimental

corneas then were irradiated for an additional 30 minutes with UVA

light (365 nm, 3 mW/cm2 intensity) 50 mm below the light source

while the 20% dextran drip continued to prevent drying of the tissue.

Control corneas were not exposed to UVA light, but still were allowed

an additional 30 minutes of incubation while dextran prevented tissue

drying. Once the incubation and irradiation phases of treatment were

through, corneal pairs were snap-frozen immediately and processed for

tissue extraction (described below).

Guanidine-HCl Extraction of Corneal Tissue

The corneal pairs (0.7 g wet weight) treated or untreated with RF þ
UVA were frozen immediately by liquid nitrogen following treatment,

pulverized, homogenized further in 4 M guanidine-HCl (GdnHCl)

containing protease inhibitors, and then incubated for 24 hours at 0 to

48C with gentle agitation. The tissue residue was removed by

centrifugation at 10,000 3 g for 30 minutes, and the supernatant was

retained as the extract. The tissue residue pellet was re-extracted for a

second 24 hours with fresh 4 M GdnHCl solution. The two extracts

were combined together, neutralized by the addition of 1 M NaOH, and

then applied to an Amicon Ultra centrifugal filter (regenerated cellulose

3000 molecular weight [MW] cutoff; Millipore), centrifuged to desalt,

and concentrated to 1/5 of the original volume. The filter retentates

were used for collagen crosslinking evaluation without any further

processing.5

Sodium Dodecyl Sulfate Polyacrylamide Gel
Electrophoresis

To test for covalent interactions between neighboring FIB molecules

and the most abundant protein of the corneal stromal ECM, Coll-I,

electrophoretic gels were run using samples prepared in the presence

and absence of RF and UVA light. FIB samples were prepared fresh in

phosphate buffer (pH 7.2) at a concentration of 18 lg/lL, and freshly

prepared Coll-I samples were prepared at a concentration of 6 lg/lL.
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RF was added to samples as a 0.1% RF phosphate buffer addition at

physiologic pH 7.2. Experimental sample solutions were exposed to 30

minutes of long wavelength UVA light (365 nm, 3 mW/cm2 intensity)

50 mm below the light source and were vortexed every 10 minutes

during irradiation to prevent potentially crosslinked molecules from

collecting at the surface of the sample. (Because of the small volume of

each sample [~20 lL], vortexing samples every 10 minutes was more

practical than continuously stirring the solution using a stir bar and stir

plate.)

Immediately following irradiation, 5 lL of NuPAGE LDS sample

buffer and 2 lL of NUPAGE reducing agent were added to each sample,

vortexed, heated at 708C for 10 minutes, and then loaded onto NuPAGE

Novex Tris-Acetate 3 to 8% gels (8 cm 3 8 m 3 1.5 mm pre-cast gel) and

subjected to electrophoresis (100 mA/gel for 60 minutes) under

reducing conditions, using NuPAGE sample reducing agent. Following

electrophoresis, the gels were retrieved and rinsed 3 times for 5

minutes each with 23 glass distilled water, and then a 0.1% (wt/vol)

Coomassie Brilliant Blue R-250 solution was used to stain protein in the

gel.

Since the strength of the adhesion created by the FIB þ RF þ UVA

treatment increases as interval between UVA-irradiation and mechan-

ical testing increases,22 it was important to keep this time consistent in

mechanical and molecular tests. To achieve this consistency, all

samples were prepared to load onto an SDS-PAGE gel immediately

following UVA irradiation. No samples were treated by UVA and then

stored for any time before performing molecular tests, such as SDS-

PAGE and/or WB.

Western Blots

To increase sensitivity for detecting protein-protein interactions

between FIB and Coll-I in vitro and ex vivo, these interactions were

characterized further using Western blot analysis. Immediately

following gel electrophoresis, proteins were electroblotted (Mini

Trans-Blot Electrophoretic Transfer cell; Bio-Rad, Hercules, CA) onto

nitrocellulose (Fisher Scientific, Waltham, MA) instead of staining with

Coomassie Brilliant Blue R-250. Protein transfer buffer was prepared

according to Bio-Rad instructions: pH 8.3, 25 mM Tris, 192 mM glycine

and 0.05% (wt/vol) SDS in 20% methanol. The voltage to transfer the

proteins was 100 V and was applied for 1 hour. To avoid over-heating

the system, the transfer unit was packed in ice for the duration of the

transfer. Following transfer, chromogenic immunodetection for small

membranes was performed following the kit protocol (Invitrogen).

Fibrinogen and Coll-I proteins were identified using anti-fibrinogen

antibody and anti-collagen type I antibody, respectively.

Surface Plasmon Resonance

SPR was used to detect noncovalent FIB—bGAG and FIB—protein

interactions. All buffer and sample solutions were de-gassed and vacuum

filtered (pore size 0.22 lm) before running through the Biacore

microfluidic system during immobilization and experimentation proce-

dures. Two types of chips were used to study protein or GAG interactions

with FIB.. First, CM5 chips were used to immobilize proteins (Fig. 1a); for

simplicity, these chips henceforth will be referred to as ‘‘protein chips.’’

