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Abstract

Knowledge about the distribution of a statistical estimator is important for
various purposes like, for example, the construction of confidence intervals for
model parameters or the determination of critical values of tests. A widely used
method to estimate this distribution is the so-called bootstrap which is based
on an imitation of the probabilistic structure of the data generating process on
the basis of the information provided by a given set of random observations.
In this paper we investigate this classical method in the context of artificial
neural networks used for estimating a mapping from input to output space.
We establish consistency results for bootstrap estimates of the distribution of
parameter estimates.

1 Introduction

Neural networks provide a tool for learning an unknown mapping, say m, from input
space to output space. Like orthogonal series estimates or smoothing splines, neural
networks provide a flexible class of functions which are able to approximate quite
general mappings (Hornik et al., 1989). Therefore, in the presence of noise, they
provide function estimators which are nonparametric in spirit. This feature has been
investigated in detail by White (1990) who showed consistency of the connectionist
function estimators provided that the size of the network grows with the size of the
training set in a suitable manner. As pointed out by White (1989a), a single feed-
forward neural network with independent inputs and noisy outputs is a particular
nonlinear regression model with parameters coinciding with the weights of the net-
work connections. These weights are estimated from a given data set by training the
network. The reliability of these estimates is important for the ability of the trained
network to generalize. White (1989a) has given the asymptotic normal distribution
of the estimated weights, including also the case of misspecifications where the map-
ping m of interest cannot be exactly written as a network function.



The bootstrap of Efron (1979) is an alternative to asymptotic considerations if one
is interested in quantifying the performance of statistical estimates. It is now a well
tested tool in many areas of linear and nonlinear statistics, e.g., in the context of
learning a mapping, for linear regression (Freedman, 1981), nonlinear nonparamet-
ric regression (Hardle and Bowman, 1988), linear time series models (Kreiss and
Franke, 1992) and nonlinear nonparametric time series models (Franke et al. 1997,
Neumann and Kreiss, 1996). The bootstrap provides an adequate and in many cases
better approximation to the actual distribution of parameter estimates than stand-
ard asymptotic considerations. It can be used for calculating confidence intervals
for predictions and critical values for statistical tests, and it is also helpful for model
selection and automatic choice of the amount of smoothing in semi- and nonparamet-
ric situations (Efron and Tibshirani, 1993, Hall, 1992, Shao and Tu, 1995). For the
particular case of a parametric nonlinear regression model, the validity and second-
order efficiency of the bootstrap has been described and investigated in practice by
Huet and Jolivet (1989), Huet et al. (1990) and Bunke et al. (1995). These results
can be applied directly to feedforward neural networks in the correctly specified case,
where the mapping m can be represented exactly by a network of the form considered.

Typically, however, finite-dimensional neural networks used for learning a particu-
lar mapping are misspecified. In this paper, we describe bootstrap procedures for
feedforward neural networks which also cover this misspecified case. For sake of
simplicity we restrict ourselves to networks with only one hidden layer and with
one linear output unit which, for real-valued mappings, already have the universal
approximation property (Hornik et al., 1989). However, our arguments can be gen-
eralized in a straightforward manner to multilayer-multioutput networks, where the
output nodes do not have to be linear. We admit an arbitrary activation function
for the neurons of the hidden layer, satisfying only certain smoothness conditions,
such that our results cover multilayer perceptrons with sigmoid activation function
as well as radial basis function networks with kernel-type activation function.

In recent years, practitioners like Refenes et al. (1996) have already used the standard
bootstrap for, e.g., estimating sampling variablility of neural networks and invest-
igated its performance using simulations. In chapter 2, we provide the theoretical
basis for these applications making the difference to correctly specified nonlinear re-
gression models transparent and discussing some pitfalls related to identifiability of
network parameters. This residual-based bootstrap is compared with the asymp-
totic normal approximation in a short simulation study in chapter 3. In chapter 4,
we present a different "wild” Bootstrap procedure which is able to cope with situ-
ations where the noise in the data and in particular its variance depends on the input.



