
Communicated by Eric Baum

Smooth On-Line Learning Algorithms for
Hidden Markov Models

Pierre Baldi
Jet Propiilsion Laboratory and Division of Biology,
California Institute of Technology, Pasadena, CA 92225 USA

Yves Chauvin
Net-ID, Inc. and Department of Psychology,
Stanford University, Stanford, CA 94305 USA

A simple learning algorithm for Hidden Markov Models (HMMs) is
presented together with a number of variations. Unlike other classi-
cal algorithms such as the Baum-Welch algorithm, the algorithms de-
scribed are smooth and can be used on-line (after each example presen-
tation) or in batch mode, with or without the usual Viterbi most likely
path approximation. The algorithms have simple expressions that re-
sult from using a normalized-exponential representation for the HMM
parameters. All the algorithms presented are proved to be exact or ap-
proximate gradient optimization algorithms with respect to likelihood,
log-likelihood, or cross-entropy functions, and as such are usually con-
vergent. These algorithms can also be casted in the more general EM
(Expectation-Maximization) framework where they can be viewed as
exact or approximate GEM (Generalized Expectation-Maximization) al-
gorithms. The mathematical properties of the algorithms are derived
in the appendix.

Hidden Markov Models (HMMs) are a particular class of adaptive sys-
tems that has been extensively used in speech recognition problems (see
Rabiner 1989 for a review), but also in other interesting applications such
as single channel kinetic modeling (Ball and Rice 1992). More recently,
HMMs and related more general statistical techniques such as the EM
(Expectation-Maximization) algorithm (Dempster et al. 1977) have been
applied to the modeling and analysis of DNA and protein sequences in
biology (Baldi et al. 1993a,b; Cardon and Stormo 1992; Haussler et al. 1993;
Krogh et nl. 1993, and references therein) and optical character recognition
(Levin and Pieraccini 1993).

A first order HMM M is characterized by a set of states, an alphabet
of symbols, a probability transition matrix T = (t,,) and a probability
emission matrix E = (el,). The parameter t,, (resp. el,) represents the prob-
ability of transition from state i to state j (resp. of emission of symbol j

Niwrul Cornpittation 6, 307-318 (1994) @ 1994 Massachusetts Institute of Technology

308 Pierre Baldi and Yves Chauvin

from state i). HMMs can be viewed as adaptive systems: given a train-
ing sequence of symbols 0, the parameters of an HMM can be iteratively
adjusted in order to optimize the fit between the model and the data, as
measured by some criterion. Most commonly, the goal is to maximize
the likelihood Lo(M) = p (0 I M) (or rather its logarithm) of the sequence
according to the model. This likelihood can be computed exactly using
a simple dynamic programming scheme, known as the forward proce-
dure, which takes into account all possible paths through M capable of
producing the data. In certain situations, it is preferable to use only the
likelihood of the most probable path. The most probable path is also
easily computed using a slightly different recursive procedure, known
as the Viterbi algorithm. When several training sequences are available,
they can usually be treated as independent and therefore the goal is to
maximize the likelihood of the model L(M) = no Lo(M), or its logarithm
C0 log Lo(M). Different objective functions, such as the posterior distri-
bution of the model given the data, are also possible (for instance, Stolcke
and Omohundro 1993).

Learning from examples in HMMs is typically accomplished using
the Baum-Welch algorithm. At each iteration of the Baum-Welch algo-
rithm, the expected number n,,(O) [resp. m,(O)] of i + j transitions (resp.
emissions of letter j from state i) induced in a given model, with a fixed
set of parameters, by each training sequence 0, is calculated using the
forward-backward procedure (see Rabiner 1989 and our appendix for
more formal definitions). The transition and emission probabilities are
then reset according to

where n i (0) = Cjn,,(0) and m;(O) = Cjm; , (0) . Thus, in the case of
a single training sequence, at each iteration the Baum-Welch algorithm
resets a transition or emission parameter to its expected frequency, given
the current model and the training data. In the case of multiple training
sequences, the contribution of each sequence must be weighted by the
inverse of its likelihood.