To immobilize biotinylated GAGs, SA chips were used (Fig. 1b); these

chips will be referred to simply as ‘‘GAG chips’’ hereafter.

The immobilization procedure used to covalently attach proteins

on a protein chip has been specifically described elsewhere.23,24

Briefly, an equal volume mixture of EDC and NHS (0.2 M, 0.05 M,

respectively) activated the carboxymethylated surface on each of four

total lanes on the chip. Next, a 100 lg/mL solution consisting of the

ligand (molecule to be immobilized: FIB, Coll-I, Dec, Lum, Coll-IV, or

LN) in 10 mM sodium acetate buffer (pH 4.5) was injected at a rate of 5

lL/minutes by the autosampler over the activated chip surface for 2 to

6 minutes, depending on the desired level of immobilized ligand. A 1 M

ethanolamine hydrochloride solution (pH 8.5) injection followed that

of the ligand solution to convert remaining reactive ester groups on the

chip surface to amides.23 A control lane (lane 1) on each chip was

‘‘inactivated’’ by treating it with HBS-P buffer instead of a ligand

solution. Ligand immobilization levels varied from 4000 to 6000

response units (RU), depending on the molecule immobilized, and

were controlled by adjusting the amount of time the ligand solution

was allowed to react with the activated chip surface. A response of

1000 RU corresponded to 1 ng/mm2 surface protein concentration.25

To immobilize GAGs on the surface of an SA (GAG) chip, it first was

necessary to couple covalently biotin molecules to the GAG chain.

Once biotinylated (described below), GAGs were exposed to the

avidin-coated chip surface during the immobilization procedure. The

strong interaction between biotin molecules on the GAG chain and

avidin molecules on the chip surface provided a stable bond to

immobilize GAGs and prevent their dissociation during experimenta-

tion. GAG chip immobilization also has been described previously in

detail.26 Briefly, a GAG chip was conditioned with 1 M NaCl in 50 mM

NaOH for three 1-minute pulses. Immediately following, 0.1 mg/mL

solutions of biotinylated GAGs (bGAGs; bCSA, bKS, bHS, bDS, or bHEP)

were allowed to flow over the surface of the conditioned chip for 3

minutes at a rate of 5 lL/minutes. A saturated solution of biotin was

immobilized on lane 1 of the GAG chip as a control.27 Immobilized

bGAG levels ranged from 400 to 600 RU, depending on the molecule;

the immobilized biotin control reached a level of 30 to 50 RU.

Binding assays were performed using the KINJECT feature of the

Biacore 3000; this feature allowed the association rate constant (ka)

and the dissociation rate constant (kd) to be studied in real time.

Analyte solutions were passed over chip surfaces at a rate of 10 lL/min

for 5 minutes. Unbound analyte then was allowed to dissociate from

the ligand surface for 5 minutes as running buffer (HBS-P) flowed over

the chip at a constant rate of 10 lL/min. Data from the ‘‘inactivated’’

(protein chip) or biotin-immobilized (GAG chip) control (lane 1) were

subtracted out automatically as control background from data collected

in experimental lanes containing immobilized ligand (lanes 2–4).

A 1 M NaCl solution was used to regenerate the ligand surface

when testing protein-protein interactions on a protein chip. When

testing bGAG-protein interactions on a GAG chip, 1 M NaCl in 50 mM

NaOH was used for regenerating the chip surface.

Preparation of Biotinylated KS

KS was biotinylated as described previously in detail.26 In brief, EDC

protocol28,29 was used to affix biotin to the KS chain. KS was dissolved

in MES ([2-N-morpholino] ethanesulfonic acid) containing biotin-LC-

hydrazide and EDC. The mixture was agitated gently and incubated 24

hours at room temperature. Biotinylated KS solution was washed

thoroughly using a centrifugal filter (regenerated cellulose 3000

MWCO) to remove salt and free biotin; the retentate then was

lyophilized. The HABA assay for measuring the level of biotin

incorporation was used to calculate the biotinylation ratio, 1.43 moles

biotin per mole KS. No biotin molecules were bonded along the length

of KS chains, because KS chains do not contain free carboxyl groups.30

Instead, a biotin molecule was bonded at the reducing-carbon end of

each KS chain.

