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A simple learning algorithm for Hidden Markov Models (HMMs) is 
presented together with a number of variations. Unlike other classi- 
cal algorithms such as the Baum-Welch algorithm, the algorithms de- 
scribed are smooth and can be used on-line (after each example presen- 
tation) or in batch mode, with or without the usual Viterbi most likely 
path approximation. The algorithms have simple expressions that re- 
sult from using a normalized-exponential representation for the HMM 
parameters. All the algorithms presented are proved to be exact or ap- 
proximate gradient optimization algorithms with respect to likelihood, 
log-likelihood, or cross-entropy functions, and as such are usually con- 
vergent. These algorithms can also be casted in the more general EM 
(Expectation-Maximization) framework where they can be viewed as 
exact or approximate GEM (Generalized Expectation-Maximization) al- 
gorithms. The mathematical properties of the algorithms are derived 
in the appendix. 

Hidden Markov Models (HMMs) are a particular class of adaptive sys- 
tems that has been extensively used in speech recognition problems (see 
Rabiner 1989 for a review), but also in other interesting applications such 
as single channel kinetic modeling (Ball and Rice 1992). More recently, 
HMMs and related more general statistical techniques such as the EM 
(Expectation-Maximization) algorithm (Dempster et al. 1977) have been 
applied to the modeling and analysis of DNA and protein sequences in 
biology (Baldi et al. 1993a,b; Cardon and Stormo 1992; Haussler et al. 1993; 
Krogh et nl. 1993, and references therein) and optical character recognition 
(Levin and Pieraccini 1993). 

A first order HMM M is characterized by a set of states, an alphabet 
of symbols, a probability transition matrix T = (t,,) and a probability 
emission matrix E = (el,). The parameter t,, (resp. el,) represents the prob- 
ability of transition from state i to state j (resp. of emission of symbol j 
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from state i). HMMs can be viewed as adaptive systems: given a train- 
ing sequence of symbols 0, the parameters of an HMM can be iteratively 
adjusted in order to optimize the fit between the model and the data, as 
measured by some criterion. Most commonly, the goal is to maximize 
the likelihood Lo(M) = p ( 0  I M) (or rather its logarithm) of the sequence 
according to the model. This likelihood can be computed exactly using 
a simple dynamic programming scheme, known as the forward proce- 
dure, which takes into account all possible paths through M capable of 
producing the data. In certain situations, it is preferable to use only the 
likelihood of the most probable path. The most probable path is also 
easily computed using a slightly different recursive procedure, known 
as the Viterbi algorithm. When several training sequences are available, 
they can usually be treated as independent and therefore the goal is to 
maximize the likelihood of the model L(M) = no Lo(M), or its logarithm 
C0 log Lo(M). Different objective functions, such as the posterior distri- 
bution of the model given the data, are also possible (for instance, Stolcke 
and Omohundro 1993). 

Learning from examples in HMMs is typically accomplished using 
the Baum-Welch algorithm. At each iteration of the Baum-Welch algo- 
rithm, the expected number n,,(O) [resp. m,(O)]  of i + j transitions (resp. 
emissions of letter j from state i) induced in a given model, with a fixed 
set of parameters, by each training sequence 0, is calculated using the 
forward-backward procedure (see Rabiner 1989 and our appendix for 
more formal definitions). The transition and emission probabilities are 
then reset according to 

where n i ( 0 )  = Cjn,,(0) and m;(O) = Cjm; , (0) .  Thus, in the case of 
a single training sequence, at each iteration the Baum-Welch algorithm 
resets a transition or emission parameter to its expected frequency, given 
the current model and the training data. In the case of multiple training 
sequences, the contribution of each sequence must be weighted by the 
inverse of its likelihood. 

It is clear that the Baum-Welch algorithm can lead to abrupt jumps 
in parameter space and that the procedure is not suitable for on-line 
learning, that is, after each training example. This is even more so if the 
Viterbi approach is used by computing only the most likely path asso- 
ciated with the production of a sequence (see also Juang and Rabiner 
1990; Merhav and Ephraim 19911, as opposed to the forward-backward 
procedure where all possible paths are examined. Along such a single 
path, the transition or emission counts are necesssarily 0 or 1 (provided 
there are no loops) and therefore cannot be reasonably used in an on-line 
version of equation 1.1. Another problem with the Baum-Welch algo- 
rithm is that 0 probabilities are absorbing: once a transition or emission 
probability is set to 0, it is never used again and therefore remains equals 
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to 0. This is of course undesirable and usually is prevented by artificially 
enforcing that no parameter be less than a fixed small threshold. 

