
Centennial Review

Pathogenesis of Lung Cancer
100 Year Report

York E. Miller

Denver Veterans Affairs Medical Center, University of Colorado at Denver and Health Sciences Center, Denver, Colorado

Over the past 100 years, our understanding of the pathogenesis of
lung cancer has advanced impressively. Environmental carcinogens
and a gene locus determining susceptibility have been identified.
The pathology of lung cancer has been classified into categories
with major clinical implications. The cellular and molecular genetic
changes underlying lung cancer have become better understood
over the past 25 years, but the stepwise progression of respiratory
epithelium from normal to neoplastic is not yet well demarcated,
limiting abilities to advance early detection and chemoprevention.
The translation of improved understanding of dominant signal
transduction pathways in lung cancer to rationally designed thera-
peutic strategies has had recent successes, demonstrating a proof
of principle for targeted therapy in lung cancer. Improvement in
overall patient outcomes has been stubbornly slow and will require
concerted efforts.

In the 1912 edition of his classic textbook of medicine, William
Osler stated that “primary tumors of the lung are rare.” Lung
cancer is now the most common cause of cancer death in both
men and women in the United States and is the leading cause
of cancer death overall in the world, with over 1,000,000 deaths
occurring yearly (1).

Etiology

A century ago, one occupational cause of lung cancer was known.
An association between lung cancer and work in the Schneeberg
mines in Germany was described by Harting and Hesse in 1879
(2). Subsequently, high levels of radon gas were found in the
mines and an etiologic connection between radioactive gas expo-
sure and lung carcinogenesis was proposed early in the twentieth
century.

Tobacco was used for centuries before the modern epidemic
of lung cancer occurred. However, with the development of
machines for the commercial production of cigarettes in the late
nineteenth century, tobacco products became more widely and
intensively used. Tobacco smoke was suspected as causing lung
cancer as early as the late 1920s, when physicians began seeing
increasing numbers of patients with this heretofore rare disease
and noted that nearly all were cigarette smokers. Muller reported
a case-control study implicating tobacco smoke in causing lung
cancer in Germany in 1940, but the message was largely lost as
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the medical community was distracted by the larger disaster of
World War II, as reviewed by Muller and by Witschi (3, 4). In
1950, several case-control studies were published, all showing
an association between cigarette smoking and lung cancer (5, 6).
A number of studies have demonstrated that risk for lung cancer
decreases with smoking cessation, most recently and elegantly
described in the Lung Health Study, where the efficacy of smok-
ing cessation interventions in decreasing lung cancer deaths was
demonstrated in a prospective, controlled trial (7).

In 1943, the German scientific consensus was that asbestos
exposure caused lung cancer. Experiments performed by the
asbestos industry showed that asbestos exposure caused lung
tumors in mice, but were unpublished (8). In 1955, Doll published
a landmark manuscript demonstrating a highly persuasive associ-
ation between heavy asbestos exposure and lung cancer (9).
Similar to tobacco, there was a long delay between the documen-
tation of the etiologic effect of asbestos in lung carcinogenesis
and implementation of policies to protect the public. Additional
industrial and environmental exposures, including heavy metals
and petrochemicals, causing lung cancer have been described.

Viral causation of lung cancer has been intermittently consid-
ered. Bronchioloalveolar carcinoma in sheep is transmitted by
a retrovirus, but no studies in human lung cancer have supported
a retroviral etiology (10). There is recent evidence supporting
human papilloma viruses as possibly contributing to lung cancer,
especially in never-smokers from Pacific Rim countries (11, 12).

Different carcinogens give rise to specific mutations (i.e., tran-
sitions versus transversions). Thus, sequence analysis of the
mutational spectrum of target genes, such as p53, in different
populations can be informative regarding the probable culprit
carcinogen in that population. This approach to determining
etiology has been termed molecular epidemiology or molecular
archeology and has been instrumental in providing additional
support for tobacco smoke as a major etiology of lung cancer
(13–15).

A number of reports suggest increasing numbers of lung
cancer cases in never-smokers, particularly females from Asia
(16). This is particularly alarming and mandates aggressive inves-
tigation, including both standard and molecular epidemiology,
to determine if new etiologies for lung cancer are emerging.