Preparation of Biotinylated CSA, DS, HS, and HEP

Chains of CSA, DS, HS, and HEP were biotinylated as described

previously.26 Briefly, CSA, DS, HS, and HEP were labeled by EZ-link

Biotin-LC-Hydrazide: biotin was attached to the carboxy groups of

uronic acid (CSA)31 or L-iduronic acid (DS, HS, HEP)32–35 residues using

the EDC protocol.28,29 Unlike the end-labeling of KS chains, CS, DS, and

HS chains contained biotin molecules attached along their lengths, not

just at their C-reducing end. GAGs were dissolved in MES containing

biotin-LC-hydrazide and EDC. The mixture was agitated gently and

incubated at room temperature for 24 hours. Biotinylated GAG

solutions were washed thoroughly to remove salt and free biotin

using an Amicon Ultra centrifugal filter (regenerated cellulose 3000

MWCO), and then were lyophilized. The HABA assay for measuring the
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level of biotin incorporation was used to determine the molar ratio of

biotinylation, 2.78 moles biotin per mole GAG.

Statistical Analysis

All data presented in tables were analyzed statistically and presented as

an average 6 SD.

RESULTS

Sodium Dodecyl Sulfate Polyacrylamide Gel
Electrophoresis

Proteins were separated by SDS-PAGE to assay for covalent
interactions resulting from treatment with RFþ UVA. Figure 2

shows the variety of such binding patterns of FIB (Fig. 2a) and
of Coll-I (Fig. 2b). Two lanes of each control were run at
different volumes of FIB to determine which volume showed
the clearest results on the gel. Lanes 2, 4, 6, and 8 were run at a
lower, clearer volume (2 lL at 18 lg/lL¼ 32 lg FIB), whereas
lanes 3, 5, 7, and 9 were run at a higher volume (3 lL at 18 lg/
lL¼ 54 lg FIB). In light of this, 32 lg of FIB at a concentration
of 18 lg/lL was the chosen volume used in subsequent gels.
Lanes 2 and 3 in Figure 2a demonstrate the expected locations
of untreated fibrinogen subunit bands, alpha, beta, and gamma
(a, b, and c, respectively) at 73, 60, and 53 kDa, respectively.36

FIB molecules, following addition of only RF, are shown in
lanes 4 and 5, and FIB molecules, treated only with UVA, are
shown in lanes 6 and 7. No crosslinking was observed in lanes
4 to 7; this is evident in that a, b, and c bands of the RF-treated

FIGURE 1. (a) The surface of the CM5 (protein) chip. Four lanes on each protein chip are connected sequentially (tandem connecting channels not
shown). Each lane is composed of a glass foundation with a gold layer on top. The protein chip has a carboxymethylated dextran matrix with free
carboxyl groups designed to capture covalently amine groups of the protein to be immobilized. (b) The surface of an SA (GAG) chip (tandem
connecting channels not shown). Here, there are glass, gold, and carboxymethylated dextran foundations, as in the chip above, but in addition there
is immobilized streptavidin. The streptavidin is designed to link strongly to biotinylated ligands.
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and the UVA-treated FIB remain at the same molecular weight
location as the untreated, standard FIB a, b, and c chain bands.
Lastly, FIB incubated with RF and exposed to UVA is shown in
lanes 8 and 9 and clearly show diminished a, b, and c chain
bands from their usual 73, 60, and 53 kDa location, and show
appearance of higher molecular weight FIB in a range from 100
kDa to approximately 450 kDa.

An SDS-PAGE gel also was run with solutions containing FIB
and Coll-I present (Fig. 2b). Collagen crosslinked to itself in the
presence of RF and UVA (lane 3), and FIB crosslinked to itself in
the presence of RF and UVA (lane 5). No crosslinking occurred
between Coll-I and FIB in the absence (lane 6) or presence of
UVA only (lane 7), or RF only (lane 8). However, lane 9 suggests

that FIB and Coll-I crosslink to each other in the presence of RF
and UVA, as the a, b, and c chain bands of FIB virtually
disappear, as do the a-1 (125 kDa), a-2 (130 kDa), and b (250
kDa) chain bands of Coll-I; Western blots were performed to
determine independently whether the two proteins simply
crosslinked to themselves and/or each other.

Western Blots – In Vitro

The Western blots in Figures 2c and 2d, loaded with identical
sets of samples, but probed with different antibodies, show a
distinct difference in banding patterns between FIB þ RF þ
UVA lanes and Coll-I þ FIB þ RF þ UVA lanes. Figure 2c (FIB