2 The bootstrap procedure

We consider a training set of independent identically distributed random row vectors
(X],Y;), t=1,...,N, where X; is of dimension p and Y; is real-valued. Suppose we
are interested in the relationship between Y; and X;, and we want to estimate the
conditional expectation of Y; given X; = z (see White, 1989b):

m(z) = E{Y;| Xy = 2}

We assume that the residuals e, = Y; — m(X;) are independent random variables
with mean 0 and finite variance £ {¢?|X; = 2} = o2(x). We want to approximate m
by a single hidden layer feedforward network with H hidden units, H > 1. We write
its output given input x as

H
fu(z,0) =vo+ Z vt (T'wy)

h=1

where ¥ = (w],...,wy,vo,...,vy) is the vector of network weights with w} =
(wop, ... wpr), h =1,...,H, % is the (fixed) hidden unit activation function, and
T’ = (1,2) is the input vector augmented by a bias component 1. The parametriz-
ation of the network function is not unique, as certain simple symmetry operations
applied to the weight vector obviously do not change the value of fy(z,?). For a
sigmoid activation function ¢ centered around 0, i.e. ¥(—z) = —t(x), these sym-
metry operations correspond to exchange of hidden units and multiplying all weights
of connections going into and out of a particular hidden unit by -1. To avoid this
ambiguity we consider only weight vectors ¥ lying in a fundamental domain in the
sense of Riiger and Ossen (1997). For the case of sigmoid activation functions with
Yp(—z) = —p(—=x), this means that we restrict our attention to parameter vectors ¢
with v; > vy > ... > vg > 0. To simplify the proofs, we consider only a compact
subset ®g of such a fundamental domain.

Now, we train the given network to get the nonlinear least squares estimate Jn of
the weight vector, i.e. the solution of
1 N

Dy(9) = ~ Z_;(Yt — fu(X;,9))? = min!

In the correctly specified case where m(z) = fu(z,9Jo) for some Jy € O, it is well-
known from nonlinear regression that v N(dy — ¥g) is asymptotically for N — oo
normally distributed with mean 0 and covariance matrix

G2 [E{V [ ( Xy, 9n)V fu(Xe, On) H 7

Here and in the following, V fi(z,?) denotes the gradient of fy with respect to ¥.
The analogous result for the misspecified situation is given by White (1989a). Here,



there is no true g, but In converges to the parameter of the best network function
approximator for m(z), i.e. to the solution ¥ of

Do(9) = E(Yi— fu(Xs,9))?
- /[(m(m) ~ (2, 9))? + o¥(2)]p(z)de = min!

where we assume that the random vector X; has a density p(x). If the size of the
training set grows (N — o), then v/N(Jy — ) is again asymptotically normally
distributed with mean 0 and covariance matrix A(Jo)~' B(¥9)A(do)~" , where

AW) = E{VH(I)}, B() = E{Vd(?)Vd(I)'},
d(¥) = d(X;,Y;,9) = (Vi — fu(X:,9))2.

Here, V? denotes the Hessian with respect to 9. For these results to hold, some as-
sumptions have to be satisfied:

(A1) The activation function ¢ is bounded and twice continuously differentiable with
bounded derivatives, and m is bounded.

(A2) Do(¥) has a unique global minimum at ¢y lying in the interior of Oy, and
V2Do(¥o) = A(do) is positive definite.

Besides the asymptotic normal distribution, the bootstrap provides an alternative
approximation for the distribution of In — do. Following Huet and Jolivet (1989),
we first consider the following approach which is adequate for identically distributed
noise ;. For initializing the bootstrap procedure, we need any uniformly consistent
estimator my for m, i.e. an estimator for which sup,c.upp{mn(2) —m(z)|} — 0
in probability for N — oc. my could be chosen, e.g., as the type of connectionist
sieve estimator considered by White (1990) where the complexity of the network is
allowed to grow with N, as a spline smoother with roughness penalty converging
slowly to 0, or as a kernel-type smoother with bandwidth decreasing with N. Then,
the noise variables ; can be approximated by

& =Y, —mn(X)), t=1,...,N.

We know from our assumptions that £e¢; = 0. To avoid a systematic error in the
bootstrap we follow Freedman (1981) and center the &; :

1 N
gt:é\t_ﬁé é\k,tzl,...,N.
k=1

Let Fy denote the sample distribution given by &;,...,én. We draw independent
bootstrap errors €7, ..., % from Fy, i.e. for all ¢:

1
¢; = & with probability N k=1,..., .



In the same manner, we draw bootstrap input vectors X;,..., X} randomly with
replacement from Xi,..., Xy, i.e. for all ¢:

X7 = X with probability %, kE=1,...,N.
Finally, we form bootstrap outputs as
Yo =mn(X])+er, t=1,...,N,
to get a bootstrap training set (X7, Y"), ..., (X%, Yx).

