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Resumo

RIVA, M. Uma Nova Técnica de Calibração para Segmentação Semântica Baseada em
Grafos. Dissertação (Mestrado) - Instituto de Matemática e Estatística, Universidade de São Paulo,
São Paulo, 2018.1

Apresentamos um método de calibração da segmentação semântica de imagens baseada em Grafos
Estatísticos-Relacionais (GERs), com um foco particular em Imagens de Ressonância Magnética
(IRM) pediátricas. O GER provê uma representação de uma cena estruturada, descrevendo tanto
os atributos de cada objeto de interesse quanto a natureza de seus relacionamentos, por exem-
plo a posição relativa no espaço. Cada vértice no grafo representa um objeto de interesse e cada
aresta representa um relacionamento entre dois objetos. A segmentação semântica pode ser feita
realizando um casamento entre um GER construído a partir de uma imagem observada com um
GER modelo previamente construído. Nós desenvolvemos um método de calibração para verificar
a qualidade da segmentação baseada em GER dado um conjunto de parâmetros, assim como uma
exploração de diversos conjuntos de parâmetros aplicados à segmentação de IRM. Apresentamos
a validade e utilidade da técnica de calibração, junto de resultados preliminares de segmentação
de dados IRM reais. Adicionalmente, discutimos trabalhos futuros na melhoria de segmentação de
dados reais utilizando GERs.

Palavras-chave: métodos estruturais, visão computacional, imageamento de ressonância magné-
tica, segmentação baseada em grafos.

1Este trabalho foi desenvolvido em colaboração com a Profa. Dra. Isabelle Bloch no âmbito dos projetos FAPESP-
ANR #2017/50236-1 e Temático #2015/22308-2.
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Abstract

RIVA, M. A New Calibration Approach to Graph-based Semantic Segmentation. Dis-
sertation (Master’s) - Institute of Mathematics and Statistics, University of São Paulo, São Paulo,
2018.2

We introduce a calibration method for semantic segmentation of images utilizing statistical-relational
graphs (SRGs), with a particular focus on pediatric Magnetic Resonance Imaging (MRI). The SRG
provides a representation of a structured scene, describing both the attributes of each object of
interest and the nature of their relationships, such as relative position in space. Each vertex in
the graph represents an object of interest and each edge represents the relationship between two
objects. Semantic segmentation can thus be performed by matching an SRG built from an observed
image to a previously-built model SRG. We develop a calibration method for assessing the quality
of SRG segmentation given a set of parameters, as well as an exploration of several sets of para-
meters applied to MRI. We present the validity and usefulness of the calibration technique, along
with preliminary results on real MRI data segmentation. We additionally discuss future work on
improving real data SRG-based segmentation.

Keywords: structural methods, computer vision, magnetic resonance imaging, graph-based seg-
mentation.

2Thsi work was developed in collaboration with Prof. Dr. Isabelle Bloch within the scope of the FAPESP-ANR
project #2017/50236-1 and Thematic project #2015/22308-2.
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Chapter 1

Introduction

1.1 Motivation

With the recent advances in medical imaging technology, an immense amount of patient data is
now available to doctors, researchers and health-care professionals. Modern non-invasive techniques
for acquiring data from inside the body, such as computerized tomography (CT) scan and magnetic
resonance imaging (MRI), provide three-dimensional, high-resolution models of organs, bones and
other body structures. However, an increase in data volume means that the time- and work-intensive
method of manual medical image analysis is no longer feasible, requiring the development of faster,
computer-assisted, automatic analysis methods.

Computer-based analysis of MRI data has recently been used in Alzheimer’s disease detec-
tion [WZL+16], breast cancer subtype identification [GZM15], glioma segmentation [BZS+15], left
ventricle segmentation [WPC+15], and many other applications. Methods for automatic segmen-
tation of regions of interest in MRI are many and vary according to their goal: segmentation of
multiple sclerosis lesions [GLFN+13], segmentation of brain tumors [FHHGM01], and detection
and segmentation of necrotic femoral heads [ZSN+04], for example. A large amount of academic
work in this area aims to segment the tissues in a brain MRI (typically but not exclusively white
matter, gray matter and cerebrospinal fluid) [RGC+97, SSLS+01, FSB+02, ZBS01].

