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Asbestos, Lung Cancers, and Mesotheliomas
From Molecular Approaches to Targeting Tumor Survival Pathways
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Fifteen years have passed since we published findings in the AJRCMB
demonstrating that induction of early response fos/jun proto-
oncogenes in rodent tracheal and mesothelial cells correlates with
fibrous geometry and pathogenicity of asbestos. Our study was the
first to suggest that the aberrant induction of signaling responses by
crocidoliteasbestosanderionite, a fibrouszeolitemineral associated
with the development of malignant mesotheliomas (MMs) in areas
of Turkey, led to altered gene expression. New data questioned the
widely held belief at that time that the carcinogenic effects of
asbestos in the development of lung cancer and MM were due to
genotoxic or mutagenic effects. Later studies by our group revealed
that proto-oncogene expression and several of the signaling path-
ways activated by asbestos were redox dependent, explaining why
antioxidants and antioxidant enzymes were elevated in lung and
pleura after exposure to asbestos and how they alleviated many of the
phenotypic and functional effects of asbestos in vitro or after inha-
lation. Since these original studies, our efforts have expanded to un-
derstand the interface between asbestos-induced redox-dependent
signal transduction cascades, the relationship between these path-
ways and cell fate, and the role of asbestos and cell interactions in
development of asbestos-associated diseases. Of considerable signif-
icance is the fact that the signal transduction pathways activated by
asbestos are also important in survival and chemoresistance of MMs
and lung cancers. An understanding of the pathogenic features of
asbestos fibers and dysregulation of signaling pathways allows strat-
egies for the prevention and therapy of asbestos-related diseases.
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Asbestos fibers are naturally occurring in rocks and soils and
consist of six distinct types. The amphibole types of asbestos
(crocidolite, amosite, anthophyllite, tremolite, and actinolite) are
rod-like and more durable in the body than the only serpentine
asbestos type, chrysotile (reviewed in Ref. 1). In the past,
exposure to asbestos fibers in unregulated workplaces has given
rise to pleural and lung fibrosis (asbestosis), lung cancer, and
pleural and peritoneal malignant mesothelioma (MM) (2–4).
Although not technically classified as ‘‘asbestos’’ fibers, exposure
to Libby amphibole transition fibers (5) and erionite fibers (6)

also have given rise to a spectrum of asbestos-associated diseases,
suggesting that certain durable long (. 5 mm) fibers1 may have
pathologic effects similar to those of asbestos. Asbestos may
be a tumor promoter or co-carcinogen in the induction of lung
cancers, as cigarette smoke appears to be a greater risk factor
than asbestos exposure in these tumors (reviewed in Ref. 7).
Moreover, the synergistic effects of asbestos and smoking in
some cohorts implies that asbestos does not act in a manner
similar to that of polycyclic aromatic hydrocarbons or other
chemical carcinogens in cigarette smoke that are generally
metabolized and/or interact directly with DNA.

The advent of new molecular technologies has fostered an
explosion of knowledge, leading to new understandings of
biological processes that initiate lung injury and repair or the
development of different diseases by asbestos. Nonetheless, we
still lack an understanding of the precise nature of all of the
cellular targets that are perturbed by different types of asbestos
fibers, how asbestos changes the intensity and duration of
signaling through specific pathways, and how information from
multiple signaling events is parsed and filtered to dictate phe-
notypic and functional endpoints in different cell types. As
asbestos-related diseases have long latency periods, poor prog-
noses, and limited effective therapies, our focus remains on
understanding the basic mechanisms of toxicity and lung or
pleural remodeling that will inform translational studies on
disease intervention and treatment.

OXIDANTS AND ASBESTOS

By the early 1990s, oxidants had been implicated in the activity
of crocidolite and amosite, the most potent types of asbestos
that are associated with the causation of MMs (reviewed in Ref.
8). The high iron content of these asbestos types appeared to be
critical to the genesis of reactive oxygen species (ROS), in-
cluding the highly DNA-damaging hydroxyl radical (OH�). In
addition, it has been demonstrated that H2O2, the superoxide
radical (O2

2), and reactive nitrogren species are released from
several types of asbestos fibers in cell-free solutions or in cells,
especially alveolar or peritoneal macrophages, after phagocy-

1Note that fibers are defined by U.S. regulatory agencies as structures with

a greater than 3:1 length to diameter ratio as opposed to nonfibrous particles

(, 3:1). This definition is controversial within the mineralogic and geologic

scientific community.