The basic idea of the bootstrap is the following. As the ¢; and X; are independ-
ent and identically distributed, their sample distributions approximate for N large
enough the true distributions. Therefore, the ¢} and X; behave similar as the &,
and X;. As, by construction, my is close to m, the bootstrap outputs show similar
random variations as the true outputs. Therefore, the behaviour of estimates like
the weights of a network after training should behave similar for the original train-
ing set and for the bootstrap training set. The random mechanism generating the
bootstrap training set is, however, known to us, and we can repeat the above proced-
ure as often as we like to get a whole family of independent bootstrap training sets
(X5(2), Y (1)), ..., (XX(1),Yx(2)), ¢« = 1,..., B. Using standard Monte Carlo tech-
niques we can mimic the behaviour of any quantity of interest which is calculated
from the training set.

For sake of illustration, let us assume that we are interested in the mean-squared
error

mse(z) = € (m(z) — fu(z,In))?

which we get if we train a network with H hidden units from the original random
training set (X, Y:), ¢ = 1,..., N, and use it to estimate the value m(z) of the
function of interest for given input z. We get a bootstrap approximation for mse(z)
as

mse”™(z) = %;(fn\N(I) — ful(z, 37\72))2

where 3]*\” is the weight vector after training the network using the i-th bootstrap

training set (X;(i),Y,"(i)), t=1,...,N.

Before we illustrate the procedure with some examples in the next chapter, we first
state the results guaranteeing that our above handwaving arguments can be made
rigorous and that the bootstrap really works for neural network function estimators.
We first state a slight extension of White’s (1989a) results on the asymptotic distri-
bution of Jx. In particular, we admit dependence of the noise variance on the input
which we discuss in chapter 4 in more detail.



(A3) X, X, ...areindependent identically distributed random vectors with density
p(x). €1,€39,... are independent random variables and

E{e)Xs =2} =0, E{c}|Xi = 2} = 0Z(x) < 0.

We also impose some further technical assumptions to simplify our proofs. They
could be relaxed considerably without changing the validity of our results.

(A4) (i) o2(z) is continuous and 0 < § < o?(z) < A < oo for all z.

€

(ii) There exist constants C,, such that £ {|&;]"|X; = 2} < C,, < oo is satisfied
for all z, n.

(iii) m is continuous.

In the definition of Dy(?), the expectation is taken over Y; and X;. However, there
is a second natural candidate for an optimal parameter, namely, that value of ¢
which provides the best approximation for a given realization of the input variables

Xi,..., Xn. We consider

S [(m(X0) — fu(Xe,0) + o2(X0)]

t=1

ZIH

and we define ¥ as the solution to the minimization problem

9) — min!
D)= ek

Instead of 1§N — 19, we consider its two components 'gN —dn and ¥y — g separately
which asymptotically are independent.

Theorem 1: Suppose that (A1) - (A]) are satisfied. Then, for N — oo,

1§N—19N ¥ 0
A n) =20 (5 1))

i.e. VN(@N —9n) and vV N(On — ) are asymplotically independent normal random
vectors with covariance matrices ¥y and ¥,, respectively, where

¥, = A(ﬂo)_lBl(ﬂo)A(ﬂo)_l, Yy = A(Po) 7 By(00) A(do) !
with — By(¥) =4- / )V fu(z,9) -V fu(z,9) p(zx)dx

Bm%=4/(().m@ﬁWVm@ﬁ%Vm@ﬁW@Mr

and A(9) = V2Do(9) as above.



As an immediate consequence, \/N(lgN — 1g) is asymptotically normal with mean 0
and covariance matrix Y1 + X,. In the correctly specified case, ¥ is equal to the zero
matrix, as there is no effect due to the randomness of the X;’s, that is dy = ¥g. In
contrast, in the misspecified case the randomness of the inputs causes a difference of
order N~'/2 between the two optimal parameters ¥ and 9.

One manner to prove that the bootstrap works in a particular situation, where the
limit distribution of the quantity of interest is known, is to show that the correspond-
ing bootstrap quantity has the same asymptotic behaviour. Let g*N be the weight
vector after training the network from the bootstrap training set, i.e. the solution of

- 1 N

Dy (9) = = 2200 = fu(X7,9))* = min’

t=1 9€0n
The bootstrap procedure of this chapter is based on the assumption that the distri-
bution of &; does not depend on X;. In this case, the analogon of ¥y is given by the

solution 9% of

196@].]