FIGURE 2. (a) FIB only covalently crosslinks to itself in the presence of RF and UVA light, as detected by SDS-PAGE. Such crosslinking is observed in
lanes 8 and 9, when FIB and RF are present simultaneously with UVA. The a, b, and c chain bands (observed in lanes 2–7) have diminished and
generated a spectrum of higher molecular weight molecules, from 100 to 450 kDa. (b) Coll-I and FIB appear to crosslink to each other in the
presence of RF and UVA, as detected by SDS-PAGE. Lane 3: Coll-I can crosslink with itself. Lane 5: FIB can crosslink with itself. Maximal crosslinking
is observed when Coll-I, FIB, and RF samples are treated with UVA (lane 9). (c) Western blot analysis using FIB antibody shows a difference in
crosslinked band patterns in the presence and absence of Coll-I. In the absence of Coll-I, FIB crosslinking creates a spectrum of molecules of
increasing molecular size (lane 5). In the presence of Coll-I, a large, dark band appears in the same region of the c-chain of Coll-I (arrow in lane 9),
suggesting Coll-I and FIB crosslink to one another. (d) Western blot analysis of identical samples to those in (c), using Coll-I antibody shows a high
molecular weight band (arrows in lanes 3 and 9) when Coll-IþRF (lane 3) or Coll-IþFIBþRF (lane 9) is treated with UVA. That band contains FIB
and Coll-I only when both molecules are present simultaneously and treated with RF þ UVA.
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Ab) shows that the low molecular weight a, b, and c chains of
FIB (lane 4) diminish when RF þ UVA are introduced and,
instead, form a broad range of higher molecular weight
molecules (~37 kDa to ~400 kDa, lane 5). Furthermore, when
Coll-I is introduced to the FIBþ RFþUVA mixture, a very dark
FIB-staining band is generated in the c-chain region of Coll-I
(arrow in Fig. 2c, lane 9). Similarly, Figure 2d (Coll-I Ab) shows
that the a1/a2 and b chains of untreated Coll-I (lane 2)
diminish in the presence of RF and UVA (lane 3), forming a
darker band in the c-chain region of Coll-I (arrows in lanes 3
and 9).

Western Blot – Corneas Treated Ex Vivo

Figure 3 shows data collected from rabbit corneas incubated
ex vivo with a FIB-only solution (lanes 1 and 3) or with an FIB
þ RF solution followed by UVA irradiation (lanes 2 and 4).
Lanes 1 and 2 were developed using a FIB antibody, whereas
lanes 3 and 4 were developed using a Coll-I antibody. The
standard low molecular weight location for FIB bands at
approximately 73, 60, and 53 kDa36 are shown in lane 1,
whereas lane 2 shows these bands diminished greatly after
addition of RF and irradiation with UVA light. Also, lane 2
shows the appearance of a solid high molecular weight band
(arrow), similar to that observed in the in vitro data (Fig. 2c,
lanes 5, 9). Similar to lanes 1 and 2 (probed with FIB-Ab), lane
3 (probed with Coll-I-Ab) shows a low molecular weight band
in the absence of RFþ UVA, but upon addition of RFþ UVA in
lane 4, the intensity of the low molecular weight bands
decreases and a strong, high molecular weight band is formed.
Finally, a high molecular weight band appears in lanes 2 and 4
that corresponds to the standard location of the Coll-I c-chain
band. These bands are indicated by arrows in Figure 3, lanes
2, 4.

Surface Plasmon Resonance

Many proteins (FIB, Coll-I, Dec, LN, Coll-IV, Lum) and bGAGs
(bCSA, bKS, bDS, bHS and bHep) were tested using SPR for
their ability to bind noncovalently FIB in the presence and
absence of various divalent cations (1.0 mM Ca2þ, 2.5 mM Ca2þ,
1.0 mM Zn2þ).37,38

Because FIB has been known to denature during SPR
experimentation39 and calcium has been shown to stabilize
FIB,40,41 Ca2þ was added to analyte (soluble FIB) and running
buffer (HBS-P) solutions at two different concentrations, 1.0
mM40 and 2.5 mM,42,43 to prevent FIB denaturation. Addition-
ally, in prior studies that characterized binding between FIB
and HEP, no binding was detected between FIB and HEP when
Ca2þwas not added to experimental solutions.39 Conversely, in
studies where Ca2þ was used in experimental solutions,
binding was detected between FIB and HEP.44–46 Therefore,
the interactions of FIB and bHEP in the presence and absence
of Ca2þwere used as positive controls for this study (indicated
by asterisks, Table 1).

Additionally, Zn2þ has been shown to mediate highly
relevant FIB—protein interactions, specifically the binding of
Dec and FIB, in several studies.47–49 In light of this, Dec—FIB
binding in the presence of 1.0 mM Zn2þ was used as another
positive control (indicated by asterisks, Table 1).

Table 1 summarizes binding results of immobilized bGAGs
and proteins to soluble FIB. The columns from left to right
indicate which, if any, divalent cation (No added cation, ‘‘nil’’;
1.0 mM Ca2þ; 2.5 mM Ca2þ; or 1.0 mM Zn2þ) was added to the
analyte (soluble FIB) and running buffer (HBS-P) solutions. A
(–) sign indicates that the two molecules in the intersecting
row and column produced a response of less than 20 RU,
meaning no significant binding occurred.50 A (þ) sign indicates
the molecules in that intersecting row and column produced
more than a 20 RU response, meaning those molecules did
show binding. None of the studied molecules showed binding
to FIB in solutions without a divalent cation. Of the molecules
tested, only bHEP could bind FIB in the presence of Ca2þ.
However, when Zn2þwas present in FIB analyte solutions, bDS
and bHS demonstrated the ability to bind, whereas bKS and
bCSA did not. Similarly, FIB, Coll-I, Dec, and LN only showed
binding to FIB when Zn2þ was present; Lum and Coll-IV
showed no binding, regardless of the divalent cation present
(Table 1).