CLINICAL RELEVANCE

This review will help guide individuals in research on fiber
carcinogenesis. The article also outlines therapeutic ap-
proaches for treatment of asbestos-related diseases that
have been developed in the recent past.
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tosis of asbestos fibers in vitro or after inhalation. These reactive
species may initiate cell signaling events both externally and
within cells and act in a dose–response fashion to induce cell
proliferation and injury (Figure 1).

Asbestos also causes up-regulation of antioxidant enzymes
such as manganese-containing superoxide dismutase (MnSOD,
SOD2), catalase, and heme oxygenase in MMs and rodent lungs
(9–12). Moreover, polyethylene glycol–conjugated catalase
inhibited lung injury, inflammation, and asbestosis in a rodent
inhalation model (13). At high cytotoxic concentrations, asbes-
tos fibers caused formation of the pre-mutagenic lesion, 8-
oxoguanine, that was rapidly repaired and/or released into cell
medium by dying mesothelial cells (14, 15). While genomic
alterations are an essential feature in the causation of cancer,
large chromosomal deletions by asbestos appear to be clasto-
genic and associated with cell death (16).

We first showed that asbestos fibers, either directly or via
production of reactive oxygen or nitrogen species, induced cell
signaling events, including the production of diacylglycerol,
hydrolysis of phosphatidylinositol, and activation of protein
kinase C at the plasma membrane (17–19). These events were
linked to increased expression of ornithine decarboxylase
(ODC) (20), the enzyme responsible for the rate-limiting step
in the synthesis of polyamines, a crucial step in cell proliferation
induced by growth factors and phorbol ester tumor promoters.
These studies led to speculation that the aberrant activation of
diverse signaling cascades may be critical in asbestos-associated
carcinogenic responses.

Fos/Jun, ACTIVATOR PROTEIN-1, AND ASBESTOS

The first evidence showing that asbestos fibers exert regulatory
effects linked to aberrant transcriptional responses, cell pro-

liferation, and cell transformation emanated from studies in
which asbestos fibers caused induction of c-fos and c-jun proto-
oncogene mRNA in pleural mesothelial cells and tracheo-
bronchial epithelial cells in a dose–response fashion (21). This
work also showed elevation of c-Fos and c-Jun proteins and
increases in the ability of the activator protein-1 (AP-1)
transcription factor to bind to DNA. AP-1 is composed of the
Fos and Jun families of transcription factors. Whereas Jun
members are capable of forming homodimers, binding DNA,
and regulating transcription, all Fos family members (Fos,
FosB, and Fra1) must form heterodimers with Jun family
members (c-Jun, JunB, and JunD) to bind DNA. The activities
of specific AP-1 complexes in gene expression have been
studied extensively, but until the advent of chromatin immuno-
precipitation techniques, it was not possible to document the
interactions of various AP-1 subunits with specific gene pro-
moters in the cell. Linking increased expression of AP-1 sub-
units such as Fos and Jun to specific endpoints remains a
challenge, but increased expression of c-Jun by asbestos or
hydrogen peroxide (H2O2) is critical to proliferation and trans-
formation of tracheal epithelial cells (22). In contrast to H2O2

or the phorbol ester tumor promoter, 12-0-tetradecanoyl-13-
phorbol acetate (TPA), which caused transient increases in
c-fos and c-jun mRNA expression, the effects of asbestos were
protracted, lasting for at least 24 hours. Most importantly, per-
sistent induction of proto-oncogenes was dose related, occurred
at subcytotoxic concentrations of asbestos fibers, and was most
striking with crocidolite as compared with chrysotile asbestos at
similar concentrations.

Our study published in the AJRCMB (Red Journal) (20)
demonstrated that the ability of asbestos fibers to induce
expression of c-fos and c-jun proto-oncogenes correlated with
the carcinogenic potential of fibers, as riebeckite particles,

Figure 1. Asbestos has pleiotropic effects

on cell signaling pathways. Either through

direct interactions with receptors or via

the genesis of reactive oxygen species
(ROS), asbestos activates cell signaling

pathways that regulate gene expression

and cell fate. Direct interaction with the
epidermal growth factor receptor (EGFR)

activates the Ras-Raf-extracellular signal–

regulated kinase (ERK) pathway,

which controls expression and transcrip-
tional activity of the Fos family members

of the activator protein-1 (AP-1) transcrip-

tion factor. Asbestos also regulates c-Jun

through activation of ERK5. Through AP-
1, ERK1/2 and ERK5 govern outcomes

that include cell proliferation, cell migra-

tion, and aspects of neoplastic transfor-
mation. Activation of the phosphoinositol-

