INEQUALITIES FOR GRAM MATRICES AND THEIR APPLICATIONS TO REPRODUCING KERNEL HILBERT SPACES

Akira Yamada

Abstract

We prove elementary inequalities for the Gram matrices and their equality conditions. As an application we show that inequalities for the Gram determinants hold for general reproducing kernel Hilbert spaces.

1. Introduction

Recently, N. D. V. Nhan and D. T. Duc [3] have found interesting Gram determinant inequalities of the following form: For every $F_{i} \in \mathcal{H}_{K_{1}}$ and $G_{j} \in \mathcal{H}_{K_{2}}(i, j=$ $1, \ldots, n$), we have

$$
\operatorname{det}\left(\left\langle F_{i} G_{i}, F_{j} G_{j}\right\rangle_{\mathcal{H}_{K_{1} K_{2}}}\right)_{i, j=1}^{n} \leq C \operatorname{det}\left(\left\langle F_{i}, F_{j}\right\rangle_{\mathcal{H}_{K_{1}}}\left\langle G_{i}, G_{j}\right\rangle_{\mathcal{H}_{K_{2}}}\right)_{i, j=1}^{n},
$$

where C is a positive constant, and $\mathcal{H}_{K_{j}}$ is a reproducing kernel Hilbert space (RKHS) defined on a set E with the reproducing kernel $K_{j}(j=1,2)$. These inequalities may be considered as an extension of the well-known norm inequalities for RKHSs [4, Appendix 2]. They, however, proved the above inequalities only for some restricted type of RKHSs whose definitions are given concretely. Moreover, they did not give the equality conditions for these inequalities. The aim of this paper is to show that their inequalities hold for general RKHSs and that they are a direct consequence of the general theory of Hermitian matrices and the tensor product Hilbert space of RKHSs. For the theory of RKHSs, the reader is referred to [1, 4].

Let $G\left(x_{1}, \ldots, x_{n}\right)=\left(\left\langle x_{i}, x_{j}\right\rangle\right\rangle_{i, j=1}^{n}$ denote the Gram matrix of the vectors $\left\{x_{1}, \ldots\right.$, $\left.x_{n}\right\}$ in an inner product space. This is our main

[^0]Theorem 1.1. Let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator between inner product spaces H_{1} and H_{2}. Then, for every $x_{1}, \ldots, x_{n} \in H_{1}$, we have the following inequalities:

$$
\begin{align*}
G\left(T x_{1}, \ldots, T x_{n}\right) & \leq\|T\|^{2} G\left(x_{1}, \ldots, x_{n}\right) \tag{1}\\
\operatorname{det} G\left(T x_{1}, \ldots, T x_{n}\right) & \leq\|T\|^{2 n} \operatorname{det} G\left(x_{1}, \ldots, x_{n}\right) . \tag{2}
\end{align*}
$$

Equality occurs in the inequality (2) if and only if one of the following conditions holds:
(i) The set $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly dependent in H_{1}.
(ii) $T=0$.
(iii) The operator $T /\|T\|(T \neq 0)$ is an isometry on $\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$.

Also, equality occurs in (1) if and only if the above condition (ii) or (iii) holds.
Applying the above theorem to the tensor product Hilbert space of RKHSs (Theorem 3.1), we can immediately obtain all the Gram determinant inequalities proved in [3]. Furthermore, we also obtain the equality conditions for these inequalities.