For all molecules that showed binding to soluble FIB,
association constants (ka), dissociation constants (kd), and
equilibrium dissociation constants (KD) were calculated and
compiled into Tables 2 to 4, respectively. All values were
calculated assuming that one molecule of ligand (immobilized
protein or bGAG) bound one molecule of analyte (FIB in
solution), as illustrated by equation (1), where [L] refers to one
ligand molecule, [A] refers to one analyte molecule, and [LA]
refers to one ligand-analyte complex.

L½ � þ A½ �, LA½ � ð1Þ
The association constant describes the speed with which the
analyte (FIB in solution) binds to the immobilized ligand
(bound protein or bGAG) (Fig. 4, dashed curve) and forms
ligand-analyte complexes; equation (2) illustrates this interac-
tion.

LA½ � þ A½ �� LA½ � ð2Þ
The faster the analyte binds the ligand, the higher the ka value.
Dec, LN, and bDS bound FIB the fastest and, thus, have the
highest association constants.

Equation (3) below shows the reaction for ligand-analyte
complex dissociation; dissociation constants, kd, describe the

FIGURE 3. Western blot analysis of samples extracted from ex vivo
rabbit corneas that had been treated with FIB only or with FIBþ RFþ
UVA. Lanes 1 and 2 were developed using a FIB antibody, whereas
lanes 3 and 4 were developed using a Coll-I antibody. The low
molecular weight bands observed in lane 1 represent standard FIB
chains,36 whereas the low molecular weight band in lane 3 represents
the most easily extractable soluble fragment of protease-digested Coll-I
(explanation in Discussion). Lanes 2 and 4 are derived from FIBþRFþ
UVA-treated corneas, and show diminished low molecular weight
bands and formation of higher molecular weight bands. Arrows in
lanes 2 and 4 indicate a high molecular weight band that corresponds
to the c-chain location of Coll-I.
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speed at which these complexes dissociate (Fig. 4, dotted
curve).

L½ � þ A½ �  LA½ � ð3Þ

The higher the value of kd, the faster the ligand-analyte
complexes dissociate into their constituent molecules. The
molecules that showed the highest dissociation kd values, as
shown in Table 3, were FIB, Dec, and LN, only in the presence
of 1.0 mM Zn2þ. Also, bHEP exhibited fast dissociation from
immobilized FIB in the presence of 1.0 and 2.5 mM Ca2þ (Table
3).

The relationship of ka and kd describes the overall avidity of
binding observed between the ligand and the analyte and
provides the equilibrium dissociation constant (KD). Equation
(4) below is used to determine the KD by relating the

association and dissociation constants.

kd=ka ¼ KD ð4Þ

Strong binding between ligands and analytes is characterized
by two things, fast association (high ka) and slow dissociation
(low kd). Since ka is in the denominator and kd is in the
numerator of equation (4), avid binding is distinguished by low

KD values. As the association constant increases and the
dissociation constant decreases, the overall equilibrium con-
stant decreases. Table 4 summarizes the equilibrium dissocia-
tion constants collected. The most avid binding of soluble FIB
occurred with immobilized Coll-I, bDS, and bHS, and only in
the presence of 1.0 mM Zn2þ, as these molecular combinations
have the lowest KD values. The bHEP—FIB KD was relatively
high in the presence of Ca2þ, but very low when Zn2þ was
present, indicating avid binding when Zn2þwas present (Table
4).

To determine whether observed binding between immobi-
lized molecules and soluble FIB was linear or logarithmic, four
different concentrations of analyte (soluble FIB) solutions were
tested in triplicate and plotted against their resulting response
levels (Fig. 4, point a) in Figures 5 to 7. The bold horizontal
dashed line in Figures 5 to 7 indicates a 20 RU response, the
lowest response above which is considered a significant,
positive binding result.50 The graphed response level was the
response collected at the end of the binding curve—after the
analyte (soluble FIB) associated and dissociated, but before
regeneration of the chip surface (Fig. 4, point a).

Figure 5 shows results for all proteins that demonstrated
significant ability to bind soluble FIB in the presence of 1.0 mM

TABLE 1. Binding of Soluble FIB to Immobilized Corneal Macromol-
ecules

Ligand

(Molecule on Chip)

Analyte (Molecule in Solution)

No Cation
[Ca2þ]

[Zn2þ]

Nil 1.0 mM 2.5 mM 1.0 mM

FIB FIB FIB FIB

Proteins

(on protein chip)

FIB – – – þ
Coll–I – – – þ
LN – – – þ
Dec – – – þ*

Coll–IV – – – –

Lum – – – –

bGAGs

(on GAG chip)

bHEP –* þ* þ þ
bHS – – – þ
bDS – – – þ
bCSA – – – –

bKS – – – –

–, indicates no binding detected between two molecules (less
than 20 RU response); þ, indicates binding detected between two
molecules (more than 20 RU response). All molecular combinations
that showed binding are described further using graphs to show the
effect of calcium and zinc on degree of binding; ka, kd, and KD values
were obtained for all molecular combinations that displayed binding.