Pathologic Classification

The distinction between SCLC and NSCLC is critical, both clini-
cally and in terms of tumor genetics and biology. Small cell lung
cancer (SCLC) was first described as a tumor of the bronchus,
as opposed to a round cell sarcoma, by Barnard in 1926 (17).
Azzopardi further refined the pathologic description in 1959
and Watson and Berg described some of the distinctive clinical
features in 1962 (18, 19). The World Health Organization
(WHO) and International Association for the Study of Lung
Cancer (IASLC) have sponsored workshops to develop stan-
dardized morphologic classifications of lung cancer and SCLC
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subtypes (20, 21). Although the subtypes of SCLC are not clini-
cally useful in determining therapy, the recognition that mixed
tumors containing two or more elements of SCLC, adenocarci-
noma, or squamous cell carcinoma has promoted the concept
that the major forms of lung cancer are closely related, perhaps
arising from a common stem cell.

Genetic Susceptibility

Mice develop pulmonary adenomas, either spontaneously or in
response to carcinogens, that progress to adenocarcinomas in a
strain-dependent fashion (22). This strain difference in suscepti-
bility to lung tumors has been used to map murine pulmonary
adenoma susceptibility and resistance genes. To date, murine
lung tumor susceptibility genes have not lead to the identification
of similar susceptibility genes in humans.

An inherited genetic susceptibility to lung cancer in humans
was first suggested in the early 1960s (23). More recently, family
history of lung cancer has been confirmed as a strong risk factor
for the development of lung cancer (24). Segregation analysis
supported the presence of a highly penetrant autosomal gene
determining genetic susceptibility to lung cancer (25). In the
early 1990s, discussions among the National Cancer Institute
funded Specialized Programs of Excellence (SPORE) in Lung
Cancer lead to a cooperative initiative (the Genetic Epidemiol-
ogy of Lung Cancer Consortium) to attempt to identify lung
cancer susceptibility genes by linkage. This has been a daunting
task, due to the difficulties in obtaining DNA from cases, most
of whom are deceased. In 2004, a locus on chromosome 6q23–25
was reported as conferring lung cancer susceptibility among fam-
ilies with multiple members affected by lung or head and neck
cancer (26). Of great interest, in carriers even a small exposure
to tobacco smoke greatly increases risk for lung cancer. The
identity of this gene is currently a topic of intense research
interest.

Groups used association studies to assess various candidate
genes including those encoding enzymes that either activate or
inactivate carcinogens found in tobacco smoke. The evidence is
strongest for CYP1A1 polymorphisms and GST mu null and
has been recently reviewed (27).

The inherited susceptibility for developing addiction to nico-
tine is potentially the most important genetic determinant of
lung cancer development. This area is being actively investigated,
primarily through association studies (28–31).

Chronic obstructive pulmonary disease (COPD) and lung
cancer are highly associated, beyond what would be expected
from smoking history alone (32, 33). Cohen and colleagues dem-
onstrated familial aggregation of these two disorders in 1977,
but common susceptibility genes remain to be identified (34).

CELLULAR AND MOLECULAR BIOLOGY

Cell Lines

Before the development of stable cell lines derived from human
lung carcinomas, cellular and molecular biology of lung cancer
progressed slowly. A few lung cancer cell lines were established
in the 1960s. An SCLC cell line was developed and reported in
1977 to have neuroendocrine secretory granules and secrete
vasopressin into the culture media (35). Investigators at the NCI-
Navy Medical Oncology Branch developed serum-free media
that support growth of both SCLC and NSCLC cell lines and
established � 300 such cell lines that have been invaluable tools
for the analysis of lung cancer cell and molecular biology (36–38).

One early (1979) attempt at unravelling the genetic basis of
lung cancer biology was a somatic cell genetic approach in which
human lung cancer � mouse somatic cell hybrids were analyzed
in a manner similar to the classic studies of Harris (39, 40). Specific

human chromosomes associated with agarose clonability or tu-
morigenicity in nude mice were not identified. As molecular
biology developed, however, there was more success in under-
standing the molecular basis of tumor characteristics. Gene am-
plification of dihydrofolate reductase, as denoted by the presence
of double minute chromosomes, was correlated with sensitivity
to methotrexate, in a study that presages the current ability to
define sensitivity to epidermal growth factor receptor tyrosine
kinase inhibitors (EGFR TKIs) (41).