It is clear that the Baum-Welch algorithm can lead to abrupt jumps
in parameter space and that the procedure is not suitable for on-line
learning, that is, after each training example. This is even more so if the
Viterbi approach is used by computing only the most likely path asso-
ciated with the production of a sequence (see also Juang and Rabiner
1990; Merhav and Ephraim 19911, as opposed to the forward-backward
procedure where all possible paths are examined. Along such a single
path, the transition or emission counts are necesssarily 0 or 1 (provided
there are no loops) and therefore cannot be reasonably used in an on-line
version of equation 1.1. Another problem with the Baum-Welch algo-
rithm is that 0 probabilities are absorbing: once a transition or emission
probability is set to 0, it is never used again and therefore remains equals

Learning Algorithms for HMM 309

to 0. This is of course undesirable and usually is prevented by artificially
enforcing that no parameter be less than a fixed small threshold.

A different algorithm for HMM learning that is smooth, overcomes
the previous obstacles and can be used on-line or in batch mode, with
or without the Viterbi approximation, can be defined as follows. First, a
normalized-exponential representation for the parameters of the model
is introduced. For each ti, (resp. ej j) , a new parameter wq (resp. v,,) is
defined according to

where X is a temperature parameter. Whichever changes are applied to
the ws and vs by the learning algorithm, the normalization constraints
on the original parameters are automatically enforced by this reparame-
terization. One additional advantage of this representation is that none
of the parameters can reach the absorbing value 0. The representation
(equation 1.2) is general in the sense that any finite probability distribu-
tion can be written in this form, provided there are no 0 probabilities (or
else one must allow for infinite negative exponents). This is a very good
property for HMMs since, in general, 0 probabilities need to be avoided.

We shall now describe the on-line version of the learning algorithm,
the batch version can be obtained immediately by summing over all
training sequences. After estimating the statistics n,,(O) and mi,(O) using,
for instance, the forward-backward procedure, the update equations of
the new algorithm are particularly simple and given by

where 7 is the learning rate that incorporates all the temperature effects.
Although, as we shall prove in the appendix, equation 1.3 represents
nothing more than on-line gradient descent on the negative log-likelihood
of the data, its remarkable simplicity seems to have escaped the attention
of previous investigators, partly because of the monopolistic role played
by the Baum-Welch algorithm. Notice that the on-line version of gradient
descent on the negative likelihood itself is given by

(1.3')

Thus, with suitable learning rates and excluding the probably rare pos-
sibility of convergence to saddle points, 1.3 and 1.3' will converge to a

31 0 Pierre Baldi and Yves Chauvin

possibly local maximum of the likelihood L (M) . As for backpropagation
or any other gradient algorithm, the convergence is exact in batch mode
and stochastic in the on-line version. In general, for dynamic range rea-
sons, 1.3 should be preferable to l .3’. Furthermore, in the case of multiple
training sequences, 1.3’ requires that the global factor L (M) be available.
In certain situations, it may be possible to use a nonscaled version of 1.3
in the form

Awl, = rl[n,,(O) - n l (0) f l ,] and Av, = r/[m,(O) - m,(O)e,,] (1.3”)

This is particularly true when the bulk of the training sequences tend to
have likelihoods that are roughly in the same range. If the distribution
of the likelihoods of the training sequences is approximately gaussian,
this requires that the standard deviation be relatively small. When the
likelihoods of the training sequences are in the same range, then 1.3”
can be viewed as an approximate rescaling of 1.3 with the corresponding
vectors being almost aligned and certainly in the same half space. So,
with a proper choice of learning rate (in general different from the rate
used in 1.3), 1.3” should also lead to an increase of the likelihood.