A different algorithm for HMM learning that is smooth, overcomes 
the previous obstacles and can be used on-line or in batch mode, with 
or without the Viterbi approximation, can be defined as follows. First, a 
normalized-exponential representation for the parameters of the model 
is introduced. For each ti, (resp. ej j ) ,  a new parameter wq (resp. v,,) is 
defined according to 

where X is a temperature parameter. Whichever changes are applied to 
the ws and vs by the learning algorithm, the normalization constraints 
on the original parameters are automatically enforced by this reparame- 
terization. One additional advantage of this representation is that none 
of the parameters can reach the absorbing value 0. The representation 
(equation 1.2) is general in the sense that any finite probability distribu- 
tion can be written in this form, provided there are no 0 probabilities (or 
else one must allow for infinite negative exponents). This is a very good 
property for HMMs since, in general, 0 probabilities need to be avoided. 

We shall now describe the on-line version of the learning algorithm, 
the batch version can be obtained immediately by summing over all 
training sequences. After estimating the statistics n,,(O) and mi,(O) using, 
for instance, the forward-backward procedure, the update equations of 
the new algorithm are particularly simple and given by 

where 7 is the learning rate that incorporates all the temperature effects. 
Although, as we shall prove in the appendix, equation 1.3 represents 
nothing more than on-line gradient descent on the negative log-likelihood 
of the data, its remarkable simplicity seems to have escaped the attention 
of previous investigators, partly because of the monopolistic role played 
by the Baum-Welch algorithm. Notice that the on-line version of gradient 
descent on the negative likelihood itself is given by 

(1.3') 

Thus, with suitable learning rates and excluding the probably rare pos- 
sibility of convergence to saddle points, 1.3 and 1.3' will converge to a 
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possibly local maximum of the likelihood L ( M ) .  As for backpropagation 
or any other gradient algorithm, the convergence is exact in batch mode 
and stochastic in the on-line version. In general, for dynamic range rea- 
sons, 1.3 should be preferable to l .3’. Furthermore, in the case of multiple 
training sequences, 1.3’ requires that the global factor L ( M )  be available. 
In certain situations, it may be possible to use a nonscaled version of 1.3 
in the form 

Awl, = rl[n,,(O) - n l ( 0 ) f l , ]  and Av, = r/[m,(O) - m,(O)e,,] (1.3”) 

This is particularly true when the bulk of the training sequences tend to 
have likelihoods that are roughly in the same range. If the distribution 
of the likelihoods of the training sequences is approximately gaussian, 
this requires that the standard deviation be relatively small. When the 
likelihoods of the training sequences are in the same range, then 1.3” 
can be viewed as an approximate rescaling of 1.3 with the corresponding 
vectors being almost aligned and certainly in the same half space. So, 
with a proper choice of learning rate (in general different from the rate 
used in 1.3), 1.3” should also lead to an increase of the likelihood. 

The previous algorithms rely on the local discrepancy between the 
transitions and emission counts induced by the data and their predicted 
value from the parameters of the model. Variations on 1.3 and 1.3’ can be 
constructed using the discrepancy between the corresponding frequencies 
in the form 

and 

(1.4“) 