The Chromosome 3p Deletion in Lung Cancer

Chromosomal alterations were critical in the discovery of onco-
genes and tumor suppressor genes. In the early 1970s, leukemia-
and lymphoma-specific translocations were identified, with sub-
sequent identification of dominant oncogenes at the translocation
breakpoints in the early 1980s (42, 43). Knudson published his
seminal two-hit hypothesis regarding familial retinoblastoma in
1971. Subsequently, cytogenetic and loss of heterozygosity
(LOH) analysis confirmed Knudson’s hypothesis, and the Rb
gene was cloned in 1986 (44, 45). Thus, when Whang-Peng re-
ported, in 1982, that a chromosome 3p14–23 deletion was fre-
quent in the common tumor SCLC, investigators thought that
a major breakthrough was imminent (46). Initially, other groups
were not able to replicate Whang-Peng’s finding and the pres-
ence of the deletion remained controversial. Several groups ap-
plied the new molecular technique of LOH analysis on Southern
blots to confirm the presence of the 3p deletion in SCLC (47, 48).
Most surprising, however, was the report by Kok that both SCLC
and NSCLC exhibit LOH, again demonstrating unexpected simi-
larities shared by all common histologies of lung cancer (49). The
identification of a lung cancer–specific deletion initially seemed
to be a providential clue to the identification of a lung cancer
tumor suppressor gene. The experimental approach was simple:
identify genes within the deleted region, assay their expression in
lung cancer cell lines, and those that were inactivated would be
candidate tumor suppressors. Several such genes were identified,
but lacked any likely tumor suppressor function (50–52). With
time, it became apparent that the 3p deletion is quite large (likely
encoding � 1,000 genes), and that many of these are inactivated
by gene methylation or other mechanisms. Infrequently, lung
cancer cell lines exhibit homozygous deletions that are signifi-
cantly smaller than the larger regions demonstrating simple LOH.
These have been used to successfully restrict the numbers of
candidate genes for analysis. A number of chromosome 3p genes
that exhibit one or more characteristics consistent with tumor
suppressor gene function have been identified and include FHIT,
CACNA2D2, 101F6, NPRL2, RASSF1A, SEMA3B, SEMA3F,
FUS1, DLEC1, RBSP3A, RBSP3B, and the retinoic acid recep-
tor � (RAR-�). A thorough review of the lung cancer chromo-
some 3p deletion has recently been published (53). The history
of investigation of the chromosome 3p deletion in lung cancer
ranges from older experimental approaches such as somatic cell
genetics to in silico gene identification made possible through
the elucidation of the human genome sequence.

With the application of techniques more sensitive than tradi-
tional cytogenetics, such as comparative genomic hybridization
and allelotyping, multiple additional chromosomal regions of
genetic loss and amplification have been identified (54, 55).

Tumor Suppressor Genes Associated with Familial Cancer
Syndromes and Lung Cancer

Known tumor suppressor genes associated with familial cancer
syndromes were rapidly investigated in lung cancer. The Rb and
p53 tumor suppressors were shown to be universally inactivated
in SCLC and p53 is also frequently inactivated in NSCLC
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(56, 57). Cyclin D1 is frequently overexpressed in NSCLC, with
inactivation of the cyclin-dependent kinase inhibitor p16, provid-
ing an alternative mechanism of overriding Rb function in regulat-
ing the cell cycle (58). The von Hippel Lindau gene encoded by
chromosome 3p24 frequently exhibits LOH, but second inacti-
vating mutations are quite rare (59).

Epigenetic Gene Inactivation in Lung Cancer

Baylin and colleagues in 1986 described hypermethylation of
the 5� region of the calcitonin promoter in SCLC and lymphomas,
whereas in medullary carcinoma of the thyroid, characterized
by high calcitonin production, the 5� region of the calcitonin gene
is hypomethylated (60). Subsequently, the same investigators
demonstrated that regions of chromosome 11p containing tumor
suppressor genes are hypermethylated, suggesting that hyper-
methylation is one mechanism of gene inactivation in human
tumors (61). Initial methylation studies were performed using
Southern blotting after digestion with methylation-specific re-
striction enzymes. Later, DNA sequencing after bisulfite treat-
ment was used, followed subsequently by a PCR-based test
detecting sequence differences between methylated and un-
methylated cytosines (62). The latter PCR test is truly a “needle
in the haystack” detection method that could potentially detect
early tumors in highly contaminated fluids such as sputum (63).