Despite significant interest in the area of automatic MRI analysis over the last two decades,
most of the papers published deal with the analysis of standard adults. Thus, cases that diverge
from this norm, such as very young children [DCSA15], whose developing bodies present many dif-
ferences to the commonly studied adult body [DCSA15, NPD+13, HWK+98], are often overlooked.
Additionally, most segmentation methods focus on healthy patients, or on a single anomaly (such
as a specific type of tumor) [HAB17].

There is a demand for methods that are capable of dealing with the large diversity of cases avai-
lable – developing body structures, extraneous elements such as tumors or missing elements such as
organs removed by surgery – in the corporal structure without significant retraining or adjustment.
The analysis of images from such individuals would benefit immensely from the development of a
framework capable of detecting and adapting to these cases.

Recent scientific activity points to various applications of brain MRI to pediatric neuro-oncology,
such as diagnosis and treatment of acute lymphoblastic leukemia [BEG+15], brain tumor analy-
sis [GR17, GMJ+13], the damage of pediatric radiation treatment to neural tissue [MEBT+16,
SLM+13] and early diagnosis of brainstem glioma [PKV+11]. This activity further demonstrates
the necessity of works focusing on methods for automatic pediatric MRI analysis.

1



2 INTRODUCTION 1.3

One potential approach to address the aforementioned aspects relies on the Statistical-Relational
Graph (SRG) [Gra12, GCB14], which is based on combining the supervised recognition of primi-
tive structural elements of a given object and their spatial relationships. In her thesis, Graciano
applies this approach to the segmentation of abdominal organs in normal, adult patient MRIs, uti-
lizing classic probabilistic pattern recognition techniques to attempt to segment organ tissues while
simultaneously considering the spatial relationship between distinct organs in order to improve seg-
mentation quality. We believe this method may be further developed for the semantic segmentation
of liver divisions in pediatric MRIs. Semantic segmentation is the process of finding the distinct
regions of an image, and labeling them, and is explained in further detail in Section 2.1.3.

Applications for pediatric abdominal organ segmentation, with a focus on segmentation of livers
in MRI images, are of particular interest to FM-USP, as this is an important ongoing project. This
application would aid doctors at Instituto da Criança (Children’s Institute, ICr-FM), which require
both an automatic method for diagnosing high iron content in children’s livers without resorting to
biopsies and an automatic method for assessing liver volumetry for organ transplants.

Children with hemoglobinopathies, that is, diseases affecting the red blood cells, are required
to undergo several blood transfusions. Due to the transfusions, a large number of these children
develop iron buildup in hepatic tissue, a condition which is immediately benign but paves the
way for further complications along the patient’s life. However, standard techniques for accurately
measuring iron content in the liver often require liver biopsies, which are both invasive exams, and
may suffer from sampling errors (as only a small sample of the liver is measured, and the iron
buildup may be located elsewhere in the organ) [KGSH90].

Modern techniques allow for an estimate of liver iron content through the use of a specific
MRI acquisition sequence; however, this does require the segmentation of the liver regions by the
radiologist, which is a time-intensive task. Not only this technique has, due to recent advances,
achieved accuracy similar to the biopsies, but it also eliminates the two complications described
above: MRI is completely non-invasive, and it can also map the iron buildup in the entire liver at
once. Additionally, liver transplants often benefit – or even outright require – an estimate of the
volume of the liver subdivision being transplanted. Naturally, such a measure may be extracted
directly from MRI data (as it does contain the volume of each voxel in its metadata); however, this
once again would require the time-intensive task of manual segmentation of the liver subdivision
by the radiologist.

1.2 Goals

The goal of this work is to develop a set of methods for the calibration of statistical-relational
graph-based semantic segmentation of medical images. We propose a new structural method for
model learning and application to medical image semantic segmentation, based on previous work
by [Gra12]. We then propose a new calibration approach to this method, and demonstrate its
applicability in the exploration of parameter sets for SRG-based medical image segmentation.

1.3 Contributions

In this project, we aim to contribute with mathematical models and associated algorithms for
the representation and understanding of features and structural information in relevant data. In
particular, we intend to focus on applications for pediatric abdominal imaging, where the volume
and iron content of liver substructures is an important information for the physician, but expensive
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to manually obtain. The project is being developed in a collaboration with Professors Isabelle Bloch
(Telecom ParisTech), Carlos Moreira Filho, Lisa Suzuki and Marcelo Straus Takahashi (FM - USP).