2. PRoof of theorem 1.1

It is well-known that the Gram matrix is positive semidefinite. Similarly, we have, for $\left(\xi_{i}\right) \in \mathbb{C}^{n}$,

$$
\sum_{i, j=1}^{n} \xi_{i} \bar{\xi}_{j}\|T\|^{2}\left\langle x_{i}, x_{j}\right\rangle-\sum_{i, j=1}^{n} \xi_{i} \bar{\xi}_{j}\left\langle T x_{i}, T x_{j}\right\rangle=\|T\|^{2}\left\|\sum_{i=1}^{n} \xi_{i} x_{i}\right\|^{2}-\left\|T \sum_{i=1}^{n} \xi_{i} x_{i}\right\|^{2} \geq 0 .
$$

Thus, putting the Gram matrices as $A=\|T\|^{2} G\left(x_{1}, \ldots, x_{n}\right)$ and $B=G\left(T x_{1}, \ldots\right.$, $T x_{n}$), we see that $B \leq A$, so that the inequality (1) holds. Let us enumerate the eigenvalues of an $n \times n$ Hermitian matrix X as

$$
\lambda_{1}(X) \geq \lambda_{2}(X) \geq \cdots \geq \lambda_{n}(X)
$$

Then, by Weyl's monotonicity principle (cf. [2]) for eigenvalues of Hermitian matrices, we have $\lambda_{j}(B) \leq \lambda_{j}(A)(j=1, \ldots, n)$. Since the determinant of a matrix is the product of its eigenvalues, and since the matrices A and B are positive semidefinite, we obtain the inequality (2) immediately.

Next, we proceed to determine the equality condition for the inequality (2). It is well-known that the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly independent if and only if the Gram matrix $G\left(x_{1}, \ldots, x_{n}\right)$ is nonsingular. Thus, it is clear that, if one of the conditions (i), (ii) and (iii) holds, then equality holds in (2). Conversely, if equality holds in (2), we need only to show that (iii) holds by assuming that $T \neq 0$ and that $G\left(x_{1}, \ldots, x_{n}\right)$ is
nonsingular. We may assume without loss of generality that $\|T\|=1$. Then, since both Gram matrices are positive definite, we have $\lambda_{j}(A)=\lambda_{j}(B)(j=1, \ldots, n)$. Since $A-B \geq 0$ and

$$
\operatorname{tr}(A-B)=\sum_{j=1}^{n} \lambda_{j}(A)-\sum_{j=1}^{n} \lambda_{j}(B)=0
$$

we conclude that $A=B$. Therefore, T is an isometry on the subspace span $\left\{x_{1}, \ldots, x_{n}\right\}$, so we have proved that (iii) holds.

Similarly, it is easy to see that equality occurs in (1) if and only if the condition (ii) or (iii) holds.

3. Applications to RKHSs

Let $\mathcal{H}_{K_{j}}$ be a RKHS on a set E with the reproducing kernel $K_{j}(j=1,2)$. Then, their tensor product Hilbert space (direct product) $\mathcal{H}_{K_{1}} \otimes \mathcal{H}_{K_{2}}$ is a RKHS on $E \times E$ whose reproducing kernel is given by $\left(K_{1} \otimes K_{2}\right)\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=K_{1}\left(x, x^{\prime}\right) K_{2}\left(y, y^{\prime}\right)$. By setting $(f \otimes g)(x, y)=f(x) g(y)$, the linear span of the functions $\{f \otimes g: f \in$ $\left.\mathcal{H}_{K_{1}}, g \in \mathcal{H}_{K_{2}}\right\}$ in dense in $\mathcal{H}_{K_{1}} \otimes \mathcal{H}_{K_{2}}$. Also, we have an identity for the inner products (cf. [1, p. 357]):

$$
\left\langle f \otimes g, f^{\prime} \otimes g^{\prime}\right\rangle_{\mathcal{H}_{K_{1}} \otimes \mathcal{H}_{K_{2}}}=\left\langle f, f^{\prime}\right\rangle_{\mathcal{H}_{K_{1}}}\left\langle g, g^{\prime}\right\rangle_{\mathcal{H}_{K_{2}}}
$$