Application of Known Oncogenes to Lung Cancer Biology

Cooper first used the NIH 3T3 focus assay in 1982 to identify
the activated K-ras oncogene in lung cancer cell lines (64). Trans-
forming K-ras oncogene mutants have been determined to be
present in a significant portion of human adenocarcinomas of
the lung. Of interest, ras mutations are not found in SCLC and
transfection of SCLC cell lines with activated ras results in loss
of neuroendocrine characteristics (65).

The c-myc, N-myc, and L-myc oncogenes were found to be
amplified in some SCLC cell lines, and myc amplification was
correlated with a more aggressive variant SCLC morphology.
Most myc-amplified cell lines were established from recurrences
after chemotherapeutic treatment (66–69).

Autocrine Growth Factors

Expression of neuropeptides with growth factor activity was
described in SCLC in the more than 25 years ago (35, 70, 71).
Shortly after Sporn and Todaro’s description of the autocrine
growth factor concept, gastrin-releasing peptide was demon-
strated to be an autocrine growth factor in SCLC xenotransplants
into nude mice, providing the first validation of an autocrine
growth factor in a human tumor (72, 73). The anti-bombesin/
gastrin-releasing peptide monoclonal antibody used in these ex-
periments was subsequently assessed in a clinical trial; one sub-
ject had a short-lived complete response, but the outcome was
otherwise not encouraging (74). Bombesin-like peptides, likely
accompanied by other bioactive peptides, are elevated in the
bronchoalveolar lavage and urine of smokers and may play a
role in tumor promotion (75, 76).

Neuropeptide antagonists have been developed and tested
for potential therapeutic use. Those antagonists that are specific
for a single neuropeptide have not been active, but certain sub-
stance P and bradykinin derivatives exhibit a broad neuropeptide
antagonism and induce apoptosis of both SCLC and NSCLC
cell lines by a biased agonist mechanism (77–81). These are being
further evaluated for clinical use.

Multiple neuropeptides, growth factors, and chemokines are
either induced by tobacco smoking or are elevated in lung tumors
and cell lines. The autocrine and paracrine effects of these multi-
ple soluble factors in processes such as angiogenesis, tissue inva-

sion, homing of metastases, and immune modulation has been
reviewed (82).

Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors

Todaro and colleagues initially demonstrated autocrine produc-
tion of transforming growth factor-� by lung cancer cell lines
and its binding to the EGFR in 1980 (83). Several groups subse-
quently described the patterns of expression of EGFR by various
histologies of lung cancer. Mendelsohn developed monoclonal
antibodies to the EGFR and assessed their use in clinical trials
beginning in 1988 (84). Small molecule inhibitors of the EGFR
TK, gefitinib and erlotinib, have been developed and entered
into clinical trials since 2000 (85). In a substantial minority of
patients, these agents result in remarkable clinical responses,
whereas the majority of patients do not have a significant benefit.
Mutations affecting regulatory portions of the EGFR have been
identified in tumors responding to EGFR TKIs (86, 87). Clinical
features correlating with EGFR TKI response include never-
smoker status, female sex, East Asian ethnicity, and adenocarci-
noma histology (88). K-ras mutation and EGFR mutation appear
mutually exclusive. However, mutation is not perfectly pre-
dictive of EGFR TKI sensitivity. Amplification of the EGFR
gene, as well as increased expression by immunohistochemistry,
are also predictive and provide complementary information to
mutational analysis (89). Finally, the presence of phosphorylated
AKT, a downstream target of the EGFR pathway, but not phos-
phorylated MAPK, predicts EGFR TKI sensitivity (90). Gene
expression and proteomic profiles predictive of EGFR TKI sensi-
tivity are being developed as an alternative strategy. This body
of work is the first demonstration in lung cancer that rationally
targeted therapy, based on signaling pathways known to be domi-
nant in these tumors, can be successful in treating selected pa-
tients. We now have logical tests that predict treatment response.
The expectation is that further understanding and exploitation
of growth factor or oncogene addiction in specific tumors will
take us beyond the therapeutic plateau we have now reached
with cytotoxic chemotherapy.

