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We calculate intensity of radiative heat transfer and radiative conductance in a system of two 

spherical particles embedded in equilibrium vacuum background (photon gas). The temperatures 

of the particles and of the background radiation are arbitrary. The calculations are based on the 

dipole and additive approximations of the fluctuation electromagnetic theory. We obtained much 

higher radiative conductance between 25 mµ  silica particles (by 4 orders of magnitude) in 

comparison with recent results by A.Narayanaswamy and Gang Chen ( Phys.Rev., 2008). 
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1.Introduction 

To date, the problem of radiative heat transfer between condensed bodies at small separations 

has attracted growing attention both theorists [1-4] and experimentalists [5-7]. Quite recently, the 

authors [6,7] have reported on first measurements of heat transfer between two silica spheres 

with diameters of 50 mµ  separated by gaps ranging from 0.1 to 10 mµ  . At such conditions,  

near –field heat transfer plays dominating role, being mediated by surface phonon –polaritons of 

the adjacent surfaces. The accuracy and control of numerical calculations of the heating rate 

 are performed by direct comparison with the known analytical solutions in several 

simple geometries: two half –spaces [8], a small sphere above a plane [4,9] , two spheres in the 

dtdQ /
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dipole approximation [10-12]. The second configuration is studied using a proximity 

approximation [2] similar to the known proximity force approximation [13]. Another approach is 

based on additive summation method using an exact analytical solution in a point –dipole 

problem [4,9]. However, the third problem has been solved in [10-12] with no allowance for 

surrounding uniform vacuum background. Moreover, the obtained expressions for   differ 

by a numerical factor 

dtdQ /

π2  (compare the results [10] and [11,12]). By the way, an additional heat 

exchange between the particles and vacuum background essentially changes the long –range  

asymptotics  of the heat transfer  and must be taken into account to interpret the results [6,7] in a 

correct manner. 

     The aim of this paper is to derive a new expression for heating rates  of two spherical particles 

with radii  and temperatures , embedded in vacuum background filled by an 

equilibrium photon gas with temperature , in dipole approximation. In view of the obtained 

results, some comments on recent numerical calculations in the two –sphere problem [3] and 

experimental results [6,7] and are  given. 
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2. Theory 

     The configuration of the system is shown in Fig.1. Both particles are characterized by 

frequency –dependent electric )(ωα ie  and magnetic )(ωα im  polarizabilities (i=1,2). It is worth 

noting that restrictions imposed by dipole approximation imply:  

RRR <<21, , ),,min(, 32121 TTTRR λλλ<< , 

where 321 ,, TTT λλλ  are the characteristic wave –lengths of thermal radiation. Relations between 

R  and 321 ,, TTT λλλ  may be arbitrary. We write starting expression for the heating (cooling) rate 

of the first particle in the form 

1213/ QQdtdQ vac && +=                                                                                                                      (1) 
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where   denotes the rate of heat exchange with vacuum background and that one 

caused by interaction between the particles. Eq.(1) reflects mutual independence of thermal 

fluctuations of random electromagnetic fields generated by particles and vacuum background. 

This enables to calculate different contributions to resulting expression for  in an 

autonomous way [4,9]. So, a more extended expression for  reads 

vacQ13
& −12Q&

dtdQ /

12Q&

 

),()(),()(),()(),()( 21221212112112 ttttttttQ spinspinspinspin rBmrEdrBmrEd &&&&& −−+=       (2) 

where  and   are the dipole electric (magnetic) moments and 

components of fluctuation electromagnetic field generated by each particle at the location point 

of another one. The upper indexes “in”, “sp” denote the induced and spontaneous components, 

the angular brackets –total quantum and statistical averaging. Individual terms in (2) determine 

parts of the power dissipated in the volume of the particles, corresponding to work of fluctuation 

electromagnetic field. 

)(),( 2,12,1 tt md ),(),,( 11,21,21,2 tt rBrE

      To proceed further, the incoming quantities in Eq. (2) are represented by Fourier integrals 

over  frequency ω  , with the Fourier transforms   and  of the form )(2,1 ωind )(2,1 ωinm
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With the help of (2)-(4) we obtain 
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The Descartes projections of electromagnetic fields in Eq.(5) are expressed through the 

components of spontaneous (induced) moments of the particles and components of retarded 

Green function for free photons [14] 
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In (6)-(8) we have used common definitions  for the speed of light, Planck’s and 

Boltzmann’s constants. 

