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INEQUALITIES FOR GRAM MATRICES AND THEIR APPLICATIONS TO
REPRODUCING KERNEL HILBERT SPACES

Akira Yamada

Abstract. We prove elementary inequalities for the Gram matrices and their
equality conditions. As an application we show that inequalities for the Gram
determinants hold for general reproducing kernel Hilbert spaces.

1. INTRODUCTION

Recently, N. D. V. Nhan and D. T. Duc [3] have found interestingGram determinant
inequalities of the following form: For every Fi ∈ HK1 and Gj ∈ HK2 (i, j =
1, . . . , n), we have

det(〈FiGi, FjGj〉HK1K2
)n
i,j=1 ≤ C det(〈Fi, Fj〉HK1

〈Gi, Gj〉HK2
)n
i,j=1,

where C is a positive constant, and HKj is a reproducing kernel Hilbert space (RKHS)
defined on a set E with the reproducing kernel Kj (j = 1, 2). These inequalities
may be considered as an extension of the well-known norm inequalities for RKHSs [4,
Appendix 2]. They, however, proved the above inequalities only for some restricted
type of RKHSs whose definitions are given concretely. Moreover, they did not give
the equality conditions for these inequalities. The aim of this paper is to show that
their inequalities hold for general RKHSs and that they are a direct consequence of the
general theory of Hermitian matrices and the tensor product Hilbert space of RKHSs.
For the theory of RKHSs, the reader is referred to [1, 4].
LetG(x1, . . . , xn) = (〈xi, xj〉)n

i,j=1 denote the Gram matrix of the vectors {x1, . . . ,
xn} in an inner product space. This is our main
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Theorem 1.1. Let T : H1 → H2 be a bounded linear operator between inner
product spaces H1 and H2. Then, for every x1, . . . , xn ∈ H1, we have the following
inequalities:

G(Tx1, . . . , Txn) ≤ ‖T‖2G(x1, . . . , xn),(1)

det G(Tx1, . . . , Txn) ≤ ‖T‖2n det G(x1, . . . , xn).(2)

Equality occurs in the inequality (2) if and only if one of the following conditions
holds:

(i) The set {x1, . . . , xn} is linearly dependent in H1.
(ii) T = 0.
(iii) The operator T/‖T‖ (T �= 0) is an isometry on span(x1, . . . , xn).

Also, equality occurs in (1) if and only if the above condition (ii) or (iii) holds.

Applying the above theorem to the tensor product Hilbert space of RKHSs (Theorem
3.1), we can immediately obtain all the Gram determinant inequalities proved in [3].
Furthermore, we also obtain the equality conditions for these inequalities.

2. PROOF OF THEOREM 1.1

It is well-known that the Gram matrix is positive semidefinite. Similarly, we have,
for (ξi) ∈ C

n,

n∑

i,j=1

ξiξ̄j‖T‖2〈xi, xj〉 −
n∑

i,j=1

ξiξ̄j〈Txi, Txj〉 = ‖T‖2‖
n∑

i=1

ξixi‖2 − ‖T
n∑

i=1

ξixi‖2 ≥ 0.

Thus, putting the Gram matrices as A = ‖T‖2G(x1, . . . , xn) and B = G(Tx1, . . . ,
Txn), we see that B ≤ A, so that the inequality (1) holds. Let us enumerate the
eigenvalues of an n × n Hermitian matrix X as

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

Then, by Weyl’s monotonicity principle (cf. [2]) for eigenvalues of Hermitian matrices,
we have λj(B) ≤ λj(A) (j = 1, . . . , n). Since the determinant of a matrix is the
product of its eigenvalues, and since the matrices A and B are positive semidefinite,
we obtain the inequality (2) immediately.
Next, we proceed to determine the equality condition for the inequality (2). It is

well-known that the set {x1, . . . , xn} is linearly independent if and only if the Gram
matrix G(x1, . . . , xn) is nonsingular. Thus, it is clear that, if one of the conditions (i),
(ii) and (iii) holds, then equality holds in (2). Conversely, if equality holds in (2), we
need only to show that (iii) holds by assuming that T �= 0 and that G(x1, . . . , xn) is
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nonsingular. We may assume without loss of generality that ‖T‖ = 1. Then, since both
Gram matrices are positive definite, we have λj(A) = λj(B) (j = 1, . . . , n). Since
A − B ≥ 0 and

tr(A− B) =
n∑

j=1

λj(A) −
n∑

j=1

λj(B) = 0,

we conclude thatA = B. Therefore, T is an isometry on the subspace span{x1, . . . , xn},
so we have proved that (iii) holds.
Similarly, it is easy to see that equality occurs in (1) if and only if the condition

(ii) or (iii) holds.

3. APPLICATIONS TO RKHSS

Let HKj be a RKHS on a set E with the reproducing kernel Kj (j = 1, 2). Then,
their tensor product Hilbert space (direct product) HK1 ⊗HK2 is a RKHS on E × E

whose reproducing kernel is given by (K1⊗K2)((x, y), (x′, y′)) = K1(x, x′)K2(y, y′).
By setting (f ⊗ g)(x, y) = f(x)g(y), the linear span of the functions {f ⊗ g : f ∈
HK1, g ∈ HK2} is dense in HK1 ⊗ HK2 . Also, we have an identity for the inner
products (cf. [1, p. 357]):

〈f ⊗ g, f ′ ⊗ g′〉HK1
⊗HK2

= 〈f, f ′〉HK1
〈g, g′〉HK2

.

Let ι : E → E × E , ι(x) = (x, x) be the diagonal embedding from the set E into
E×E . Then, the operator range of the linear map Tf = f ◦ ι defined on HK1 ⊗HK2

is a RKHS on E with the reproducing kernel K1K2. Moreover, the induced operator
T : HK1 ⊗HK2 → HK1K2 is a contraction with T (f ⊗ g) = fg (cf. [1], [4], [5]):

‖fg‖HK1K2
≤ ‖f ⊗ g‖HK1

⊗HK2
= ‖f‖HK1

‖g‖HK2
.

Applying Theorem 1.1 to the contraction T , we obtain

Theorem 3.1. LetHKj be a RKHS on E with the reproducing kernelKj (j = 1, 2).
Then, for any Fi ∈ HK1 and Gj ∈ HK2 (i, j = 1, . . . , n), we have

det(〈FiGi, FjGj〉HK1K2
)n
i,j=1 ≤ det(〈Fi, Fj〉HK1

〈Gi, Gj〉HK2
)n
i,j=1.

Equality holds in the above inequality if and only if one of the following conditions
holds:

(i) {Fi ⊗ Gi : i = 1, . . . , n} is linearly dependent in HK1 ⊗HK2 , or

(ii) {Fi ⊗ Gi : i = 1, . . . , n} ⊂ (HK1 ⊗HK2) 
 kerT .
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Proof. We need only to prove the equality condition. The operator T : HK1 ⊗
HK2 → HK1K2 is a coisometry (i.e. the adjoint T ∗ is an isometry) by definition of the
operator range. Hence, the subspace on which T is isometry is the orthogonal comple-
ment of kerT . Thus, from Theorem 1.1 we easily conclude the equality conditions of
Theorem 3.1.

From Theorem 3.1 we immediately obtain all the Gram determinant inequalities
proved in [3].
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