3 kinase (PI3K)/AKT pathway promotes

cell survival through NF-kB. Recent work

also indicates that asbestos fibers or ROS
activate signaling through the TNF recep-

tor. The diverse phenotypic outcomes of

asbestos exposure depend on fiber type,

fiber dose, and the signaling pathways
resident in specific cell types. Moreover,

the physical properties of asbestos tend to

promote robust and persistent activation

of signaling through ERK and other redox-
responsive kinase cascades.
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which have the same chemical composition as crocidolite
asbestos, were less potent in their ability to induce c-fos and
c-jun expression, AP-1 DNA binding activity, and elevations in
odc mRNA. Moreover, studies using N-acetyl-cysteine (NAC)
(23) and protein kinase C inhibitors (19) clearly suggested that
oxidative stress and kinase signaling were involved in asbestos-
induced expression of c-fos and c-jun and in proliferative
responses (23). Since crocidolite asbestos fibers are capable of
inducing cell proliferation, cell cycle arrest, and apoptosis in
various populations of mesothelial cells (24) and lung epithelial
cells (25), presumably due to initial injury followed by compen-
satory proliferation of surrounding cells, our next goals were to
identify the specific signaling cascades activated by asbestos
fibers and how these are initiated. Moreover, we attempted to
link specific signaling cascades to phenotypic endpoints such as
proliferation, apoptosis, or cell transformation, and to determine
critical changes in gene expression important in cell responses.

ASBESTOS FIBERS ACTIVATE THE EPIDERMAL GROWTH
FACTOR RECEPTOR AND EXTRACELLULAR
SIGNAL–REGULATED KINASES

The epidermal growth factor (EGF) receptor (EGFR) (HER)
family of transmembrane proteins occurs on human mesothelial
and lung epithelial cells, and many ligands (transforming growth
factor-a, amphiregulin, heparin-binding EGF, and epiregulin)
act on these receptors in a paracrine or autocrine fashion. The
EGFR (HER1) can be phosphorylated (activated) by certain
mutations, G protein–coupled receptors, cytokine receptors,
and integrins (26–28). Through various downstream pathways,
the EGFR plays a central role in survival, motility, attachment,
and cell transformation.

We first demonstrated that the asbestos fibers, chrysotile and
crocidolite, but not their nonfibrous analogs, antigorite and
riebeckite, activated the EGFR in mesothelial cells, an event
linked to activation of the downstream extracellular signal-
regulated kinases (ERKs) (i.e., ERK1/2) (29). Since ERK1/2
regulates in part the transcriptional activity of c-fos, and both
asbestos-induced c-fos and c-jun mRNA levels in distal bron-
chiolar epithelium are reduced in EGFR-null mice (30), these
studies provide a link between activation of EGFR, ERK1/2,
and AP-1–related gene expression. Crocidolite also caused up-
regulation of EGFR mRNA and protein in mesothelial cells
(31), suggesting a positive-feedback pathway that was later
shown to be important in induction of matrix metalloprotei-
nases by asbestos in lung epithelial cells (32). Others have
demonstrated that phosphorylation of the EGFR occurs with
other types of carcinogenic fibers and may be related to the
generation of oxidants after incomplete phagocytosis of long
fibers (33). Using an antibody specific to the external domain of
the EGFR, we also showed using multi-fluorescence approaches
that long (. 20 mm) crocidolite asbestos fibers deposited on
the cell surface of immortalized human (MET5A) mesothelial
cells were physically associated with the EGFR, suggesting that
long fibers might cause dimerization of the EGFR (34). That
EGFR phosphorylation by crocidolite asbestos was causally linked
to transactivation of ERKs 1 and 2 was shown using a small
molecule inhibitor of EGFR phosphorylation (AG1478) (25, 29,
35). However, asbestos-induced ERK 5 (also called Big MAP
Kinase or BMK) phosphorylation was unaffected by pretreat-
ment with AG1478, suggesting an EGFR-independent mecha-
nism of ERK 5 activation in lung epithelial cells (35).