Bkc ,,h

   After inserting (6)-(8) in (5) it is obvious, that the field correlators in Eq.(5) are finally 

expressed through the correlators of the fluctuating electric and magnetic dipole moments [15] 
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where an upper star sign denotes a complex conjugated Green function, while the twice primed 

polarizability functions –the corresponding imaginary parts. Other correlators are written 

analogously. After further elementary calculations we obtain 
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Formula (12) agrees with the results obtained in [10-12] with one exception for a numerical 

coefficient in front of the integral: this coefficient proved to be  in Ref. [10] and  

in Refs. [11,12]. Therefore, Eq.(12) manifests a larger value of the heating rate by 1-2 orders of 

magnitude as compared to  [10-12]. 

2)2/(1 π 3)2/(1 π

     The vacuum contribution to the heating rate  has been calculated in our papers [4,16]. A 

derivation procedure is quite analogous to that one described above. The simplest way to get the 

final formula is based on usage of energy conservation and Kirchhoff’s laws. Then  can be 

cast in the form 
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where is given by )( 1TI
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Eq.(14) describes an average intensity of  thermal dipole radiation of the particle with 

temperature  in vacuum space caused by spontaneous fluctuating moments. Evidently, this 

dipolar radiation leads to the particle cooling, whereas the function  is determined by the 

particle absorption spectrum and . On the other hand,  represents an average intensity of  

the vacuum radiation with temperature , illuminating the particle. According to the 

Kirchhoff’s law, function  should be of the same functional form as . The only 

difference between them may be related with different temperature. This allows to calculate only 

, whereas  can be obtained replacing  by  in  final expression for . Thus, 

for the average squared dipole electric moment we get  
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and with account of (10) , 
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In the same manner, a contribution from spontaneous magnetic moment reads  
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From (14)- (17) we get 
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The function , according to the Kirchhoff’s law, reads )( 3TI
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      Inserting (18), (18a) into Eq.(13) yields (for the first particle) 
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Eqs. (12) and (19) are the main results of this paper.  The heating rate of the second particle is 

determined from (1), (12) and (19) with obvious replacements 

vacvac QQQQQ 2313211212 , &&&&& →=−→ , 212121 ),()(),()( TTmmee →′′→′′′′→′′ ωαωαωαωα                   (20) 

       Practically, an important characteristic of radiative heat transfer represents the radiative 

conductance , defined as  G

212121 /),(lim TTTTQG TT −= →
&                                                                                                   (21) 

In order to obtain the corresponding functions  at a given temperature )(TG T , one needs to 

expand temperature factors in the square brackets of  Eqs.(12) and (19) with respect to T , 

assuming TTTTTTT ==∆+= 321 ,,   inserting (12), (19) into (21). 
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        To go a step further beyond the point dipole approximation, we have used an additive 

summation method to calculate the heat flux between two large spheres at a small gap of width 

. Introducing d daR += 2 into Eq. (12) (with a  being the sphere radius) and integrating over 

the volume of the spheres  according to the relation 21,CC
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1 2
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It is worth noting that in the above derivation of Eq. (24) we have used the expression 

2)(
1)(

4
3)( 2,12,1 +

−
=

ωε
ωε

π
ωα dV  where )(ωε  is the frequency –dependent dielectric function of the 

sphere’s material. 

 

3. Numerical results 

Similar to Ref. [3], we will present our numerical results of the radiative conductance between 

two silica spheres of equal radii aR =2,1  at KT 300= . To calculate the contribution  we 

assume that vacuum background has the same temperature. The dielectric function of silica is 

taken from Ref. [17]. The largest contribution to the heat exchange comes from the frequency 

ranges of  0.04 to 0.07 eV and 0.14 to 0.16 eV. In Figs.2-4 the integral radiative conductance 

vacQ13
&
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corresponding to one of the spheres is plotted as a function of gap width at a different radius 

. In Figs.2,3,  lines 1 to 4 correspond to a simple dipole approximation , Eq.(12), referred to as 

DA, an additive dipole approximation, Eq.(24) (referred to as DAA), the sum of DAA and 

vacuum contribution, and vacuum contribution alone, respectively. The classical blackbody limit 

is shown by line 5. In Fig.4 lines 1 and 2 correspond to DA and DAA.  The vacuum conductance 

(19) and classical blackbody limit (26) are shown by lines 3, 4. In the last case we have used the 

formula 

d

a

 B
BB

BB kTk
c
TakG ⎟

⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

hh

23

15
4π                                                                                                    (26) 

        We see from Figs.2,3 that for small spheres (at nma 10=  and ma µ1= ) the vacuum 

conductance (lines 4) is small compared to the classical limit, but goes to this one with 

increasing radius (compare lines 4,5 in Figs.2,3). For spheres with radius of mµ25  the dipole 

approximation to the vacuum heat conductance becomes incorrect and comparison of Eqs.(19), 

(26) (lines 3,4 in Fig.4) seems to be of less confidence. 