The process of semantic segmentation of medical images based on the Statistical-Relational
Graph is highly complex in nature, possessing a large amount of variables and parameters. Keeping
this is mind, a calibration technique for the process was devised. This calibration technique intends
to be the cornerstone of all future work in this project involving SRG-based semantic segmentation.
It will both guide the practical aspects of implementation, debugging, visualization and testing,
and the theoretical aspects of proper parameter configuration, analysis of the discrimination of
attributes. Additionally, it will provide a test-bed for all graph-based segmentation ideas, algorithms,
and improvements designed.

The calibration of SRG segmentation is fundamentally centered on providing the full segmenta-
tion pipeline in a controlled environment. By generating synthetic data for use in both training and
testing of SRG techniques, with known and controlled noise profiles, and with good quality measu-
res and knowledge of the expected results, the calibration enables the exploration of the parameters
involved in medical image SRG-based segmentation. It provides measures of each parameter’s ove-
rall estimated quality and of their impact in the quality of the process, both absolute and relative
to one another.

1.4 Organization

This document is organized as follows. Chapter 2, outlines the basic concepts involved in our
project, and reviews related papers on these subjects. Chapter 3 describes the methods and tech-
niques used to pursue the goals of this dissertation. Chapter 4 provides the setup for experiments
conducted, as well as their results and discussion. Finally, Chapter 5 concludes this document, its
results, and discusses related future work.
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Chapter 2

Concepts and Bibliography

In this Chapter we cover important topics related to our project. Specifically, we will cover
the automatic analysis of medical images utilizing computer vision techniques in Section 2.1, and
structural-based or hybrid techniques for representation and segmentation of images in Section 2.3.

2.1 Computer-assisted Medical Image Analysis

Computer-assisted medical image analysis is a significant field in computer science, spanning
more than four decades [SRE12] of work and still extremely active [HLO+18, LKB+17]. As such,
a complete and comprehensive review of the field is out of the scope of this work. This section
will describe the basic concepts involved and focus on papers related to the project’s task, that of
pediatric Magnetic Resonance Imaging segmentation.

2.1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging, or MRI, is a medical image acquisition technique, which is based
on nuclear magnetic resonance. Through the controlled emission of radio waves inside a strong
magnetic field, the nuclei of hydrogen atoms are stimulated, resulting in the emission of measurable
radio frequency (that is, electromagnetic waves with frequency in the megahertz [MHz] range) which
in turn is used to reconstruct images of the interior of the body, with the intensity of each pixel being
dependent on the tissue represented. Different sequences of radio wave emission are able to produce
different contrasts between tissues, by exploiting the properties of nuclear magnetic resonance.

Through the emission and absorption of radio waves, a measurement of the concentration of an
element’s protons on a given tissue is obtained. Many elements may be measured by leveraging their
nuclei magnetic properties – though elements with even atomic number (i.e. number of protons in an
atom) and mass number (i.e. number of protons and neutrons in an atom) may not, as the angular
momentum of neutrons and protons cancel each other out. Hydrogen atoms, however, have an odd
atomic number (1), well-known magnetic properties, and are the most abundant in the body (as
the body is composed primarily of water, which itself is composed of two hydrogen and one oxygen
atom). Thus, medical MRI generally measures the hydrogen content of tissues.

Protons inside atomic nuclei rotate around their axes of orientation, a property known as “nuclear
spin”. As protons are electrically charged, this rotation generates magnetic momentum perpendi-
cular to the axis. This generates a microscopic magnetic field around each particle. Due to the
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6 CONCEPTS AND BIBLIOGRAPHY 2.1

random orientation of each particle, however, the macroscopic ensemble of particles tends to have
no significant magnetic field.

In order to obtain this magnetic momentum in a macroscopic context, the orientation of the
protons may be forcibly aligned by a strong external magnetic field. While under the influence of
a strong external field with a vector of magnetic force ~B0, the resultant spin of all protons tend to
align in the same direction as ~B0, in one of two orientations: parallel (with the same orientation as
~B0) and anti-parallel (with the opposite orientation of ~B0). The parallel protons are in the “state
of minimum energy”, while the anti-parallel are in the “state of maximum energy”.