In the appendix, it is shown that 1.4” can be reached through a different 
heuristic line of reasoning: by approximating gradient descent on an 
objective function constructed as the sum of locally defined cross-entropy 
terms. All the variations 1.4-1.4’’ are obtained by multiplying 1.3 or 1.3’ 
by positive coefficients such as l/n;(O), which may depend both on the 
sequence 0 and the state i. In the case of a single training sequence, 
all the vectors associated with 1.3-1.4’’ are in the same half plane and 
all these rules will increase the likelihood, provided the learning rate 
is sufficiently small. In the case of multiple training sequences, it is 
reasonable to expect that on average, in many situations, 1.4-1.4” will 
still tend to increase the likelihood L ( M ) ,  or its logarithm, although not 
along the line of steepest ascent. Accordingly, their convergence can be 
expected to be slower. 
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In the case of an on-line Viterbi approach, the optimal path ~'(0) 
associated with the current training sequence is first computed, together 
with the associated likelihood L&(M).  Any one of the previous algorithms 
can then be approximated by replacing the expected transition counts 
n,(O) and n,(O) by the corresponding counts n t ( 0 )  and n:(O) obtained 
along the optimal Viterbi path (and similarly for the emissions). From 
the definition of n ,  given in the appendix, it is easy to see that nG(0) = 
c,(r*)Lb(M), where c, (T*)  is the number of times the i + j transition 
appears along the path T * .  For instance, for any I along T* ,  the gradient 
descent equations of 1.3 can then be approximated by Awl, = r/[c, ,(T*) - 
t l , c l ( ~ * ) ]  and similarly for the emissions. In the case of an architecture 
without any loops, the Viterbi approximations are particularly simple 
since C ~ / ( T * )  and c, (T*)  are 0 or 1. In a specific application (Baldi et al. 
1992, 19931, good results have been obtained with a Viterbi version of 
1.3, rewritten in the form 

Awl, = 7 / [ tb  - t,,] and Av, = 7/[f; - el,] (1.5) 

Here, for a fixed state i on the path, t:, and t; are the target transition 
and emission values: ti, = 1 every time the i + j transition is part of the 
Viterbi path of the corresponding training sequence and 0 otherwise; and 
similarly for t i .  In particular if, as a result of a loop, a Viterbi path visits 
the state i several times, then 1.5 must be repeated at each visit (1.5 is 
"on-line" not only with respect to different paths associated with different 
training sequences but also within each path). As for 1.4", it is shown 
in the appendix that 1.5 can also be derived by approximate gradient 
descent on a sum of local cross-entropy terms. One important difference, 
however, is that this time, this objective function can be discontinuous 
as a result of the evolution of the Viterbi paths themselves. 

In many applications, the likelihoods Lo(M) are very small and be- 
yond machine precision. This problem can be dealt with by using a 
scaling approach (Rabiner 1989). The scaling equations derived for the 
Baum-Welch algorithm can readily be extended to the algorithms pre- 
sented here. Another possibility, often used for obvious reasons in con- 
junction with a Viterbi algorithm, is to calculate only the logarithm of the 
likelihoods. Accordingly, it may be possible in some situations to replace 
in the previous algorithms the factors l/Lo(M) by - logLo(M). 

The algorithms previously described can also be seen in the more 
general EM framework (Dempster et al. 1977). In the general EM frame- 
work, one considers two dependent random variables X and Y, where 
Y is the observed random variable. For a given value of X, there is a 
unique value of Y but, in general, different values of X can lead to the 
same value of the observable Y. In addition, there is a parameterized 
family of densities f(x I 6') depending on a set of parameters 6'. In HMM 
terminology, X corresponds to the paths, Y to the output sequences, and 
6' to the transition and emission parameters. As usual, the problem is 
to try to find a maximum likelihood estimate for the set of parameters 
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H, from the observations y. The EM algorithm is a recursive procedure 
defined by 

H ( t  + 1) = argmfxF[O,O(t),y] = argmfxE[logf(x 10) I H(t),y] (1.6) 

It can be shown that, in general, 1.6 converges monotonically to a possi- 
bly local maximum likelihood estimator of 0. When applied in the HMM 
context, the EM algorithm becomes the Baum-Welch algorithm. An inter- 
esting and slightly different view of the EM algorithm, which leads also 
to incremental variants, can be found in Neal and Hinton (19931, where 
X can be interpreted as representing the states of a statistical mechanical 
system. If the energy of a state is measured by its negative log likelihood, 
then 1.6 can be seen as a double minimization step on the corresponding 
free energy function. Any algorithm that increases the function F in 1.6 
(and, as a result, increases also the likelihood of the observation given 
the parameters), without necessarily maximizing it, is called a GEM al- 
gorithm. It can be shown in general (a proof is given in the appendix 
in the HMM context) that the gradient of F and the gradient of the log 
likelihood of the observations given the parameters are identical. A small 
gradient ascent step on the log likelihood must lead to an increase of F. 
Thus, with sufficiently small learning rates, gradient descent on the neg- 
ative log-likelihood and the other related algorithms presented here can 
be seen as special cases of GEM algorithms or approximations to GEM 
algorithms. 