The previous algorithms rely on the local discrepancy between the
transitions and emission counts induced by the data and their predicted
value from the parameters of the model. Variations on 1.3 and 1.3’ can be
constructed using the discrepancy between the corresponding frequencies
in the form

and

(1.4“)

In the appendix, it is shown that 1.4” can be reached through a different
heuristic line of reasoning: by approximating gradient descent on an
objective function constructed as the sum of locally defined cross-entropy
terms. All the variations 1.4-1.4’’ are obtained by multiplying 1.3 or 1.3’
by positive coefficients such as l/n;(O), which may depend both on the
sequence 0 and the state i. In the case of a single training sequence,
all the vectors associated with 1.3-1.4’’ are in the same half plane and
all these rules will increase the likelihood, provided the learning rate
is sufficiently small. In the case of multiple training sequences, it is
reasonable to expect that on average, in many situations, 1.4-1.4” will
still tend to increase the likelihood L (M) , or its logarithm, although not
along the line of steepest ascent. Accordingly, their convergence can be
expected to be slower.

Learning Algorithms for HMM 311

In the case of an on-line Viterbi approach, the optimal path ~'(0)
associated with the current training sequence is first computed, together
with the associated likelihood L&(M). Any one of the previous algorithms
can then be approximated by replacing the expected transition counts
n,(O) and n,(O) by the corresponding counts n t (0) and n:(O) obtained
along the optimal Viterbi path (and similarly for the emissions). From
the definition of n , given in the appendix, it is easy to see that nG(0) =
c,(r*)Lb(M), where c, (T*) is the number of times the i + j transition
appears along the path T * . For instance, for any I along T* , the gradient
descent equations of 1.3 can then be approximated by Awl, = r/[c, ,(T*) -
t l , c l (~ *)] and similarly for the emissions. In the case of an architecture
without any loops, the Viterbi approximations are particularly simple
since C ~ / (T *) and c, (T*) are 0 or 1. In a specific application (Baldi et al.
1992, 19931, good results have been obtained with a Viterbi version of
1.3, rewritten in the form

Awl, = 7 / [tb - t,,] and Av, = 7/[f; - el,] (1.5)

Here, for a fixed state i on the path, t:, and t; are the target transition
and emission values: ti, = 1 every time the i + j transition is part of the
Viterbi path of the corresponding training sequence and 0 otherwise; and
similarly for t i . In particular if, as a result of a loop, a Viterbi path visits
the state i several times, then 1.5 must be repeated at each visit (1.5 is
"on-line" not only with respect to different paths associated with different
training sequences but also within each path). As for 1.4", it is shown
in the appendix that 1.5 can also be derived by approximate gradient
descent on a sum of local cross-entropy terms. One important difference,
however, is that this time, this objective function can be discontinuous
as a result of the evolution of the Viterbi paths themselves.

In many applications, the likelihoods Lo(M) are very small and be-
yond machine precision. This problem can be dealt with by using a
scaling approach (Rabiner 1989). The scaling equations derived for the
Baum-Welch algorithm can readily be extended to the algorithms pre-
sented here. Another possibility, often used for obvious reasons in con-
junction with a Viterbi algorithm, is to calculate only the logarithm of the
likelihoods. Accordingly, it may be possible in some situations to replace
in the previous algorithms the factors l/Lo(M) by - logLo(M).

The algorithms previously described can also be seen in the more
general EM framework (Dempster et al. 1977). In the general EM frame-
work, one considers two dependent random variables X and Y, where
Y is the observed random variable. For a given value of X, there is a
unique value of Y but, in general, different values of X can lead to the
same value of the observable Y. In addition, there is a parameterized
family of densities f(x I 6') depending on a set of parameters 6'. In HMM
terminology, X corresponds to the paths, Y to the output sequences, and
6' to the transition and emission parameters. As usual, the problem is
to try to find a maximum likelihood estimate for the set of parameters

312 Pierre Baldi and Yves Chauvin

H, from the observations y. The EM algorithm is a recursive procedure
defined by

H (t + 1) = argmfxF[O,O(t),y] = argmfxE[logf(x 10) I H(t),y] (1.6)