Gene Expression Profiling

In an early use of gene expression profiling of lung tumors,
Gabrielson determined that SCLC cell lines were more similar
to cultured human bronchial epithelial cells than to carcinoid
cell lines, whereas carcinoids were similar to brain tumors (91).
This suggested that SCLC is not closely related to carcinoids or
brain tumors. Additional groups have now used gene expression
profiling to attempt to derive patterns classifying tumors on the
basis of cell type, tissue of origin, prognosis or drug sensitivity
(92, 93). Gene expression profiling has been used as a discovery
tool for early detection biomarkers and for genes induced by
cigarette smoking (94, 95).

Proteomic Analysis

In 1982, Baylin and colleagues used two-dimensional gels to
describe cell membrane proteins that distinguish SCLC from
NSCLC (96). Monoclonal antibodies have since been used for
similar classification purposes, some of which are clinically use-
ful. More recently, proteomic methodology has progressed sig-
nificantly and a number of interesting applications are being
assessed to classify tumors based on cell type, prognosis, and
drug sensitivity, as well as to develop early detection markers
in peripheral fluids, such as serum or urine (97, 98).

Animal Models

A number of animal models for lung cancer have been devel-
oped. Benfield and coworkers used radioactive or carcinogenic
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tracheal implants in beagles and hamsters to induce squamous
cell carcinomas (99). An early report of experimental induction
of lung tumors in mice appeared in 1950; by the mid-1960s,
multiple chemical- and radiation-induced murine models had
been described (100). Chemically induced tumors can be pro-
duced using various carcinogens, such as urethane or ethyl carba-
mate, which results in oncogenic K-ras mutations (101). Initia-
tion promotion models, such as 3-methylcholanthrene followed
by butylated hydroxytoluene, appear to be dependent on the
induction of pulmonary inflammation by the latter agent (102).
The induction of lung tumors by tobacco smoke has been and
remains difficult, but Witschi and colleagues developed a model
in which the mice are removed from tobacco smoke for the last
portion of the procedure, which appears to be critical for tumor
development (103). Murine models have been used to assess
the potential carcinogenicity of chemicals, as well as to provide
preclinical evaluation of chemopreventive strategies. All of these
models have resulted in pulmonary adenomas with histologic,
biochemical, and gene expression similarities to human bronchi-
oloalveolar carcinoma or adenocarcinoma.

Transgenic models resulting in adenocarcinoma in mice have
been developed initially using targeted expression of portions
of the SV40 genome and subsequently expressing activated
K-ras (104–106). As more is understood regarding the molecular
changes that lead to lung cancer, murine models are being devel-
oped to more faithfully model this process. Transgenic models
have also been used to model chemopreventive therapies, avoid-
ing problems with dosing and pharmacokinetics (107).

Although the above models have resulted in adenomas or
adenocarcinomas, only recently have murine models for squa-
mous cell lung cancer and SCLC been developed (108, 109).
The SCLC model is particularly compelling, as it results from
dual inactivation of Rb and p53 tumor suppressor genes, parallel
to human SCLC, and exhibits early and widespread metastases.

PREMALIGNANT EVOLUTION OF LUNG CANCER

Field Cancerization

In a landmark 1953 report, Slaughter and coworkers described
the field cancerization concept (110). They reviewed the pathol-
ogy of 783 patients with oral cancer and found that two indepen-
dent squamous cell carcinomas were present in 88 subjects (11%)
within this group. In addition, in all patients, carcinomas were
surrounded by abnormal, hyperplastic, and dysplastic epithe-
lium. This lead Slaughter and colleagues to suggest “a regional
carcinogenic activity of some kind, in which a preconditioned
epithelium has been activated over an area in which multiple
cell groups undergo a process of irreversible change toward
cancer,” and to postulate that this was an important factor in the
persistence or recurrence of squamous cell carcinomas following
therapy. The field cancerization phenomenon has been since
shown to occur in lung carcinogenesis as well, with frequent
occurrence of multiple primary tumors or development of second
primaries after treatment. Slaughter and coworkers initially as-
sumed that exposure to a carcinogenic agent explained field
cancerization, and this is certainly true in part, as tobacco smoke
is an extraordinarily potent carcinogen that is directly applied
to the respiratory epithelium. However, with the advent of mo-
lecular techniques, field cancerization has become more fully
understood. Initially, resected lung tumors were examined for
genetic lesions, such as chromosome 3p or 17p (p53 locus) LOH
(111, 112). The abnormal, non-neoplastic, epithelium at the re-
section margin has been reported to contain mutations, either
LOH or p53 mutations, similar to those within the tumor. A
statistically robust analysis has demonstrated that allele-specific
LOH (termed “allele-specific mutation”) is shared between