Di()) = > [(WX:) — u(X;,9)) + a] — min !

where 62 = < SN | &2 estimates 2. In contrast to ¥, ¥4 can be calculated as ry

and 62 are known. To get the bootstrap version of ¥y we have to replace expectation
with respect to the joint distribution of X; and &; by expectation with respect to the
joint distribution of X} and ;. Then, 9 is the solution of

DsW) = € (Y7 — fu(X7,9))"

1 X 2
= — 7 — 19 52 = 1 ’
~ ;:1: (i (Xe) = fu(Xe,0))" + 6. = min
as €5 and X are independent and £ e} = #Et = 0. We have to impose an assumption

on muy:
(A5) my is uniformly consistent on the support of p, that is

sup {|mn(z) —m(z)|} = op(1).

z€supp(p)

Then, the bootstrap, described above, works by the following theorem which shows
that the conditional distribution of 3]*\[ — ¥y and 93 — 9§ given the original data
(X1,Y1),...,(Xwn, Yn), from which the bootstrap training sets are generated, co-
incides asymptotically with the distribution of 1§N — dn and Yy — ¥y as given in
Theorem 1.



Theorem 2: Suppose that e; is independent of Xy, t =1,..., N, i.e. in particular
2

ol(z) = o2, and assume (A1) - (A5). Then,

Iy — 0% M 0
'C(W(%—ﬂa)‘(Xl’n)""’(XN’YN)) 7N<0’( 0 22))’

where this convergence holds in a uniform manner for ((X1,Y1),...,(Xn,Yn)) € AN
for a suitable sequence of sets Xy with P(Xy) — 1.

Remark. The bootstrap also works in the case of deterministic inputs zq,...,xy of
the training set which are systematically selected by the experimenter. We have only
to require that the inputs z,..., 2y behave for increasing N similar to a random
sample up to a certain degree. In particular, we need

1 N

& 2 (m(@) = fulze9)” =, /(m(l’) — fu(z,9))*p(x)dz

t=1

for some probability density p(x). If the z; are, e.g. equispaced over a fixed finite
p-dimensional cube C' then the above condition is satisfied for a constant function

p(x) = pe.

Remark. At the beginning of this section, we have restricted the weight vector to a
fundamental domain by, e.g., requiring v; > vy > ... > vy > 0 for sigmoid activation
functions with (—z) = —(z). This avoids those identifiability problems caused by
the common symmetry properties of a feedforward neural network independently of
the function which we want to approximate. It may, however, happen that for the
optimal weights of the parameter vector ¥ certain weights of outgoing connections
coincide, say v, = wvpy1. This situation may happen in practice if the function m
itself has certain symmetries related to the symmetries of . In such a situation,
the bootstrap breaks down if it is used for approximating the random fluctuations
of the weights of connections going into the hidden units no. h and A + 1 provided
one does not take additional precautions to guarantee identifiability. To illustrate
the problem, let us consider m(z) = (1 4+ z) 4+ ¢(x — 1) for the centered logistic
function ¢(u) = (1 4+ e7*)7' — % m is itself a network function for H = 2 hidden
units with wj, = wj, =1, wj, =1, wg, = =1, vo =0, v; = vy = 1, and m
is symmetric around 0. The estimate my(z) will have similar properties as in the
case of identifiable parameters of the network. If we train the network repeatedly,
using independent bootstrap samples, we get randomly wj, ~ 1, w3, ~ —1 and
Wy, ~ —1, w, ~ 1 with approximately equal probabilities. Therefore the bootstrap
estimate of the variance of those weights is too large due to the nonidentifiability
of the parameters of m and the corresponding approximate nonidentifiability of the
parameters of the network which provides the best approximation of my. In practice,
it is easy to detect such situations as they are characterized by almost identical



bootstrap estimates of outgoing weights, say v; (i) ~ v;,(z), 1+ = 1,...,B. To be
more precise one can check if the differences vy(:) — v, ,(¢), ¢ =1,..., B, are small
compared to the sample standard deviation of v;(¢) and v, ,(z), ¢ =1,..., B, and in
such a case take additional precautions to make the parametrization of the network
function by its weights unique.