It can be shown that, in general, 1.6 converges monotonically to a possi-
bly local maximum likelihood estimator of 0. When applied in the HMM
context, the EM algorithm becomes the Baum-Welch algorithm. An inter-
esting and slightly different view of the EM algorithm, which leads also
to incremental variants, can be found in Neal and Hinton (19931, where
X can be interpreted as representing the states of a statistical mechanical
system. If the energy of a state is measured by its negative log likelihood,
then 1.6 can be seen as a double minimization step on the corresponding
free energy function. Any algorithm that increases the function F in 1.6
(and, as a result, increases also the likelihood of the observation given
the parameters), without necessarily maximizing it, is called a GEM al-
gorithm. It can be shown in general (a proof is given in the appendix
in the HMM context) that the gradient of F and the gradient of the log
likelihood of the observations given the parameters are identical. A small
gradient ascent step on the log likelihood must lead to an increase of F.
Thus, with sufficiently small learning rates, gradient descent on the neg-
ative log-likelihood and the other related algorithms presented here can
be seen as special cases of GEM algorithms or approximations to GEM
algorithms.

For a specific application, it is natural to ask which of the previous
learning rules should be used. The answer to this question depends both
on the application considered, the architecture of the HMM, and possibly
other implementation constraints, such as the available precision. It is
clear that 1.3 should play for HMMs the role backpropagation plays for
neural networks. Indeed, it is well known that HMMs can be viewed as
a particular kind of linear neural networks. Backpropagation applied to
these equivalent networks together with the normalized-exponential pa-
rameter representation leads immediately to 1.3. On the other hand, it is
easy to see on simple examples that, for instance, 1.3 and 1.5 can behave
very differently. There are problems, such as those in the area of DNA
or protein sequence modeling, where the Viterbi paths play a particular
role and where Viterbi learning may be more desirable. In this context,
extensive simulation results on one of these smooth algorithms (1.5) can
be found in Baldi e ta] . (1993a,b). As in any gradient method, the choice
of the learning rate is also crucial and may require some experimenta-
tion. It should also be obvious that, as in the case of neural networks
and other modeling techniques, the present ideas can easily be extended
to more complex objective functions including, for instance, regularizer
terms reflecting prior knowledge on the HMM parameters. The same is
true also for higher order HMMs.

Learning Algorithms for HMM 313

In general, the simple algorithms introduced above should be useful
in situations where smoothness and/or on-line learning are important.
These could include

1. large models with many parameters and relatively scarce data that
may be more prone to overfitting, local minima trapping, and other
pathological behaviors when trained with discontinuous or batch
rules;

2. analog physical implementations where only continuous learning
rules can be realized; and

3. all situations where the storage of examples for batch learning is
not desirable.

In the following mathematical appendix, we first show that 1.3 and
1.3' correspond to gradient ascent on the log likelihood and likelihood,
respectively. We also give a different derivation of 1.4" and 1.5 as gradient
descent algorithms on a different objective function. We then examine
the relation of the algorithms to the Baum-Welch algorithm and to the
more general EM approach.

2 Mathematical Appendix

For brevity, only transition parameters will be considered here but the
analysis for emission parameters is analogous. In what follows, we will
need the partial derivatives

atij atij
-- - Xti,(l - ti,) and ~ = -Xtj,fjk
dW, awik

(2.1)

Derivation of 1.3 and 1.3' as Global Gradient Descent Algorithms.
For any path T through the model M and any fixed sequence 0, let

oy,,o = P (T . 0 I M) (2.2)

so that

(2.3)

the summation being over all possible paths through the architecture.
With several training sequences, the likelihood of the model is given by

(2.4)

314 Pierre Baldi and Yves Chauvin

Since the probability c y , , ~ is the product of all the corresponding transi-
tion and emission probabilities along the path x, it is easy to see that

(2.5)

where c , ; (x) is the number of times the i -+ j transition is used along the
path x consistent with the production of 0. From 2.3 and 2.5,

(2.6)

where n;,(O) = C,c;;(x)(v,,~ is the expected number of times the i + j
transition is used to produce 0 in model M. Combining 2.4 and 2.6 leads
to

Finally, using 2.1, the chain rule and a few simplifications, we get

Proposition 1.

(2.7)

If in 2.4 we use the log likelihood, then we get

Proposition 2.

Clearly, 1.3 is the on-line version of 2.9, 1.3' is the on-line version of 2.8,
and the temperature parameter X can be absorbed in the learning rate.
The key conclusive point is that 1.3 corresponds to gradient descent on
the negative log likelihood and therefore is the most sensible algorithm.