The ERK family of serine-threonine kinases also regulate
expression of different members of the fos/jun family (and other
genes) and appear to have different roles in transformation,
proliferation, and cell motility (reviewed in Ref. 36). Because

increased amounts of phosphorylated ERK1/2 protein are
observed in small airway epithelial cells after inhalation of
crocidolite asbestos (37, 38), and asbestos-induced proliferation
of these cells in transgenic mice with a dominant-negative
MEK1 construct linked to the CC10 promoter is curtailed
(39), we have focused on this group of mitogen-activated
protein kinases (MAPK). In lung epithelial cells, activation
of ERK1/2 is required for expression of cyclin D1 and cell
proliferation in response to serum growth factors (40). Oxidants
prolong signaling through ERK1/2, which stabilizes c-Fos and
induces cell cycle arrest by preventing the expression of cyclin
D1. These observations supported earlier work showing that
increased expression of c-Fos in response to activation of EGFR
by asbestos is associated with apoptosis in mesothelial cells
(31). Interestingly, ERK1/2-dependent stabilization of c-Fos by
oxidative stress prevents expression of cyclin D1 by Fra-1 (40),
which is expressed in a more protracted manner after initial
elevations in c-Jun and c-Fos by asbestos. Fra-1 is required for
AP-1–mediated mesothelial cell growth, migration, and trans-
formation (41). Studies using an siRNA approach to knock
down Fra-1 in rodent MM cells support the hypothesis that an
ERK1/2-linked Fra-1 pathway is associated with expression of
genes (c-met, cd44) (42) proven critical to invasion of human
MMs (43). Recently, we have examined several significant in-
creases and decreases in gene expression using global gene
analysis (Affymetrix microarrays) on telomerase-immortalized
human mesothelial cells (LP9/TERT-1) in vitro after exposures
to equal surface area concentrations of crocidolite asbestos
fibers or nonfibrous, nonmesotheliomagenic particles (platy talc,
fine titanium dioxide, and glass beads) (44). In contrast to non-
fibrous materials that caused no or transient expression of a few
genes, asbestos fibers caused changes in expression of several
AP-1–regulated and other genes linked to cell signaling, apo-
ptosis, cell proliferation, and protein metabolism, and immune
responses—alterations that increased with concentration and
time of exposure. These studies suggest that gene profiling in
target cells of lung disease may be predictive of the pathogenic
potential of inhaled fibers or particles.

ASBESTOS ACTIVATES NF-kB AND THE
TNF-a RECEPTOR

Shortly after our discovery that asbestos fibers stimulated an
ERK/AP-1 pathway, we reported that another transcription
factor, NF-kB, was activated by asbestos fibers in tracheal
epithelial cells in vitro, mesothelial cells in vitro, and lungs of
rats after inhalation of asbestos (45, 46). Moreover, asbestos
fibers caused transcriptional activation of a number of NF-kB–
dependent genes, including c-myc, another proto-oncogene
through an oxidant-dependent pathway (45). Since activation
of NF-kB is critical in up-regulating the expression of many
genes linked to proliferation, apoptosis, and chemokine/cyto-
kine production, it is undoubtedly a critical transcription factor
in inflammation and responses in target cells of asbestos-related
diseases. For example, we have recently shown that frustrated
phagocytosis of asbestos fibers by human monocytes activates
the NALP3 inflammasome that produces active IL-1b (47), an
interleukin that binds to the IL-1 receptor 1. Upon ligand bind-
ing, intracellular adapters that include TNF receptor (TNFR)-
associated factor 6 (TRAF6) are recruited to IL-1 receptor 1,
potentially activating both the NF-kB and AP-1 pathways (48).

Alveolar macrophages are an early hallmark of inhalation
of asbestos fibers. In response to asbestos fibers macrophages
release TNF-a, which either binds to the TNFR or cooperatively
interacts with oxidants to activate a Ras/MAPK/NF-kB path-
way in lung epithelial cells (49). TNF-a causes both apoptosis
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and compensatory proliferation in mesothelial cells (24). The
fact that IL-1b and TNF-a contribute to mesothelial cell trans-
formation (50) suggests that their importance in multiple stages
of tumorigenesis may be due in part to activation of AP-1– or
NF-kB–dependent gene expression. Moreover, it has recently
been reported that NF-kB is a constitutive survival factor in
human mesothelial cells exposed to asbestos and is up-regulated
in MM cells (51). Based on the observation that Bortezomib
inhibits NF-kB activity in MMs and increases apoptosis, a phase
II clinical trial has begun in Europe.