As these protons are now aligned, their magnetic momenta coalesces. This net magnetization,
defined by M , is in theory directly proportional to the concentration of each specific particle in
a given region and, thus, we are interested in its measurement. Measurement of magnetic fields is
often done through magnetic induction, which requires an alternating magnetic field. However, if
the protons are perfectly aligned to ~B0, M is unchanging. By adding precession to the protons, we
will generate an alternating magnetic field which can in turn be measured.

Radio-frequency pulses are then used to generate a magnetic field ~Bxy, orthogonal to ~B0. All
protons possessed of spin are precess around the axis of ~B0 with a specific frequency ω0, given by
Larmor’s Frequency: ω0 = −γ| ~B0|, where γ is a given particle’s gyromagnetic ratio (for an hydrogen
atom 1H, γ = 42.58MHz/T ). By alternating ~Bxy at a given particle’s Larmor frequency, we obtain
resonance, inducing a sinusoidal current at frequency ω0, whose signal M we measure. By keeping
~Bxy active, a greater flip angle (that is, the angle between the precession axis and the particle’s

axis) may be achieved. The highest measured signal, naturally, occurs when the flip angle is 90◦.

When ~Bxy is stopped, the proton rotates back to its original position, spinning around the
axis of ~B0. As it does so, the measured signal decays (as the field no longer alternates), eventually
reverting to zero. This decay is called T1-relaxation. Another effect is also measured: the protons are
all precessing in-phase while ~Bxy is active (if they were not, then the measured signal’s amplitude
would be too small to measure). When ~Bxy is stopped, the proton’s spins go slowly out of phase;
this dephasing process is called T2-relaxation.

As the protons dephase, the transverse component of the measured magnetic field, Mxy, decays

according to the formula Mxy(t) = Mxy0e
− t

T2 , where Mxy0 is the maximum value of the transverse
component (when all protons are in phase). The time taken for Mxy to be equal to 37% of Mxy0

is called T2 or T2, and is highly tissue-dependent, as it is directly related to the environment
surrounding a particle.

As the flip angle decreases, the longitudinal component of the measured magnetic field, Mz,
increases according to the formula Mz(t) = Mz0(1 − e

− t
T1 ), where Mz0 is the maximum value of

the longitudinal component (when the flip angle is 0◦). The time taken for Mz to be equal to 63%
of Mz0 is called T1 or T1, and is related to the viscosity of a given tissue.

Thus, given a specific external field and knowledge of the expected concentrations of hydrogen
in each tissue (often acquired empirically), each tissue in a magnetic resonance image will have
specific T1 and T2 values.

In order to measure these times, a sequence of radio-frequency pulses is applied. The most
common of these sequences is the “spin-echo” sequence, where a 90◦ pulse is applied to flip the
protons, and after a given amount of time t, an 180◦ pulse (the inversion pulse) is emitted to focus
spins that went out-of-phase due to local field discrepancies. After an equal amount of time t, the
signal peaks in an “echo” which allows for measurement of T2 and, as the protons’ spins return to
the longitudinal axis, of T1.
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Depending on the times between the pulses and the measurements, an image may be “T1-
weighted” or “T2-weighted”. These are often treated in much the same way as distinct contrasts for
X-ray, which tissues having which specific intensities depending on the nature of the acquisition.
Generally, T1 images have high values for fat and slow-flowing blood, while having lower values for
tissues with high water content; T2 images have high values for tissues with high water content.
T1- and T2-weighted images of the same region of a single patient can be seen in Figure 2.1.

T1-weighted T2-weighted

Figure 2.1: Comparison of T1- and T2-weighted images. Both slices are from the same region of the same
patient. Images courtesy of FM-USP.

A stronger magnetic field (that is, with a greater magnitude for ~B0) tends to have a higher ratio
of parallel to anti-parallel protons. As the magnetic momenta generated by anti-parallel protons
cancels out part of the momenta generated by the parallel protons, a stronger external magnetic
field results in an increase of the acquired images’ quality. However, there is a practical limit to this:
stronger magnetic fields often require a higher amount of resources to maintain, and the equipment
required for maintaining such a field may overheat the acquisition area above the limits of the
human body.

In addition to the “spin-echo” sequence described above, a great number of pulse sequences have
been proposed, for a wide array of applications. Many are designed to put into evidence an specific
type of anatomical structure, such as hyper-intensifying multiple sclerosis plaques [GPU+05]. Yet
others are used to obtain useful, quantifiable information from the composition of the tissues, such
as iron content [HCH+05].