Heuristic Derivation of 1.4" and 1.5 as Approximate Gradient De-
scent Algorithms on a Sum of Local Cross-Entropy Terms. Once the
numbers n f l (0) have been calculated, the local distance between the cur-
rent distribution t,, of transitions in the model and the expected distri-
bution induced by the data can be measured using the cross-entropy
function

(2.10)

Learning Algorithms for HMM 315

Equivalently, one could consider the local likelihood associated with the
distribution of the transitions out of state i. The logarithm of this like-
lihood then yields a term similar to 2.10. The parameters can now be
updated by gradient descent on H (n , t) = Co Xi p(n , t) in order to re-
duce this distance

(2.11)

The approximation similar to 2.11 computes only the explicit derivative of
H (F I , t) with respect to w,,. All other higher order contributions, associated
with the fact that a change in f i k affects all the quantities q(0) (DH,o/at;k
is usually nonzero), are neglected. After simplifications, we get

Proposition 3.

(2.12)

Clearly, 1.4” is the on-line descent version of 2.12. Thus 1.4” is the learn-
ing rule derived by approximating gradient descent on the sum of the
local cross-entropy terms between the distribution of transitions in the
model at state i and the expected value of this distribution once the
data are taken into account. Similar more complex learning rules could
also be derived by weighting the terms HIo in the sum H [for instance
by l/Lo(M)]. Again, the temperature coefficient X can be merged into
the learning rate. The same reasoning using the Viterbi approximation
yields 1.5 [notice that the instantaneous distribution of transitions out of
any state along a Viterbi path is a multinomial distribution of the form
fl] (tlJ 1.

Relations to Baum-Welch, EM, and GEM Algorithms. To examine
the relation of the previous algorithms to the Baum-Welch algorithm,
it is useful to examine the proof of convergence for the Baum-Welch
algorithm (Baum 1972). Consider, for a fixed architecture, two models
M and M‘ with different transitions and emission parameters. M‘ can be
thought as being the improvement over M that we are seeking. For any
path K through the model, we can define the probabilities

Q,,O = P (T , 0 I M) and PT,o = P (K) 0 1 M’) (2.13)

Assuming, as usual, independence between the sequences, the likelihood
of each model is then given by

(2.14)

31 6 Pierre Baldi and Yves Chauvin

with

(2.15)

the summations being over all possible paths ?r through the architec-
ture. For each sequence, we can then define two probability distribu-
tions (v,,o/ C, (Y,,o and P,,o/ C, A , o induced by the two models and the
sequence 0 over all paths. We can again measure the distance between
these two distributions using the cross-entropy:

(2.16)

The cross entropy being always positive, after simple manipulations we
get

which gives

When M = M’, the right-hand side R of 2.18 is equal to 0. Therefore, to
find a model M’ with a higher likelihood than the model M, we must
increase the term Co C,[fY,,Olog~~,,o]/Lo(M) (in the general EM context,
this term corresponds to the function F defined above). The Baum-Welch
algorithm directly maximizes this term. On the other hand, the algorithm
introduced here in 1.3 is just a gradient descent step toward the maxi-
mization of this term. Remarkably, therefore, both the log-likelihood
logL(M) and the right-hand side of 2.18 have the same gradient.

To see this, one must first observe that the probability , j n , 0 is a prod-
uct of probabilities corresponding to all the transitions associated with
the path K and all the corresponding emissions associated with the se-
quence 0. The contribution to the sum Co C,[(P,?O log /%,o]/Lo(M) from
the transitions only (there is an additional similar term for the contribu-
tions resulting from the emissions) can therefore be rewritten as

(2.19)

where c i j (r) is the number of i -+ j transitions contained in the path K
and, as above, n , is the expected number of i -+ j transitions in model M,
given the data. It is easy to check that the expression for the probability
distribution that maximizes Q corresponds to the Baum-Welch algorithm

Learning Algorithms for HMM 317

with fi, = Co[n,,/Lo(M)]/ &[n,/Lo(M)] and that, if we use a normalized-
exponential representation for the parameters w’, the gradient of R is
given by

Proposition 4.