* Indicates positive controls, based on an earlier publication.50

TABLE 2. Binding of Soluble FIB to Immobilized Corneal Macromol-
ecules: Association Constants (avg.ka 3 103 6 SD 3 103) (1/Ms)

No Cation
[Ca2þ]

[Zn2þ]

Nil 1.0 mM 2.5 mM 1.0 mM

Proteins

FIB – – – 7.39 6 0.3

Coll–I – – – 33.9 6 8.4

Dec – – – 94.9 6 1.7

LN – – – 84.7 6 7.2

GAGs

bDS – – – 79.5 6 23.5

bHS – – – 5.9 6 8.6

bHEP – 10.3 6 3.2 13.8 6 1.7 0.59 6 0.1

TABLE 3. Binding of Soluble FIB to Immobilized Corneal Macromol-
ecules: Dissociation Constants (kd 3 10�4 6 SD 3 10�4) (1/s)

No Cation
[Ca2þ]

[Zn2þ]

Nil 1.0 mM 2.5 mM 1.0 mM

Proteins

FIB – – – 5.98 6 0

Coll–I – – – 0.581 6 0.1

Dec – – – 6.63 6 0.8

LN – – – 3.22 6 0.3

GAGs

bDS – – – 1.91 6 0.7

bHS – – – 0.17 6 0.01

bHEP – 5.52 6 1.4 6.48 6 0.47 0.03 6 0.01

TABLE 4. Binding of Soluble FIB to Immobilized Corneal Macromol-
ecules: Equilibrium Dissociation Constants (KD 3 10�9 6 SD 3 10�9)
(M)

No Cation
[Ca2þ]

[Zn2þ]

Nil 1.0 mM 2.5 mM 1.0 mM

Proteins

FIB – – – 80.8 6 3.5

Coll–I – – – 1.73 6 0.1

Dec – – – 6.98 6 0.7

LN – – – 3.79 6 0.1

GAGs

bDS – – – 2.37 6 0.2

bHS – – – 2.71 6 0.4

bHEP – 54.3 6 5.2 47.1 6 2.1 4.43 6 0.8
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Zn2þ. Coll-I produced the highest response at all concentra-
tions, followed by immobilized FIB, LN, and Dec. All proteins
that bound soluble FIB did so in a linear fashion, as all the lines
in Figure 5 are a linear best-fit line of the data points.

Similarly, bHS, bDS, and bHEP linearly bound soluble FIB, as
depicted in Figures 6 and 7. Figure 6a shows the binding of
bHEP, bDS, and bHS in the presence of 1.0 mM Zn2þ. The

bHep—FIB interaction produced the highest response and

steepest slope of any of the molecules tested. Because the
response of bHEP was so large and dwarfed the still significant

results of bDS and bHS, Figure 6b shows bDS and bHS data in
the absence of the bHEP line. This simply allows for a clearer

presentation of the difference in responses of bDS and bHS.

Data in Figure 6, therefore, indicate significant binding of FIB

FIGURE 4. The shape of a typical binding curve collected from the Biacore 3000 is shown. The solid line at 23,800 RU is the baseline response.
Dashed curve: indicates the association phase of the curve when the analyte molecule (in solution) is allowed to bind to an immobilized ligand on
the chip surface. The association binding constant, ka, describes how fast this binding occurs. Dotted line: indicates the dissociation phase of the
curve, when buffer solution is injected over the chip surface and free analyte molecules (any analyte that is not bound to the ligand surface) are
carried away; the rate at which dissociation occurs is described by kd, the dissociation constant. Point (a) at the end of the dissociation phase
indicates a ‘‘report point’’ where an exact measurement of the response is recorded, relative to the baseline; this value is obtained by subtracting the
baseline response from the absolute response (x).

FIGURE 5. The relationship between analyte (soluble FIBþ 1.0 mM Zn2þ) concentration and response at report point (a) of various immobilized
proteins. Bold horizontal dashed line: indicates the minimum response to be considered a positive binding result. The response of all proteins
increased with increasing analyte concentration, and exhibited a linear relationship between analyte concentration and response.
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to DS, a normal component of the corneal stroma, in the
presence of Zn2þ.

Lastly, the binding of immobilized bHEP to soluble FIB in
the presence of 0, 1.0, and 2.5 mM Ca2þ is graphed in Figure 7.
As illustrated by the bold horizontal dashed line, no binding
occurred between bHEP and soluble FIB in the absence of
added Ca2þ, whereas significant binding did occur at 1.0 and
2.5 mM Ca2þ concentrations. Interestingly, the FIBþ1.0 mM
Ca2þ samples produced a higher response than did the FIBþ2.5
mM Ca2þ samples, suggesting an optimal Ca2þ concentration.