Through the utilization of a gradient magnetic field, distinct “slices” of a patient may be me-
asured in turn, which are then reconstituted into a 3D image. Due to the nature of this process,
MR images tend to have much higher resolution on the plane of capture than on the others, which
are reconstituted from the acquired slices. Three planes are generally used: the axial, which runs
perpendicular to the axis that runs from head to feet and is the most commonly used; the sagit-
tal, which runs perpendicular to the axis that runs from left to right; and the coronal, which runs
perpendicular to the axis that runs from front to back.

With an accurate and non-invasive view of the interior of the body, MRI is often used in
diagnostic medicine. The investigation of a patient’s anatomy, which may be inferred from the
medical image based on the contrasts between tissues, allows for the discovery and analysis of
a diverse spectrum of pathologies and anomalies, and serves as guidance for many applications,
ranging from pharmacological treatment to surgery planning [Sue02].

Figure 2.2 shows a T2-weighted MRI axial slice of a patient’s lower abdomen, where the liver,
kidneys, spleen, pancreas and gastrointestinal tract can be seen.
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Figure 2.2: Example of a MR image. Some structures are highlighted: the liver in blue; the kidneys in
orange; the pancreas in yellow, the gastrointestinal tract in red and the spleen in green.

2.1.2 Pediatric Magnetic Resonance Imaging

The developing bodies of babies and children present specific challenges to the analysis of medical
images acquired from them. A common hurdle in the analysis of neonatal brain MRI is the inversion
of the contrasts in white and gray matter, which happens due to the process of myelination that
children undergo in their first few years of life [DCSA15]. Figure 2.3 compares a MRI of the brain
of a neonate and of an adult. A general difficulty in the acquisition of pediatric MRI are patient
motion artifacts [DCSA15], that is, image artifacts and noise generated by the patient moving during
said image’s acquisition, which is much more common in infants and small children. Examples of
ringing artifacts caused by motion are presented in Figure 2.4. Finally, the high variability of
the developmental process compounds the intrinsic inter-patient variability, producing significant
corporal variation even among individuals with small age differences [HWK+98, NPD+13].

2.1.3 Semantic Segmentation of Medical Images

In computer vision, segmentation is the process of extracting one or more objects in an image
from the background, and recognition is the process of obtaining useful descriptors or labels for
these objects. Recognition is also called “classification”, as the process of attributing classes to the
objects of interest. We thus define semantic segmentation as the process of segmenting and labeling
object pixels of interest in a given image [MNA16].

For example, given a slice of a Magnetic Resonance Image of the lower abdomen of a person,
we may want to acquire the left and right kidneys. In order to do so, first we must extract our
“objects of interest” – in our case, the kidneys – from the “background” – in our case, the rest of
the image, including the remainder of the body and the black region. In addition to extracting, we
also want to determine which kidney is the left one and which is the right one, labeling them as
such. Figure 2.5 shows the results of these steps.

A great number of tasks in medical image analysis require the segmentation of one or more
regions of interest. The traditional method is manual segmentation, which in many cases is an “easy”
task for an expert – that is to say, while it may be time-consuming, it will rarely be considered
a challenge. However, manual segmentation is both time-intensive and subjective and, as such, is
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(a) (b)

Figure 2.3: Comparison between T1 sagittal brain MR images of (a) a 1-day old neonate; (b) an adult.
Source: [DCSA15]

(a) (b)

Figure 2.4: Examples of ringing artifacts caused by patient motion during capture. (a) T1 sagittal brain
MRI of a 2-day old neonate; (b) T1 axial abdominal MRI of a 12-year old child. Source for (a): [DCSA15]

(a) (b)

Figure 2.5: (a) segmentation of the kidneys, distinguishing which pixels represent kidneys and which re-
present the background, where the “blue” pixels are the kidneys. (b) recognition and attribution of semantic
information to the kidneys, where “green” is the left kidney and “red” is the right kidney.
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affected by often significant inter- and even intra-operator variability [MAT+16]. Thus, there is a
demand for automatic and semi-automatic methods for the segmentation of regions of interest in
medical images. This is reflected by the large amount of work focused on this task, of which we
present some of the most relevant.