For a specific application, it is natural to ask which of the previous 
learning rules should be used. The answer to this question depends both 
on the application considered, the architecture of the HMM, and possibly 
other implementation constraints, such as the available precision. It is 
clear that 1.3 should play for HMMs the role backpropagation plays for 
neural networks. Indeed, it is well known that HMMs can be viewed as 
a particular kind of linear neural networks. Backpropagation applied to 
these equivalent networks together with the normalized-exponential pa- 
rameter representation leads immediately to 1.3. On the other hand, it is 
easy to see on simple examples that, for instance, 1.3 and 1.5 can behave 
very differently. There are problems, such as those in the area of DNA 
or protein sequence modeling, where the Viterbi paths play a particular 
role and where Viterbi learning may be more desirable. In this context, 
extensive simulation results on one of these smooth algorithms (1.5) can 
be found in Baldi e ta] .  (1993a,b). As in any gradient method, the choice 
of the learning rate is also crucial and may require some experimenta- 
tion. It should also be obvious that, as in the case of neural networks 
and other modeling techniques, the present ideas can easily be extended 
to more complex objective functions including, for instance, regularizer 
terms reflecting prior knowledge on the HMM parameters. The same is 
true also for higher order HMMs. 
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In general, the simple algorithms introduced above should be useful 
in situations where smoothness and/or on-line learning are important. 
These could include 

1. large models with many parameters and relatively scarce data that 
may be more prone to overfitting, local minima trapping, and other 
pathological behaviors when trained with discontinuous or batch 
rules; 

2. analog physical implementations where only continuous learning 
rules can be realized; and 

3. all situations where the storage of examples for batch learning is 
not desirable. 

In the following mathematical appendix, we first show that 1.3 and 
1.3' correspond to gradient ascent on the log likelihood and likelihood, 
respectively. We also give a different derivation of 1.4" and 1.5 as gradient 
descent algorithms on a different objective function. We then examine 
the relation of the algorithms to the Baum-Welch algorithm and to the 
more general EM approach. 

2 Mathematical Appendix 

For brevity, only transition parameters will be considered here but the 
analysis for emission parameters is analogous. In what follows, we will 
need the partial derivatives 

atij atij 
-- - Xti,(l - ti,) and ~ = -Xtj,fjk 
dW, awik 

(2.1) 

Derivation of 1.3 and 1.3' as Global Gradient Descent Algorithms. 
For any path T through the model M and any fixed sequence 0, let 

oy,,o = P ( T .  0 I M) (2.2) 

so that 

(2.3) 

the summation being over all possible paths through the architecture. 
With several training sequences, the likelihood of the model is given by 

(2.4) 
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Since the probability c y , , ~  is the product of all the corresponding transi- 
tion and emission probabilities along the path x, it is easy to see that 

(2.5) 

where c , ; (x )  is the number of times the i -+ j transition is used along the 
path x consistent with the production of 0. From 2.3 and 2.5, 

(2.6) 

where n;,(O) = C,c;;(x)(v,,~ is the expected number of times the i + j 
transition is used to produce 0 in model M. Combining 2.4 and 2.6 leads 
to 

Finally, using 2.1, the chain rule and a few simplifications, we get 

Proposition 1. 

(2.7) 

If in 2.4 we use the log likelihood, then we get 

Proposition 2. 

Clearly, 1.3 is the on-line version of 2.9, 1.3' is the on-line version of 2.8, 
and the temperature parameter X can be absorbed in the learning rate. 
The key conclusive point is that 1.3 corresponds to gradient descent on 
the negative log likelihood and therefore is the most sensible algorithm. 

Heuristic Derivation of 1.4" and 1.5 as Approximate Gradient De- 
scent Algorithms on a Sum of Local Cross-Entropy Terms. Once the 
numbers n f l ( 0 )  have been calculated, the local distance between the cur- 
rent distribution t,, of transitions in the model and the expected distri- 
bution induced by the data can be measured using the cross-entropy 
function 

(2.10) 
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Equivalently, one could consider the local likelihood associated with the 
distribution of the transitions out of state i. The logarithm of this like- 
lihood then yields a term similar to 2.10. The parameters can now be 
updated by gradient descent on H ( n ,  t )  = Co Xi p( n ,  t )  in order to re- 
duce this distance 

(2.11) 

The approximation similar to 2.11 computes only the explicit derivative of 
H ( F I ,  t )  with respect to w,,. All other higher order contributions, associated 
with the fact that a change in f i k  affects all the quantities q(0) ( DH,o/at;k 
is usually nonzero), are neglected. After simplifications, we get 

Proposition 3. 