DISCUSSION

The FIBþ RFþ UVA treatment has been tested for a variety of
uses, such as closing corneal51 and scleral6,52 incisions
following ophthalmic surgery or trauma, replacing sutures in
ocular surgeries,22 and sealing a corneal flap modeling that
which results from LASIK.1 Additionally, extensive research
shows FIB þ RF þ UVA to be a nontoxic, biodegradable glue

that actually can increase rates of wound healing in the
cornea.53,54 However, more work must be done to assess the
longevity of FIB þ RF þ UVA benefits using organ culture
techniques, as described by Mi et al.55 Despite the numerous
uses and benefits of the tissue glue, very few studies have
attempted to determine the molecular mechanisms that
underlie the adhesive properties of FIBþ RFþ UVA. A deeper
understanding of the molecular interactions responsible for the
adhesion created in corneas by the FIBþ RF þ UVA treatment
would aid in the further development of the tissue glue and
could reveal alternative uses.

By identifying the molecules that interact with FIB in the
presence (or absence) of RFþUVA, one could apply the FIBþ
RF þ UVA treatment to tissues similar in chemical and
molecular composition in other locations in the body. For
example, a tendon is connective tissue that heals very slowly
due to little vascularization.56 Because connective tissues like
tendons are composed mainly of Coll-I,57,58 and contain other
glycoproteins and proteoglycans, such as Dec,59,60 the FIB þ
RF þ UVA treatment could be applied to create crosslinks

FIGURE 6. (a) The relationship between the response at report point (a) of immobilized bGAG and analyte (FIBþ 1.0 mM Zn2þ) are graphed. Bold

horizontal dashed line: shows the minimum response required to be considered positive binding. All bGAGs show increasing response as analyte
concentration increased and a linear relationship. (b) The response of bHEP was so large in (a), it dwarfed the results of bDS and bHS. Here, the
response of bHEP is removed to shift the scale of the y-axis, enlarge the results of bDS and bHS, and thus depict more clearly the difference in
responses of bDS and bHS.
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between the FIB and Coll-I to stabilize the tendon (or other
connective tissue) after injury and prevent further damage.

Data collected in our study described two contributing
molecular mechanisms of adhesion at play in the FIBþRFþUVA
treatment: covalent and noncovalent. First, the SDS-PAGE data
demonstrated that FIB forms covalent crosslinks with itself in
vitro, in the presence of RF and UVA. This can be concluded
from Figure 2a, which shows high molecular weight bands in
lanes 8 and 9, when FIB, RF, and UVA all are present
simultaneously in solution. In the absence of either RF or UVA
(lanes 4–7), FIB shows no change in low molecular weight
bands when compared to the control lanes containing only FIB
(lanes 2, 3). This suggests that if any FIBþ RF solution diffused
into the stromal tissue surface during rabbit cornea experimen-
tation and then crosslinked to remaining FIB, either at the glue-
tissue interface or within the other stromal surface, the corneal
flap could be immobilized. Furthermore, when tested in the
presence of Coll-I, the predominant collagen type of the corneal
stroma,16–18 FIB þ RF application and UVA irradiation creates
covalent crosslinks in vitro. This is evident in Figure 2c because
a dramatic difference in band patterns appeared when the only
difference was the absence (lane 5) or presence (lane 9) of Coll-
I. The dark, very high molecular weight band (arrow in Fig. 2c)
corresponds to the c-chain region of Coll-I (Fig. 2d) and only
appears in Figure 2c when Coll-I is present in solution with FIB
þRFþUVA. This suggested that when FIBþRFþUVA is applied
to a corneal stromal surface, covalent crosslinks occur between
and within the glue and stroma, thus further immobilizing the
corneal flap.

It is reasonable to ask if the covalent crosslinking detected
by in vitro Western blotting between FIB and Coll-I in
solution also can be detected in an actual cornea. This is a
valid question, as the Coll-I used in vitro is isolated and
disorganized, whereas Coll-I, found native in the corneal
stroma, is highly organized and bound tightly to proteogly-
cans, possibly rendering it incapable of bonding with other
proteins, such as exogenous FIB. By treating an adult cornea