Lesage et al. [LAFB16] utilize a method based on particle filtering for coronary segmentation
in three-dimensional CT angiograms. The extraction of fetal envelopes from ultrasound imaging is
explored by Dahdouh et al. [DAGB15], using a segmentation method based on shape priors. Reliable
methods for generating models for dosimetry studies, including organs of interest, are proposed in
[DVO+16], where infants’ 3D MRI data were automatically segmented using the framework detailed
in [DB15].

Jaware et al. [JKZ16] explored a combination of classifiers, including k-Nearest Neighbors,
Multi-Kernel Support Vector Machine and Neural Networks to segment and classify neonatal brain
MRI. K-means segmentation of neonatal brain MRI is explored in Udyakumar et al [USG+16].
Hareendranathan et al. [HZM+16] utilize a prior-based Random Walker segmentation formulation
for infant MRI hip segmentation. Moeskops et al. [MVM+16] propose the use of a deep Convoluti-
onal Neural Network for infant brain MRI segmentation. Weisenfeld and Warfield [WW09] utilize
a classifier fusion-based approach to supervised classification of newborn brain tissues in MRI. In
his thesis, Moeskops [Moe16] proposes three layers of classifiers for infant brain MRI segmenta-
tion, utilizing k-Nearest Neighbors and SVM classifiers. His work mentions the need for proper
segmentation of white matter, gray matter and cerebrospinal fluid in infants’ MRI.

Xue et al. [XSJ+07] utilize Expectation Maximization and Markov Random Fields (EM-MRF)
to solve the problem of infant brain segmentation. Mislabeling detection and local segmentation
thresholds are utilized to minimize errors in the process. The paper mentions many of the problems
with segmenting said images, as the brain undergoes development until the child’s second year and,
as such, any atlas or models must consider age of capture as a fourth dimension. Based on [XSJ+07],
Kuklisova et al. [KMAS+11] built a 4D (age-specific) atlas for fetuses in the third trimester of
pregnancy. Serag et al. [SAB+12] propose a 4D extension of Seghers et al.’s method [SDM+04],
using kernel regression, for building a 4D atlas in the same age range. A subject-specific atlas
approach was proposed by Shi et al. [SFT+10], where later images of a subject were used to build
an atlas for segmentation of the same subject’s neonatal brain MR images. Kim et al. [KFD+13]
propose the use of an Intensity Growth Map, created by establishing voxel-wise correspondence
between manually segmented paired MR images taken at 1 and 2 years old (each pair belonging to
a single subject). The Intensity Growth Map is then used to enhance Expectation Maximization for
1 year old brain MRIs of different subjects. Cardoso et al. [CMK+13] utilize an algorithm based
on maximum a posteriori Expectation Maximization, Markov Random Fields and intensity and
mislabeling correction to segment infant brain MRI. Their work also devotes significant focus on
correctly segmenting abnormal individuals (such as children with ventriculomegaly).

A comprehensive review of liver CT segmentation techniques, before the popularization of deep
learning techniques, may be found in [HVGS+09]. This work focuses on some of the techniques
applied to the SLIVER 2007 Challenge, a MICCAI challenge on liver segmentation which provided
an annotated dataset of liver CT images for participants.

Many works attempt to leverage the greater amount of available data, along with data aug-
mentation techniques, to implement and train neural networks-based segmentation techniques. Due
to a great availability of data, several papers have applied convolutional neural networks to the
segmentation of Computerized Tomography abdominal images [LWH+17, BCDK+16, CEE+16],
as well as brain MRI [ZLD+15, XGB17, HDWF+17]. Milletari et al. [MNA16] have developed a
fully convolutional network for volumetric prostate segmentation in MRI, utilizing data augmen-
tation techniques to enhance a dataset of lower-abdominal MRIs. Virzi et al. [VGM+18] explore
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the use of patch-based pseudo-3D deep learning techniques for the segmentation of vessels, where
distinct neighbouring slices are combined as color channels and fed into an ImageNet-trained neu-
ral network. Avendi et al. [AKJ16] utilizes stacked auto-encoders to infer shapes for deformable
model-based segmentation of the left ventricle in cardiac MRI.

2.2 Fundamental Concepts from Graph Theory

A graph G is defined as a tuple G = (V,E), where V is a set of vertices (sometimes also called
nodes) and E is a set of edges. An edge e ∈ E connects two vertices v ∈ V and, as such, E ⊆ V ×V .
Graphs where edges connect more than two vertices exist, and are called hypergraphs. If V and
E are finite sets, then G is a finite graph. We will use the notations |V | and |E| to indicate the
cardinality of the V and E sets, respectively. |V | is also called the order of G, and |E| the size of
G.