Let $\iota: E \rightarrow E \times E, \iota(x)=(x, x)$ be the diagonal embedding from the set E into $E \times E$. Then, the operator range of the linear map $T f=f \circ \iota$ defined on $\mathcal{H}_{K_{1}} \otimes \mathcal{H}_{K_{2}}$ is a RKHS on E with the reproducing kernel $K_{1} K_{2}$. Moreover, the induced operator $T: \mathcal{H}_{K_{1}} \otimes \mathcal{H}_{K_{2}} \rightarrow \mathcal{H}_{K_{1} K_{2}}$ is a contraction with $T(f \otimes g)=f g$ (cf. [1], [4], [5]):

$$
\|f g\|_{\mathcal{H}_{K_{1} K_{2}}} \leq\|f \otimes g\|_{\mathcal{H}_{K_{1}} \otimes \mathcal{H}_{K_{2}}}=\|f\|_{\mathcal{H}_{K_{1}}}\|g\|_{\mathcal{H}_{K_{2}}}
$$

Applying Theorem 1.1 to the contraction T, we obtain
Theorem 3.1. Let $\mathcal{H}_{K_{j}}$ be a RKHS on E with the reproducing kernel $K_{j}(j=1,2)$. Then, for any $F_{i} \in \mathcal{H}_{K_{1}}$ and $G_{j} \in \mathcal{H}_{K_{2}}(i, j=1, \ldots, n)$, we have

$$
\operatorname{det}\left(\left\langle F_{i} G_{i}, F_{j} G_{j}\right\rangle_{\mathcal{H}_{K_{1} K_{2}}}\right)_{i, j=1}^{n} \leq \operatorname{det}\left(\left\langle F_{i}, F_{j}\right\rangle_{\mathcal{H}_{K_{1}}}\left\langle G_{i}, G_{j}\right\rangle_{\mathcal{H}_{K_{2}}}\right)_{i, j=1}^{n}
$$

Equality holds in the above inequality if and only if one of the following conditions holds:
(i) $\left\{F_{i} \otimes G_{i}: i=1, \ldots, n\right\}$ is linearly dependent in $\mathcal{H}_{K_{1}} \otimes \mathcal{H}_{K_{2}}$, or
(ii) $\left\{F_{i} \otimes G_{i}: i=1, \ldots, n\right\} \subset\left(\mathcal{H}_{K_{1}} \otimes \mathcal{H}_{K_{2}}\right) \ominus \operatorname{ker} T$.

Proof. We need only to prove the equality condition. The operator $T: \mathcal{H}_{K_{1}} \otimes$ $\mathcal{H}_{K_{2}} \rightarrow \mathcal{H}_{K_{1} K_{2}}$ is a coisometry (i.e. the adjoint T^{*} is an isometry) by definition of the operator range. Hence, the subspace on which T is isometry is the orthogonal complement of $\operatorname{ker} T$. Thus, from Theorem 1.1 we easily conclude the equality conditions of Theorem 3.1.

From Theorem 3.1 we immediately obtain all the Gram determinant inequalities proved in [3].

References

1. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.
2. R. Bhatia, Matrix analysis, Graduate Texts in Mathematics, Vol. 169, Springer-Verlag, New York, 1997.
3. N. D. V. Nhan and D. T. Duc, Various inequalities in reproducing kernel Hilbert spaces, Taiwanese J. Math., to appear.
4. S. Saitoh, Integral transforms, reproducing kernels and their applications, Pitman Research Notes in Mathematics Series, Vol. 369, Longman, Harlow, 1997.
5. A. Yamada, Equality conditions for norm inequalities in reproducing kernel Hilbert spaces, Math. Inequal. Appl., 12 (2) (2009), 377-390.

Akira Yamada
Department of Mathematics
Tokyo Gakugei University
Koganei-shi, Tokyo 184-8501
Japan
E-mail: yamada@u-gakugei.ac.jp

[^0]: Received August 5, 2012, accepted August 13, 2012.
 Communicated by Ngai-Ching Wong.
 2010 Mathematics Subject Classification: Primary 46E22; Secondary 15A45.
 Key words and phrases: Gram matrices, Weyl's monotonicity principle, Gram determinant inequalities, Positive semidefinite matrices, Reproducing kernel Hilbert spaces.