resected tumors and non-neoplastic epithelium at the resection
margin more frequently than would be expected by chance
alone (113). Wistuba has analyzed resected adenocarcinomas
for EGFR mutations and found occasional cases in which the
same mutation occurs in adjacent bronchial epithelium, again
supporting the concept that lung tumors arise from a larger
clonal field of mutated epithelium (I. Wistuba, personal commu-
nication). Recently, gene methylation analysis has also shown
epigenetic alterations shared between resected tumors and non-
neoplastic epithelium at the resection margins (114). Another
mechanism of field carcinogenesis is mutation affecting an
epithelial stem cell that subsequently disperses throughout the
airway epithelium. A case in which a dominant-negative p53
mutation found in a minority of bronchial epithelial cells dis-
persed throughout multiple sites in both lungs, but in no other
organs, has been reported, demonstrating this to be a potential
additional mechanism for multiple primary lung tumors (115).
Thus, at least three plausible mechanisms for field cancerization
have some support: direct exposure of the aerodigestive epithe-
lium to high concentrations of multiple carcinogens, expansion
of mutated clones of respiratory epithelium, and widespread
dispersal of mutated epithelial stem cells within the respiratory
epithelium.

Bronchial Epithelial Damage in Smokers

In 1956, Oscar Auerbach and colleagues published the first of a
series of careful histologic investigations of the effects of tobacco
smoke exposure on airway epithelium (116). The histologic grad-
ing system used was somewhat different than the current WHO/
IASLC grading system, but many of these findings from rapidly
processed autopsies are still highly relevant (21). Auerbach and
coworkers found that the histologic changes in airway epithelium
of patients with lung cancer were similar to those of smokers,
supporting the etiologic effect of smoking. A dose–response rela-
tionship between smoking and histologic changes was apparent,
and effects of age, sex, and urban/rural environment described
(117). Auerbach and colleagues described less severe histologic
changes in females, after controlling for smoking intensity, and
suggested that females may be less susceptible to lung cancer
(118). We now know that this is not the case; whether females
are more susceptible than males is currently debated (119).
Auerbach and colleagues also described progressive improvement
in histologic characteristics of bronchial epithelium in ex-smokers.

Cytology was applied to bronchial secretions in the early
1950s. Saccomanno, a pathologist in private practice in Grand
Junction, Colorado, observed an increased incidence of lung
cancer in uranium miners and studied sequential changes leading
to carcinoma in classic studies beginning in the 1960s (120, 121).
Of interest, Saccomanno found that subjects exfoliated severe
atypia or carcinoma in situ sputum for 4–10 yr before invasive
lung cancer became apparent. These cytologic studies, on the
background of Auerbach and coworkers’ descriptions of prema-
lignant airway epithelium, have provided the best evidence of
stepwise premalignant progression of squamous cell carcinoma
in humans.

With the advent of autofluorescence bronchoscopy and dem-
onstration that this technology allows more accurate detection
of premalignant lesions, studies previously limited to autopsies
or resection specimens can now be extended to cohorts of pa-
tients who can be serially followed (122, 123). Several pioneering
small studies of the evolution of dysplastic lesions have been
published, but the data are limited and somewhat contradictory
(124, 125). Although the value of various grades of sputum cyto-
logic atypia in determining relative risk of lung cancer develop-
ment has been established in prospective cohort studies, no
similarly robust analyses exist for varying degrees of premalignant
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endobronchial histology (126). Severe atypia sputum cytology
has been reported to have a 40–50% risk of developing lung
cancer within 2 yr, but the risk for severe atypia bronchial histology
does not seem to be as highly elevated (personal observation).