(2.12) 

Clearly, 1.4” is the on-line descent version of 2.12. Thus 1.4” is the learn- 
ing rule derived by approximating gradient descent on the sum of the 
local cross-entropy terms between the distribution of transitions in the 
model at state i and the expected value of this distribution once the 
data are taken into account. Similar more complex learning rules could 
also be derived by weighting the terms HIo in the sum H [for instance 
by l/Lo(M)]. Again, the temperature coefficient X can be merged into 
the learning rate. The same reasoning using the Viterbi approximation 
yields 1.5 [notice that the instantaneous distribution of transitions out of 
any state along a Viterbi path is a multinomial distribution of the form 
fl] ( tlJ 1. 

Relations to Baum-Welch, EM, and GEM Algorithms. To examine 
the relation of the previous algorithms to the Baum-Welch algorithm, 
it is useful to examine the proof of convergence for the Baum-Welch 
algorithm (Baum 1972). Consider, for a fixed architecture, two models 
M and M‘ with different transitions and emission parameters. M‘ can be 
thought as being the improvement over M that we are seeking. For any 
path K through the model, we can define the probabilities 

Q,,O = P ( T ,  0 I M) and PT,o = P ( K )  0 1 M’) (2.13) 

Assuming, as usual, independence between the sequences, the likelihood 
of each model is then given by 

(2.14) 
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with 

(2.15) 

the summations being over all possible paths ?r through the architec- 
ture. For each sequence, we can then define two probability distribu- 
tions (v,,o/ C, (Y,,o and P,,o/ C, A , o  induced by the two models and the 
sequence 0 over all paths. We can again measure the distance between 
these two distributions using the cross-entropy: 

(2.16) 

The cross entropy being always positive, after simple manipulations we 
get 

which gives 

When M = M’, the right-hand side R of 2.18 is equal to 0. Therefore, to 
find a model M’ with a higher likelihood than the model M, we must 
increase the term Co C,[fY,,Olog~~,,o]/Lo(M) ( in the general EM context, 
this term corresponds to the function F defined above). The Baum-Welch 
algorithm directly maximizes this term. On the other hand, the algorithm 
introduced here in 1.3 is just a gradient descent step toward the maxi- 
mization of this term. Remarkably, therefore, both the log-likelihood 
logL(M) and the right-hand side of 2.18 have the same gradient. 

To see this, one must first observe that the probability , j n , 0  is a prod- 
uct of probabilities corresponding to all the transitions associated with 
the path K and all the corresponding emissions associated with the se- 
quence 0. The contribution to the sum Co C,[(P,?O log /%,o]/Lo(M) from 
the transitions only (there is an additional similar term for the contribu- 
tions resulting from the emissions) can therefore be rewritten as 

(2.19) 

where c i j ( r )  is the number of i -+ j transitions contained in the path K 
and, as above, n ,  is the expected number of i -+ j transitions in model M, 
given the data. It is easy to check that the expression for the probability 
distribution that maximizes Q corresponds to the Baum-Welch algorithm 
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with fi, = Co[n,,/Lo(M)]/ &[n,/Lo(M)] and that, if we use a normalized- 
exponential representation for the parameters w’, the gradient of R is 
given by 

Proposition 4. 

When used on-line, this immediately yields the algorithm in 1.3. Thus, 
the batch version of 1.3 performs gradient ascent on R or on logL(M) 
and leads, for sufficiently small step sizes, to an increase of the likelihood 
unless the gradient is zero. It leads also to an increase of R and, as such, 
can also be viewed as a GEM algorithm. The gradient of the cross-entropy 
term maximized by Baum-Welch is also the gradient of the log-likelihood 
function. Although the proof given here is based on HMMs, the same 
result can be proved similarly in the general EM framework by showing 
that the gradient of the log-likelihood and the gradient of the function 
being maximized during the M step of the EM algorithm are identical. 
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