3 A bootstrap procedure for input-dependent noise

The bootstrap procedure of chapter 2 can be applied only to situations where the
noise ¢; does not depend on the input, i.e. if it is additive in the sense of Murata
et al. (1994). If we consider their general model, e; = ;(X;) and, in particular,
its variance o2(X;) = £ {c?|X;} depends on the input X; which is a common situ-
ation in many practical problems. One way to bootstrap function estimates under
that circumstances is the “wild bootstrap” or “external bootstrap”. In the context
of nonparametric nonlinear regression, which we are considering here, it has been
discussed by Hardle (1990) and Hardle and Marron (1991). For the connectionist

regression estimate, it has the following form.

We generate independent and identically distributed random variables ny,...,nn
with mean 0 and variance 1. Then, with & = Y, — my(X;) as in chapter 2, we
draw pairs (X}, &) randomly from the set {(X1,&1),...,(Xn,én)}, L. for all t =
1 N :

ge ey

1
(X[, &) = (X, &) with probability N k=1,...,N.

We transform & randomly by multiplying it with »;, which does not change the mean
and the variance. Then, we define bootstrap outputs as

In contrast to the standard bootstrap of chapter 2, the bootstrap noise ef = n; - &5 is
generated in a manner depending on the bootstrap input X; to reflect the depend-

ence of ¢; on the input in the original training set.

Let 19]"\‘,/3 denote the wild bootstrap version of 1§N. As now the distribution of the &
depends on X3, the wild bootstrap analogon of Dy(¥) is given by

D) = 5 2 (0w (X7) = Ju (X7, 9))* + 2]
and, correspondingly, the analogon of Dgy(¥}) is

Dy) = & (%~ fu(X;,0))



i{(mN X)) fH(Xt,ﬁ))Q +9 (mN(Xt) —fH(Xt,ﬂ))étS - nf}

t=1

5 [(mw X,) fH<Xt,z9))2 N 53] |

t=1

2= ==

They differ from D} (9), Dg(9) of chapter 2 only by terms not depending on ¢, and,
therefore, the wild bootstrap versions 9% 2, 9B of Jx, 1y coincide with 9%, 93 of
chapter 2. Analogously to Theorem 2, we obtain consistency of the bootstrap.

Theorem 3: Suppose that (A1) - (A5) are fulfilled. Then,

@WB 9WB

(W {agn i) ) (055, )

where this convergence holds in a uniform manner for ((X1,Y1),...,(Xwn,Yn)) € An
for a suitable sequence of sets X with P(Xn) — 1.

4 Two numerical examples

In this section we present the results of a small simulation study to illustrate the
performance of the common residual-based bootstrap of chapter 2 and of the wild
bootstrap of chapter 3. In both cases we consider a feedforward neural network with
one hidden layer and complete connections. As the sigmoid activation function, we
choose the centered logistic function

1 1

1 +e = 2

Y(z) =
The generation of the data and the training of the network have been done using

GAUSS 3.1, where, in particular, we have used the BFGS-method as a batch mode

algorithm for determining the network weights.

As a first example, we consider as the true function to be estimated
m(z1,22) = (1 = 27)4 + 21/2,
which is shown in Figure 1.

[Please insert Figure 1 about here]
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We approximate m by a network with 2 hidden units, that is
2
f(z,9) = vo + Z vt (wor + WiRT1 + WopTa) .
h=1

Figure 2a shows the best approximation of m by f(z, ), where

1 1
.190 = arg n’%ﬂln/ / |m(£l?) — f($719)|2dl',
—1J-1

corresponding to inputs X; = (X, Xv2) which are uniformly distributed over the
square [—1,1] x [=1,1]. The difference between m and f(.,9o) is displayed in Fig-
ure 2b.

[Please insert Figures 2a and 2b about here]

We have to estimate the 9-dimensional parameter vector ¥ = (wo1, w11, war, Woz, W12,
Wag, Vo, U1, v2)". We use the training set (X1, Y1),...,(Xn, Yy) with sample size N =
100 which obeys the regression model

Y = m(Xy) + ey,

where X; ~ Uni f([—1,1]?) and e ~ N(0,(0.1)?) are all independent. To approxim-
ate the true distribution of ¥5 — g, we carried out 500 Monte Carlo runs.