        The most intriguing feature of our results as compared to those reported in Ref. [3], 

obtained at same conditions (see Figs.11,12 in [3]), is the essentially higher value of the radiative 

conductance. For instance, from our results shown in Figs.2-4 it follows that at a gap of 

md µ2.0=  the heat conductance for spheres with radius mmnm µµ 25,1,10  is equal to 

)/(103.3),/(104.5),/(107.1 51015 KWKWKW −−− ⋅⋅⋅ , 

respectively. On the other hand, the corresponding data from Ref. [3] turn out to be 

 and . We see that only the values of the heat 

conductance at 

)/(103),/(102 1116 KWKW −− ⋅⋅ )/(105.3 9 KW−⋅

mnma µ1,20=  are in reasonable concord (the data in [3] being yet lesser). Also, 

our data points manifest another distance behavior. What happens is that the corresponding 

dependences in [3] show the lesser slope when the gap decreases, with finite value at 

. This feature is apparent even for a sphere of radius 

)(dG

0=d nma 20= . On the contrary, from 

Figs.2, 3 it follows that the slope of the curves  becomes lesser with increasing the gap )(dG
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width (lines 1 to 3). The slope of line 2 in Fig.4 corresponding to spheres with radius of mµ25 , 

proves to be closer to that one obtained in [3] (viz. -0.2  in our work and -0.41 in [3]), but the 

numerical values of  conductance in Fig.4 are larger by 4 order of magnitude.  

      Such a large discrepancy between our results and those in Ref. [3] for big spheres, in our 

opinion, unlikely can be attributed to an approximate character of an additive summation 

method, which turns out to give correct distance dependence in calculations of the Casimir forces 

and radiative heat exchange in similar configurations [4,13]. As far as concerned to the method 

developed in [3], the authors have drawn attention to a problem of numerical convergence of the 

obtained very cumbersome formula for the radiative heat conductance. Evidently, the discussed 

problem needs further elaboration despite that theoretical predictions made in [3] proved to be in 

a quite reasonable agreement with the accompanying experimental measurements [6,7]. 

 

4. Summary 

Using a dipole approximation of the fluctuation electromagnetic theory, we have calculated  

radiative heat flux and conductance in a system of two spherical particles embedded in 

equilibrium photon gas (vacuum background). The temperatures  of the particles and  of 

vacuum background are assumed to be different. To consider the case when the gap width is 

smaller than the particle radius, we have used an additive summation method. The obtained 

formulae take into account both contributions to the heat exchange between the particles and 

between the particles and vacuum background. We have got significantly larger numerical 

coefficient in the expression for the dipole rate of the heat exchange between the spherical 

particles in comparison with [10] and [11,12] ( by  

21,TT 3T

π8   and times). We have also compared 

our results with recent numerical calculations [3]. At a gap of 

216π

mµ2.0  our results are about 10 

times larger for particles with radius of  and nm20 mµ1 , and by 4 orders of magnitude than for  

the particles with radius of mµ25 . Moreover, we have got a quite different distance dependence 

of the heat conductance : our data points show an increasing slope of the heat conductance 
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dependence at a lesser gap width, and vice versa in Ref. [3]. We believe that such a large 

discrepancy between our calculations and the theory [3] necessitates further investigation despite 

the authors have notified a good agreement of the theory [3] with experiment [6,7].  
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                                                              FIGURE CAPTIONS 

Fig.1 Two sphere configuration. 

 

Fig.2 Total heat conductance plotted as a function of gap. Both particles have radius of 10 nm. 

Line 1 shows DA, line 2 – DAA, line 3 – the sum of (24) and (19), line 4 – Eq.(19), line 5 –

classical black body limit, Eq.(26). 

 

Fig.3 The same as on Fig.2 for particles with radius of mµ1 . 

 

Fig.4  Total heat conductance as a function of gap for big particles with radius of mµ25 . Line 1 

–DA, line 2 –DAA, line 3 –Eq.(19), line 4 –Eq.(26). 
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FIGURE 4 
 
 

 