When used on-line, this immediately yields the algorithm in 1.3. Thus,
the batch version of 1.3 performs gradient ascent on R or on logL(M)
and leads, for sufficiently small step sizes, to an increase of the likelihood
unless the gradient is zero. It leads also to an increase of R and, as such,
can also be viewed as a GEM algorithm. The gradient of the cross-entropy
term maximized by Baum-Welch is also the gradient of the log-likelihood
function. Although the proof given here is based on HMMs, the same
result can be proved similarly in the general EM framework by showing
that the gradient of the log-likelihood and the gradient of the function
being maximized during the M step of the EM algorithm are identical.

Acknowledgments

We would like to thank David Haussler, Anders Krogh, Yosi Rinott, and
Esther Levin for useful discussions. The work of I? B. is supported by
grants from the AFOSR and the ONR.

References

Baldi, P., Chauvin, Y., Hunkapiller, T., and McClure, M. A. 1992b. Hidden
Markov models of biological primary sequence information. PNAS (USA),
in press.

Baldi, P., Chauvin, Y., Hunkapiller, T. and McClure, M. A. 1993a. Hidden
Markov models in molecular biology: New algorithms and applications. In
Aduances in Neural lnformation Processing Systems 5, S. J. Hanson, J. D. Cowan,
and C. Lee Giles, eds. Morgan Kaufmann, San Mateo, CA.

Ball, F. G., and Rice, J. A. 1992. Stochastic models for ion channels: Introduction
and bibliography. Math. Biosci. 112(2), 189-206.

Baum, L. E. 1972. An inequality and associated maximization technique in
statistical estimation for probabilistic functions of Markov processes. In-
equalities 3, 1-8.

Blahut, R. E. 1987. Principles and Practice of lnformation Theory. Addison-Wesley,
Reading, MA.

318 Pierre Baldi and Yves Chauvin

Cardon, L. R., and Stormo, G. D. 1992. Expectation maximization algorithm
for identifying protein-binding sites with variable lengths from unaligned
DNA fragments. 1. Mol. B id . 223, 159-170.

Dempster, A. P, Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from
incomplete data via the EM algorithm. I. R. Statist. SOC. B 39, 1-22.

Haussler, D., Krogh, A., Mian, I. S., and Sjolander, K. 1993. Protein Model-
ing using Hidden Markov Models: Analysis of Globins. Proceedings of the
Hawaii International Conference on System Sciences. Vol. 1, pp. 792-802. IEEE
Computer Society Press, Los Alamitos, CA.

Juang, B., and Rabiner, L. R. 1990. The segmental K-means algorithm for es-
timating parameters of hidden Markov models. I E E E Transact. Acoustics,
Speech Signal Process. 38(9), 1639-1641.

Krogh, A., Brown, M., Mian, I. S., Sjolander, K., and Haussler, D. 1993. Hidden
Markov models in computational biology: Applications to protein model-
ing. journal of Moleciilar Biology, in press.

Levin, E., and Pieraccini, R. 1993. Planar hidden Markov modeling: From
speech to optical character recognition. In Advances in Neural Information
Processing Systems 5, S. J. Hanson, J. D. Cowan and C. Lee Giles, eds. Morgan
Kaufmann, San Mateo, CA.

Merhav, N., and Ephraim, Y. 1991. Maximum likelihood hidden Markov model-
ing using a dominant sequence of states. I E E E Transact. Signal Process. 39(9),

Neal, R. M., and Hinton, G. E. 1993. A new view of the EM algorithm that
justifies incremental and other variants. Biometrika, submitted.

Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proc. IEEE 77(2), 257-286.

Stolcke, A., and Omohundro, S. 1993. Hidden Markov model induction by
Bayesian model merging. In Advances in Neural Information Processing Systems
5, S. J. Hanson, J. D. Cowan and C. Lee Giles, eds. Morgan Kaufmann, San
Mateo, CA.

2111-2115.

Received January 8, 1993; accepted July 9, 1993.