PRO-APOPTOTIC MECHANISMS OF ASBESTOS

In a number of in vitro models, asbestos fibers cause cell se-
nescence, lytic cell death and apoptosis, primarily due to
generation of ROS and/or physical interaction of fibers with
the plasma membrane and cellular organelles. The induction of
apoptosis by asbestos, an event that can lead to compensatory
cell proliferation, and the importance of apoptosis in therapeu-
tic approaches for eradication of MM and lung cancer cells have
been widely studied and appear multi-faceted. For example,
several pathways including: (1) an intrinsic or mitochondria-
regulated pathway that may be p53 or protein kinase C depen-
dent (52–54); (2) extrinsic pathways induced by death-receptor
ligands such as TNF-a or FasL (55); and (3) cell signaling via
AKT, prolonged activation of ERKs, and other MAPKs (40,
56–58) have been documented by asbestos and chemotherapeu-
tic drugs in mesothelial cells, MM cells, and lung epithelial cells
in vitro. In these studies, oxidative stress appears to be a central
mechanism in the induction of apoptotic pathways triggered by
asbestos fibers.

FUTURE GOALS AND TRANSLATIONAL APPROACHES
TO INHIBIT ASBESTOS-INDUCED CELL SIGNALING
PATHWAYS IN MMs

MMs are chemoresistant tumors with a poor prognosis and
a long latency period that may be 30 or 40 years from initial
exposure to asbestos. The fact that ERK activation occurs early
after inhalation of asbestos and may escalate during the de-
velopment of MM to instigate preneoplastic events, such as
hyperplasia, motility/invasion, and tumor homeostasis, makes it
an important target for tumor prevention and therapy. Since
activation of ERK1/2 is increased endogenously in human MM
tissues (59), and dysregulation of the Ras/Raf/MEK/ERK cas-
cade occurs in many cancers, a variety of synthetic MEK and
tyrosine kinase inhibitors may be useful in multi-drug thera-
peutic regimens. For example, we have recently shown that
ERK 1/2 governs cell survival in lung epithelial cells via deg-
radation of the pro-apoptotic, BH3-only protein, BimEL (58),
which antagonizes the pro-survival Bcl-2 family member, Mcl-1,
an effective target of a BH3 mimetic in B-RAF mutant human
tumors (60). In these latter studies, use of a MEK inhibitor and
the BH3 mimetic, ABT-737, caused synergistic effects on apo-
ptosis and antitumor activity (60). Recent studies using small
molecule inhibitors also link inhibition of ERK 1 and 2 to down-
regulation of P-glycoprotein, the multidrug resistance gene 1
(mdr1) gene product (61). Moreover, it has been documented
that EGFR-mediated activation of ERK 1 and 2 results in in-
creased ABCG2 expression (breast cancer resistance protein,
BCRP) and chemoresistance to the ABCG2 substrates, mitox-
antrone and topotecan (62). Thus, activation of an EGFR-
dependent ERK pathway also may be directly related to
chemoresistance of MMs.

The redox-dependent signaling pathways instigated by as-
bestos or inflammation may also be critical players in MM.

Protein oxidation transiently inactivates protein tyrosine phos-
phatase 1B (PTB1B) and the lipid phosphatase PTEN, which
counteract signaling through the EGFR and the phosphoinsitol-
3 kinase (PI3K) pathways, respectively. The PI3K/AKT (pro-
tein kinase B) pathway is frequently activated in MM and
predicts sensitivity to certain therapeutics (56, 57). Moreover,
a PI3K/MEK5/Fra-1 pathway governs proliferation by hepato-
cyte growth factor (HGF), that is, scatter factor, in human MMs
(63). The fact that MMs exhibit features of ‘‘reactive-oxygen
driven tumors,’’ including universal loss of the cyclin-dependent
kinase inhibitor p16INK4A, activation of ERK1/2 and AKT, and
activation of NF-kB survival pathways (64), suggests that
targeting ROS production or metabolism may also emerge as
an important therapeutic strategy in MMs.

