Skip to main content
Log in

Conversion of a Direct Process high-boiling residue to monosilanes by a two-step catalysis approach

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The effects of different kinds of catalysts and supports on the conversion of a Direct Process high-boiling residue to monosilanes were evaluated. A new method, a two-step catalysis approach, was used for catalytic decomposition and redistribution reactions. The effects of reaction temperature, volume ratio of starting materials, feeding rate and reaction pressure on the conversion were investigated. While employing activated carbon as the decomposition catalyst and γ-Al2O3 for redistribution, which constituted the two-step catalysis approach, improved yield of methylchlorosilanes and dimethyldichlorosilane, and higher conversion of high-boiling components decomposition could be obtained. This two-step catalysis approach could be run under normal pressure or low pressure, which would solve the disadvantageous factors generated from the high-pressure process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. G. Rochow, J. Am. Chem. Soc. 67, 963 (1945).

    Article  CAS  Google Scholar 

  2. W. J. Ward, A. Ritzer, K. M. Carroll and J. W. Flock, J. Catal. 100, 240 (1996).

    Article  Google Scholar 

  3. D. H. Sun and B. E. Bent, Catal. Lett. 46, 127 (1997).

    Article  CAS  Google Scholar 

  4. D. Seyferth, Organometallics 20, 4978 (2001).

    Article  CAS  Google Scholar 

  5. M. Okamoto, T. Chikamori, T. Asano and E. Suzuki, Organometallics 23, 595 (2004).

    Article  CAS  Google Scholar 

  6. W. Noll, Chemistry and Technology of Silicons. Academic Press, New York, NY (1968).

    Google Scholar 

  7. Z. M. Gucun and G. Y. Anben, Organic Synthesize Chemistry. Science and Technology Press, Tokyo (1982).

    Google Scholar 

  8. H. J. Sun, J. New Mater. Chem. Ind. 8, 3 (1997).

    Google Scholar 

  9. J. K. Zhang, J. Chem. World 7, 339 (1996).

    Google Scholar 

  10. W. X. Luo, G. R. Wang and J. F. Wang, Ind. Eng. Chem. Res. 45, 129 (2006).

    Article  CAS  Google Scholar 

  11. K. H. Brookes, M. R. H. Siddiqui, H. M. Rong, R. W. Joyner and G. J. Hutchings, Appl. Catal. A: General 206, 257 (2006).

    Article  Google Scholar 

  12. R. J. H. Voorhoeve, Organohalosilanes: Precursors to Silicones. Elsevier, Amsterdam (1967).

    Google Scholar 

  13. L. Liu, J. Petrochem. Sci. Technol. Appl. 18, 167 (2000).

    CAS  Google Scholar 

  14. Z. D. Du, J. H. Chen and X. L. Bei, Organic Chemistry. High Education Press, Beijing (1990).

    Google Scholar 

  15. B. A. Bluestein, US Patent 2,717,257 (1955).

  16. D. Mohler and J. E. Sellers, US Patent 2,598,435 (1952).

  17. A. J. Barry and J. W. Gilkey, US Patent 2,681,355 (1954).

  18. K. M. Chadwick, A. K. Dhaul, R. L. Halm, R. G. Johnson and R. D. Steinmeyer, US Patent 5,321,147 (1994).

  19. B. R. Crum, S. K. Freeburne and L. H. Wood, US Patent 5,907,050 (1999).

  20. J. A. Brinson, B. R. Crum and R. F. Jarvis Jr, US Patent 6,013,235 (2000).

  21. B. R. Crum and L. H. Wood, US Patent 5,922,894 (1999).

  22. W. Kalchauer and B. Pachaly, US Patent 5,210,255 (1993).

  23. S. K. Freeburne and R. F. Jarvis Jr, US Patent 5,629,438 (1997).

  24. K. M. Chadwick, A. K. Dhaul, R. L. Halm and R. G. Johnson, US Patent 5,292,912 (1994).

  25. M. Kumada and K. Tamao, Adv. Organomet. Chem. 6, 19 (1968).

    CAS  Google Scholar 

  26. E. Hengge, Top. Curr. Chem. 51, 1 (1974).

    Article  CAS  Google Scholar 

  27. G. N. Brokerman, J. P. Cannady and A. E. Ogilvy, US Patent 5,175,329 (1992).

  28. A. Ritzer, A. L. Hajjar, H. R. McEntee and R. W. Shade, US Patent 4,393,229 (1983).

  29. J. A. Brinson, S. K. Freeburne and R. F. Jarivis Jr, US Patent 5,606,090 (1997).

  30. K. M. Chadwick, A. K. Dhaul, R. L. Halm and R. G. Johnson, US Patent 5,292,909 (1994).

  31. P. Carvalho, S. M. Thomaz and L. M. Bini, Braz. J. Biol. 65, 51 (2005).

    Article  CAS  Google Scholar 

  32. H. R. McEntee and N. Y. Waterford, US Patent 3,793,357 (1974).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Xiong, YF. & Zhao, JB. Conversion of a Direct Process high-boiling residue to monosilanes by a two-step catalysis approach. Res Chem Intermed 33, 613–622 (2007). https://doi.org/10.1163/156856707781749964

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856707781749964

Keywords

Navigation