To find a typical bootstrap distribution £ (1§J*V — 95 (X1, Y1), ..., (X, YN)), we first
looked for something like a “most typical” of our 500 samples. We defined this most

typical sample as that one which minimizes the difference between the loss H@N — |2
and the mean of all of them. Based on this particular sample, we constructed 500
bootstrap samples (X7 (7), Y7*(1)), ..., (Xi50(2), ¥15o(2))), e = 1,...,100, according to
the description in Section 2. For my we used a Nadaraya-Watson kernel estimator
with bivariate Gaussian kernel and bandwidths #; = 0.2 and hy = 1.0. For each of
the bootstrap training sets we calculated the bootstrap estimate 3]*\,2, which leads

to an estimate of £ (3}\7 — 5[ (X1, Y1),..., (Xn, YN)). Finally, we also consider the
asymptotic limit distribution of \/ﬁ(@N — 1g) as given by White (1989a).

Figure 3a shows estimates of L£(w2; — wq1) (solid line), of L(w}, — w3 [(X1,Y1),. ..,

(Xn,Yn)) based on the most typical sample (dashed line) as well as the cumulative
distribution function of N (0, (X1 + X3)a3/N) (dashed-dotted line). Estimates of the

corresponding densities are displayed in Figure 3b.

[Please insert Figures 3a and 3b about here]

Analogously, Figure 4a shows estimates of L(|wg1 —wa1]), L(|W3, —wh| [(X1,Y1),. ..,
(Xn, Yy)) and |N(0, (X1 + ¥2)33/N)|, whereas corresponding estimates of the dens-
ities are displayed in Figure 4b.

11



[Please insert Figures 4a and 4b about here]

Generally, we observed a surprisingly good approximation of the true distributions
by the bootstrap and the normal approximations. For the other network weights we
got similar results, which seems to indicate that the bootstrap of chapter 2 works
reasonably well even for moderate sample sizes.

As the second example, we consider heteroscedastic residuals ¢;. In this case, neither
the standard asymptotics of White (1989a) nor the residual-based bootstrap of
chapter 2 are applicable. To facilitate the graphical representation of the results
we consider a one-dimensional input z. As the true function to be estimated we
choose the bump function
1 2

m(z) = % + §L,o(8$), —1<z<1,
where ¢ denotes the density of the standard normal distribution. As a training
set, we use independent identically distributed (X1, Y1),...,(Xn,Yy) with N =100
where Xi,..., Xy are uniformly distributed over [—1, 1] and

Vi = m(Xy) + &

with independent zero-mean Gaussian residuals ¢1,...,eyx with standard deviation
9 1 1 1 )
(E{ei/Xe})7 = a(Xi) = £1/0.00 + (5 + m(Xy))

i.e. the variance of a residual is large if the function value to be estimated is large
which is a typical heteroscedastic situation. As the basis for the wild bootstrap,
we consider a "typical” sample selected in a similar manner as in the first example.
Figure 5 shows these data, the true function m and the Nadaraya-Watson kernel
estimate my with bandwidth 0.07.

[Please insert Figure 5 about here]

We approximate m(z) by the network function

f(x,9) =vo+ Y vp o (won + wipz),

h=1

which provides quite a good fit for appropriately chosen weights. We train the cor-
responding network with 3 neurons in its hidden layer and consider the estimates
[z, 1§N) at the points z; = —1 4+ 1¢/50, ¢ = 0,...,100. We are interested in con-
fidence intervals for m(z;), ¢ =0,...,100. Figure 6a shows the true 90%-confidence

12



intervals joined to form a band together with the true function m based on a Monte
Carlo simulation with 200 independent runs.

[Please insert Figure 6a about here]

Based on the one "typical” sample, we approximated the distribution of f(ZL'Z,IgN)
by means of the wild bootstrap of chapter 3 with standard normally distributed ;.
Using 500 bootstrap replications we determined 90%-confidence intervals as above.
Figures 6b and 6¢ show these bootstrap confidence intervals together with the kernel
estimate my and with the true function m, resp. For sake of better comparability,
Figure 6d shows the true confidence band (solid lines) and the bootstrap confidence
bands (dashed lines) in one plot.

[Please insert Figures 6b-d somewhere here]

The wild bootstrap captures the heteroscedasticity of the data quite nicely, and it
provides quite a good approximation to the true confidence intervals. There are
only two problematic areas as can be seen from Figure 6d: at the right end and
around the peak. The former defect is easily explained as we have not corrected
the initial kernel estimate my for the well-known boundary effects for ease of calcu-
lations. Using boundary kernels would immediately improve the estimate my and
the bootstrap confidence intervals around the boundary. The fact that the upper
limits of the bootstrap confidence intervals around the peak are too large is due to
pure chance. Looking at Figure 5, it can be seen that all the residuals (with one
exception) around the peak happen to be positive and rather large, and they draw
the peak of mpy and the corresponding upper bootstrap confidence limit upwards.
Apart from these explainable effects, the wild bootstrap provides a good method to
quantify the reliability of neural network function estimates in the presence of het-
eroscedasticity. Mark also, that the wild bootstrap does not assume any knowledge
about the particular form of the dependence of the variability of ¢; on X; at all as,
e.g., a classical parametric asymptotic approach similar to White (1989a) but using
nonlinear weighted least-squares would have to.