As the EGFR inhibitor, Iressa, has proven ineffective in
single-agent MM clinical trials, presumably because only 60%
of patients with MMs express a functional EGFR receptor (65),
other pathways to abrogate ERK/AP-1 and PI3K/AKT survival
pathways initiated by asbestos and important in MM survival or
chemoresistance may be merited. Crocidolite fibers are endo-
cytosed in a process involving avb5 integrin receptors in pleural
mesothelial cells (66, 67). Use of an integrin avb5 blocking
monoclonal antibody, P1F6, reduces internalization of crocido-
lite fibers in lung carcinoma cells and is linked to depletion of
cellular glutathione and increased oxidant stress (68). Integrin-
mediated cell adhesion regulates gene expression via activation
of transcription factors, including AP-1, through integrin-linked
kinase (ILK), a serine-threonine protein kinase that interacts
directly with the cytoplasmic domain of the b1/3 integrin sub-
units. ILK phosphorylation stimulates AP-1 transactivation via
glycogen synthase kinase-3 (GSK-3) and subsequent regulation
of c-Jun–DNA interactions (69). ILK is also an upstream
effector of the PI3K-dependent regulation of AKT and is over-
expressed in a number of cancers, including MMs (70, 71).
Moreover, ILK expression in skin is regulated by erbB-2,
a member of the EGFR family (72). A new ILK inhibitor,
QLT0267, prevents EGF-induced phosphorylation of AKT and
tumorigenicity (73), suggesting ILK as a potential therapeutic
target. However, recent studies have linked ILK to the epithe-
lial-mesenchymal transition in human ovarian carcinoma (74)
and hepatoma cells (75). The latter studies showed that mesen-
chymal cell lines as opposed to epithelioid lines were more
problematic in terms of both their prognosis and resistance
to EGFR inhibitors. In addition, increased AKT activity was
linked to increased activation of ILK that was validated with
use of kinase-inactive ILK mutant lines.

CLINICAL SIGNIFICANCE

Studies above suggest that ILK is a novel target to overcome
tumor resistance to EGFR inhibitors such as erlotinib (Tarceva),
gefitimib (Iressa), and cetuximab. In a phase II clinical study
in 63 patients with MM, erlotinib alone was ineffective in
terms of median overall survival time, despite overexpression
of EGFR in 75% of tumors, and immunohistochemical studies
revealed activation of ERK and PI3K/AKT pathways in tumors,
suggesting the importance of combination therapy to eradicate
these survival pathways (76). Based on observations that vas-
cular endothelial growth factor (VEGF) is produced by MM
and other tumor cells, playing a critical role in establishment
and maintenance of tumors, chemotherapeutic approaches using
erlotinib and Bevacizumab, a humanized anti-VEGF mono-
clonal antibody, have been evaluated in phase II clinical studies
in patients with recurrent or refractory non–small cell lung
cancer (NSCLC) (77) and in previously treated patients with
MM (78). Although the combination of drugs was tolerated
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reasonably in patients in both studies, and both progression-free
and overall survival were increased in patients with NSCLC
in comparison to use of either agent alone, no evidence of a
favorable radiographic response was observed in patients with
MM. These observations might be critical to both prevention
and early treatment of asbestos-induced lung cancers and MMs.

CONCLUSIONS

Asbestos fibers initiate a number of signaling and survival path-
ways in mesothelial cells and lung epithelial cells, target cells of
MMs and lung cancers (Figure 1). These same pathways are
often up-regulated in MMs, where they contribute to tumor
development, homeostasis, and resistance to chemotherapy.

These pathways may be activated by direct interaction of
asbestos fibers with receptors on the cell surface and interaction
with integrins or via elaboration of ROS generated catalytically
on the fiber surface or after incomplete phagocytosis. Inflam-
mation and interaction of asbestos fibers with other cell types
such as macrophages may also play a role in cytokine elabora-
tion and up-regulation of these pathways (47).

No single modality therapy has proven effective in the cure
of MMs or lung cancers, presumably because of the multi-
plicity of survival and chemoresistance pathways in these
tumors.

Small molecule inhibitors of EGFR, ERKs, and other kinases
have been developed for cancer therapy. However, only a frac-
tion of patients with lung cancers or MMs have EGFR muta-
tions and/or are EGFR-dependent for growth and respond
clinically to these agents. Other targets and approaches to
circumvent crosstalk and redundancy between signaling path-
ways important in tumor cell survival and chemoresistance
should be explored, especially because MMs associated with
asbestos and other fibrous naturally occurring minerals (Libby
amphibole, erionite) are still developing in the United States
and other countries from past unregulated exposures.
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