Each edge e ∈ E is associated with a pair of vertices of G and defined as e = (vi, vj), where
vi, vj ∈ V . G is called a directed graph, or digraph, when the pair (vi, vj) is ordered, with vi
representing the start and vj the end of an edge. A digraph is symmetrical if, for each edge (vi, vj),
there is an edge (vj , vi). G is called an undirected graph when the pair (vi, vj) is not ordered, that
is, (vi, vj) = (vj , vi).

Two vertices vi and vj of a graph are called adjacent, connected, or neighbours if and only if
they are extremities of an edge of G, that is, if (vi, vj) ∈ E or (vj , vi) ∈ E. The set NE of vertices
adjacent to a given vertex v ∈ V is defined as NE(v) = {vj ∈ V : (v, vj) ∈ E or (vj , v) ∈ E}. If all
vertices of G share an edge with all other vertices, then G is called fully-connected.

In this work, all graphs presented are finite, directed and symmetrical.

2.3 Structural-based Techniques for Semantic Image Segmentation

When faced with a structured scene – that is, an image representing one or more objects whose
position (or size, or color, or other property) in relation to other objects and the background are
important – humans tend to unconsciously utilize structural information in order to guide the
process of semantic segmentation. In addition, linguistic descriptions of a scene often include said
structural relations: for a related example, “the left kidney is located to the left of the right
kidney, and both are equally spaced from the vertebral column”.

As such, the use of structural relationships to aid in automatic semantic segmentation of images
representing structured scenes are a natural step to explore, and over the years has been shown to
produce interesting results [Vie97, HAB08, Ede99, CR08].

2.3.1 Structural-based Medical Image Analysis

Due to the nature of human anatomy, most medical images are representations of structured
scenes. In fact, structural and relational information is oftentimes essential in the understanding and
analysis of anatomical structures [Jac01]. Thus, there is potential for the development of structural-
based medical image segmentation techniques.

Colliot et al. [CCB06] utilize fuzzy sets to represent structural relations (specifically, spatial
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relations), arguing that said relations are intrinsically imprecise and thus are best represented by
techniques which allow for a degree of uncertainty; the structural information is then utilized to
constrain a deformable model as an external force. Khotanlou et al. [KCAB09] applied this method
to tumor segmentation in 3D brain MRI. A more refined approach based on [CCB06] was proposed
by Fouquier et al. [FAB12] for the segmentation of structures in brain MRI, which automatically
optimizes the sequence of steps to be taken for the best segmentation result possible. Morel et
al. [MXV+16] utilize a max-tree representation to perform semi-automatic segmentation of diffuse
excessive high signal intensity (DEHSI) of the white matter of newborn and premature infants.
These regions of interest are represented as hyper-intense zones inside the white matter, and their
method extracts said regions from within white matter regions.

Graciano’s work [Gra12] is the main basis for this project, formally proposing the use of a graph
for representation of both statistical attributes of the structures of interest and their relationships
in an image, the Statistical-Relational Graph (SRG). An instance of this graph is built in order to
describe and represent the kidneys, liver, stomach and spine in a 2D coronal slice of an abdominal
MRI, and its robustness and quality of representation is demonstrated.



Chapter 3

Materials and Methods

3.1 The Statistical-Relational Graph

In order to fulfill the project’s goals of semantic segmentation of structures of interest in medical
images, there is a need for the design of a suitable graph-based structural model for segmentation
and parts recognition. In order to accurately model and represent the knowledge found in MRI data,
proper understanding of the structural components of the images is required. As shown by [CCB06,
FAB12, MXV+16, NAB13], structural knowledge is of primary importance for the interpretation
of images where intensity and shape may not be sufficient data for an adequate analysis, such as
abdominal and brain MRIs.

To mitigate this deficiency, we propose the usage of graphs and hypergraphs for the representa-
tion of anatomical structures, where each vertex represents a region or structure of interest and the
(hyper)edges represent relations between these (such as relative spatial positioning). An schematic
of such a graph can be found in Figure 3.1. Our challenge is the application of this knowledge in a
way that guides and enhances the image interpretation process.