There is much less known in regard to the precursor lesions
for adenocarcinoma and SCLC. Shimosato and coworkers de-
scribed atypical adenomatous hyperplasia as a precursor lesion
for bronchioloalveolar carcinoma in 1990 (127). With increased
discovery and resection of small peripheral nodules and ground
glass opacities on CT scans, a better understanding of the natural
history of peripheral adenocarcinoma and bronchioloalveolar
carcinoma will likely follow. The precursor lesions for SCLC are
almost completely unknown; the rare disorder diffuse idiopathic
pulmonary neuroendocrine cell hyperplasia is associated with
pulmonary carcinoids, not SCLC (128, 129). Molecular analysis
of preneoplastic epithelium in patients with SCLC reveals more
extensive DNA changes than in patients with squamous cell or
adenocarcinoma, suggesting that the developmental pathways
for these different cell types may differ (130).

Molecular analysis of central airway epithelium, most rele-
vant to squamous cell carcinogenesis, began in the early 1990s
(111, 131). Early reports that chromosome 3p LOH could be
detected in premalignant dysplasias engendered significant ex-
citement, as this appeared likely to be an ominous biomarker.
Additional careful systematic studies demonstrated that 3p LOH
occurred frequently in individuals with trivial smoking histories,
making this a less robust biomarker of cancer risk (132). Exten-
sive data regarding genetic, epigenetic, and proteomic changes
in premalignant bronchial epithelium is being developed and
sequential steps in the evolution of lung cancer described (133–
138). It is clear that multiple clonally expanded groups of epithe-
lial cells are present in the airway epithelium of smokers and
that more advanced histologic lesions have accumulated more
alterations. Lung cancer requires significantly more genetic
events to develop than do childhood tumors. Unfortunately, we
do not have highly predictive molecular biomarkers of lung
cancer development at the present.

PREVENTION

As increasing numbers of individuals stop smoking, the burden
of lung cancer shifts to ex-smokers (139). Chemoprevention of
lung cancer is now assuming greater importance, as it is apparent
that ex-smokers are not completely protected. Sporn and col-
leagues first used the term chemoprevention in 1976 and de-
scribed retinoids as promising agents for several malignancies,
including lung (140). Successful chemoprevention in mice has been
achieved with nonspecific, but not COX-2–specific, COX inhibi-
tion, farnesyltransferase inhibition, glucocorticoids, 5-lipoxygenase
inhibition, prostacyclin synthase overexpresssion, a prostacyclin
analog (iloprost), and other strategies (141). Although effective
in a preclinical model, inhaled budesonide was not promising in
an initial intermediate endpoint biomarker trial (142). Iloprost
is being evaluated in an intermediate endpoint chemopreven-
tion trial performed by the Lung Cancer Biomarkers Chemopre-
vention Consortium, a group consisting of the SPOREs in Lung
Cancer, and single institution trials of COX-2 inhibition are
ongoing (143). Although preclinical testing of chemoprevention
agents in murine models is potentially useful, we do not know
if this will eventually lead to the development of effective human
strategies for lung cancer chemoprevention.

In 1982, Saccomanno and coworkers published a small pio-
neering chemoprevention study of 13-cis retinoic acid, assessing
sputum atypia as an intermediate endpoint, which demonstrated
feasibility, but no therapeutic effect (144). McLarty and col-
leagues reported similar results in a larger study published in

1995 (145). Initial encouraging results of small secondary preven-
tion chemoprevention trials using retinoids gave support to large,
prospective randomized controlled trials (146). More recently,
two large chemoprevention trials assessing �-carotene and reti-
nol have demonstrated a harmful effect, with 15–35% more lung
cancers in the treatment group (147, 148). Although this has
been very discouraging, the development of effective lung cancer
chemoprevention remains an important goal, and many different
strategies appear promising.

CONCLUSION

Tremendous progress in understanding the pathogenesis of lung
cancer has occurred over the past century. The lag between
translation from the basic science laboratory to clinical applica-
tion is decreasing. There is no better example of this than the
recent ability to predict response to EGFR TKIs. However, this
progress has not yet resulted in major changes in lung cancer
mortality rates.
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