5 Proofs
Proof of Theorem 1:
(i) It is easy to see that for all § > 0 and X < oo
P(ID () — Dy ()] + [Dn(8) — Do(0)] > N*=3) = O(N)
uniformly in @ € O, using (A1), (A3), (A4). Since Dy, Dy and Dy are con-

tinuous in ¥, we obtain, by showing that the above result holds simultaneously
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on a sequence of increasingly fine grids On C O, that

sup {| D (9) = Dn(9)] + [ Dn(89) = Do(9)]} = o,(1),

’L?E@H

which implies that R
|19N — l9N| + |l9N - 190| = 0p(1).

Hence, by (A2) with increasing probability, Jn and Jy are interior points of
Oy, that is we have in particular that

VDn(Oy) = VD () = VDo(do) = 0
with probability converging to 1 for N — oc.

Hence,

= VDo) (I — 00) + = 32 Vi (Xe, Do) fir(Xerdo) — m(X0) + R, (1)

t=1

R = VDx(In)— VDn(o) — V*Dn(9o)(In — Vo)
+ [V2Dn(90) — V2 Do(90)](9n — Do)
= op([[In — dol])

by (A1), (A3). As
2E{V fu (X, Do) (fu(Xedo) — m(Xy))} = VDo(do) = 0,

the middle term of (1) is Op(N~%/2). Thus, we get
V2 Do(00)(I = o) + 0y([[9 = Vo[) = Op(N7%),
which implies, since V2Dy(0) is positive definite, that
[9n = Dol = Op(N72).

Inserting this into (1), we obtain that

= = ~(TDo(00) ™ 55 35 fr(Xe, Do) (e o) = m(Xe)) + 0, (N2,
i (2)
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(iii) Analogously to the above calculations, we have with probability tending to 1

that
. - 2 N .
0 = VDN(igN) = VDN(lgN) — ﬁ Z5tfo(Xt,19N)
t=1
N 9 N
= VQDo(lgo)(lgN — lgN) - N Z fo(Xta 190) et + R?) (3)

t=1

where, as V Dy () = 0 with probability tending to 1,
Ry = VDx(In)— VDx(dx) — VZDo(do) (I — In)
+ %g&: {VfH(Xtv o) — VfH(XtﬂgN)}
= o(|[0n = Inl) + Oy (0 — Dol INTZ) = o,(|[d — Dv]])-
That means

V2Do(90)(On — On) + 0, (|19 — In]]) = O,(N3),

which implies
1

10n = dx]l = O,(N72),
and therefore,

Oy — Iy = (V2Do(do))” N ZVfH Xy, 00) &+ 0p(N™ %) (4)

t=1

The assertion follows now from (2) and (4) by a multivariate central limit
theorem for functions of i.i.d. random vectors. In particular, the asymptotic
covariance matrix of Jy — Jdx and ¥y — g vanishes as € {&; | X; =z} = 0.

Proof of Theorem 2: This proof is very similar to that of Theorem 1. Since D3 (¥),
Dy (9) and D§(19) converge uniformly to Do(?), one can easily show that

(9% = dol + 193 — do + 195 — Vol = 0,(1). (5)

Then we obtain in complete analogy to the previous proof that

ﬁ(ﬁ(g*fv_%) (Xl,Yl),...,(XN,YN)) 3N<0,(EOT 202))

=5
where Y7 and Y3 are analogous to ¥; and Y, respectively with A*(9) = V2Dg(d)
and

N
Z Xl‘v VfH(Xl‘v ) Ocs
t=1

15



N i(mN Xi) = fH(Xt,ﬁ))VfH(Xt,ﬂ))VfH(Xt,w.

t=1

Because of (5) and (A5), we obtain

N7 =Xi+op(l),

which finishes the proof. [ ]
Proof of Theorem 3: This proof is completely analogous to that of Theorem 2,
and therefore omitted. [ ]
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