ex vivo with FIB þ RF þ UVA and then probing the
solubilized cornea with Western blots for appearance of
new molecular covalent interactions, these questions of in
vitro applicability were addressed. Lanes 1 and 3 of Figure 3
represent samples from de-epithelialized rabbit corneas
treated ex vivo with only FIB (no RF or UVA). Lane 1
(probed with FIB-Ab) shows the standard low molecular
weight location of FIB chains.36 Interestingly, lane 3 (probed
with Coll-I-Ab) shows a dark low molecular weight band that
is dissimilar from the high molecular weight a1/a2, b, and c
bands observed in Figures 2b and 2d. This may be due to the
release and degradation of native collagen by proteases upon
the mechanical removal of the epithelium and DM. In a
normal adult rabbit cornea, Coll-I mostly is insoluble, even
after incubation with acetic acid, but after exposing stromal
Coll-I to proteases, it readily becomes soluble.61,62 Therefore,
the low molecular weight band observed in Figure 3, lanes 3
and 4 is likely to represent the most easily extractable soluble
degradation product of stromal Coll-I. It should be noted that
the soluble protease fragment of Coll-I, released during the
30 minutes of incubation þ 30 minutes of irradiation phases
of ex vivo cornea treatment, was capable of undergoing
extensive crosslinking to form higher molecular weight
molecules upon exposure to RF þ UVA (Fig. 3, lane 4).
Additionally, these ex vivo data duplicated the findings of the
in vitro study in that crosslinking was observed only in the
extracts of native corneas that had been treated ex vivo with
FIBþ RFþ UVA (Fig. 3, lanes 2, 4). The appearance of similar
molecular weight bands in lanes using separate antibodies for
FIB and Coll-I suggests that covalent interactions occur
between FIB of the tissue glue and Coll-I of the native rabbit
corneal stroma (Fig. 3, arrows in lanes 2, 4).

In addition to detecting covalent interactions from SDS-
PAGE and WB studies, SPR data suggest that numerous
noncovalent interactions contribute to adhesion of stromal
surfaces, such as those created by the intrastromal incision
during LASIK surgery. Three (Coll-I, Dec, and DS) of the six

FIGURE 7. The relationship between the response of immobilized bHEP and concentration of the analyte (FIB þ nil, 1.0, or 2.5 mM Ca2þ). No
binding occurred between immobilized bHEP and FIB in the absence of Ca2þ because the response fell below the bold horizontal dashed line,
which indicates the minimum response necessary for positive binding. The responses of FIBþ 1.0 mM and FIBþ 2.5 mM Ca2þ showed a positive
linear pattern of response as the concentration of analyte solutions increased.
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molecules that showed binding to soluble FIB are found in
stromal tissue, which suggests FIB present in tissue glue not
only is interacting covalently with stromal Coll-I in the
presence of RF and UVA, but may be interacting first
noncovalently with stromal Coll-I, Dec, and DS in the absence
of any RF or UVA. These noncovalent interactions are
dependent on the presence of Zn2þ, a normal component of
the cornea: the dry weight of divalent zinc cation in the human
cornea is 41 lg/g,63,64 or, when adjusted for the dry weight65

and volume66 of a whole human cornea, approximately 0.09
nM, a lower concentration than used here and in earlier
studies.47–49 Furthermore, studies show that metalloenzymes
native to the cornea require zinc for regular function,64,67–69

suggesting that the normal concentration of zinc cation in the
cornea is sufficient to mediate chemical processes intra-, and
extracellularly.

Results collected in our study are supported by several
previous studies about noncovalent macromolecular interac-
tions. For example, it would be expected that DS and CSA
would bind to similar molecules, as they have very similar
molecular structures.32,70 However, that is not the case,
because polysaccharides with repeating L-iduronic acid resi-
dues (DS and HS) have the ability to bind more proteins than
do polysaccharides with repeating D-glucuonic acid residues
(CSA).71 These results correspond directly to those collected
here: bDS and bHS bound FIB, whereas CSA did not. Also, it has
been shown that a protein–protein interaction between Coll-I
and cartilage oligometric matrix protein (COMP) is promoted
when the divalent cation Zn2þ (or Ni2þ) is present, whereas the
presence of other divalent cations, such as Ca2þ, Mg2þ, or
Mn2þ, does not facilitate this binding.47 Again, in our study,
similar results were observed. FIB bound Coll-I in the presence
of Zn2þ, but not in the presence of two concentrations of Ca2þ.
Future studies could determine the optimal concentration of
Zn2þ for each of the proteins and GAGs in Table 2 in their
interactions with FIB.

In conclusion, data in our study suggested that adhesion
observed in rabbit corneas is caused partly by covalent bonds
between FIB and Coll-I in the presence of RF and UVA light,
and partly by noncovalent interactions between FIB and
stromal molecules, such as Coll-I, Dec, and DS, especially in
the presence of Zn2þ, even in the absence of RF and UVA.
These data represented a starting point in the search for
definitive mechanisms explaining the adhesive effects caused
by the FIBþRFþUVA treatment and in no way are meant to be
a comprehensive look at all possible underlying mechanisms. It
is possible that the noncovalent interactions detected here may
precede and facilitate subsequent formation of covalent
crosslinks formed in the presence of RF þ UVA, that is a
synergistic relationship,72 especially since there are Zn2þ-
dependent enzymes73 active in the corneal stroma that have
been shown to function at a Zn2þ concentration (0.1 nM74)
similar to that which we have calculated above (0.09 nM)
exists in the corneal stroma. However, that must be elucidated
by subsequent studies.
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