[Gra12]’s work on structural-statistical representation provides the core method which we im-
plement and explore in this work: the Statistical-Relational Graph, or SRG, which describes objects
in a structured scene using a combination of statistical attributes extracted from each individual
object and attributes extracted from their relationships. We expand the definition of the SRG in
Definition 3.1.1.

An overview of the process of SRG-based semantic segmentation is provided. Initially, a model
SRG is built to represent the template of the scene which we are interested in segmenting; this model
SRG, denoted by GM , is defined in section 3.1.1. When input data is observed, a super-segmentation
algorithm is applied to it, and the resulting regions are used to assemble a super-observation SRG,
denoted by Gsuper and defined in Section 3.1.2. Then, a matching solution between Gsuper and GM

is obtained, denoted by S and defined in Section 3.1.2. S is used to map Gsuper to an observation
graph, denoted by Gobs and defined in Section 3.1.2. Gobs represents the semantic segmentation
of the observed data, according to the model provided. Visual representations of each element are
provided in Figures 3.1, 3.2, 3.3 and 3.4.

13
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3.1.1 Model Description

In order to perform our tasks of segmentation and recognition, we must first build a model
capable of extracting and properly representing the structures and objects of interest. This model
must be able to discriminate precisely between structures, using both statistic attributes from the
structures and the relationships between them.

Definition 3.1.1. Let us formally define the SRG as a sextuplet G = (V,E,AV ,ΘV , AE ,ΘE)
where:

• V is the set of n vertices, V = {v1, v2, ..., vn} in G. Each vertex represents a single part of the
object of interest;

• E is the set of m edges, E = {e1, e2, ..., em} in G. Each edge represents a relationship between
a pair of parts of the object of interest. In the case of hypergraphs, the edges represent relations
among sets of vertices, possibly more than two;

• AV is the set of n random attribute vectors, AV = {a1v, a2v, ..., anv}, where each random vector
aiv is obtaining by mapping the j attributes of the corresponding vertex vi. Thus, aiv : vi 7→ Rj;

• ΘV is the set of the n distribution parameters for the random vectors AV , ΘV = {θ1v, θ2v, ..., θnv},
where each set of parameters θiv corresponds to the random vector aiv;

• AE is the set of m random attribute vectors, AE = {a1e, a2e, ..., ame}, where each random
vector aie is obtaining by mapping the k attributes of the corresponding edge ei. Thus, aie :
ei 7→ Rk;

• ΘE is the set of them distribution parameters for the random vectors AE, ΘE = {θ1e, θ2e, ..., θne},
where each set of parameters θie corresponds to the random vector aie.

When building a SRG for an application, the attributes chosen for extraction for both structures
(represented by the vertices) and their relationships (represented by the edges) must be capable of
properly discriminating that which they represent. Thus, the task of attribute definition is often
heavily dependant on domain, as each particular application may be benefited by specific sets of
attributes.

Expert knowledge is often useful in attribute definition, as the task of semantic segmentation
often resembles the experts’ reasoning process; if, for example, a radiologist usually determines that
an hepatic vein is the “brighter” region “inside” the liver, then we can infer that intensity, position,
relative position and contrast between structures are useful attributes for this given problem.

Once the attributes are defined, a model must be built in order to represent the “expected”
scene. This model graph acts much like a template, and future observations of unknown data will
be compared against it. Proper model building is important for achieving the task of segmentation
and recognition using the SRG, but is not in the scope of this dissertation. This task will be
addressed in more detail in future works in this project. In this work, a model is learned through
the extraction of relevant attributes from a manually-annotated image. This process is schematized
in Figure 3.1.

Definition 3.1.2. Let us formally define the model graph as a Statistical-Relational Graph GM =
(VM , EM , AVM ,ΘVM , AEM ,ΘEM ) where:

1. each vertex in VM represents an object of interest in the represented scene;
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2. each edge in EM represents a relationship between two objects of interest in the represented
scene;

3. each random attribute vector in AVM and corresponding distribution parameters in ΘVM

represents the template or expected value of the attributes of each object in the represented
scene;

4. each random attribute vector in AEM and corresponding distribution parameters in ΘEM

represents the template or expected value of the attributes of each relationship between two
objects in the represented scene.

Figure 3.1: Schematic representation of the learning and construction of the model graph GM from a set
of annotated images.

3.1.2 Semantic Segmentation of Observed Data

Observation data is acquired in the form of an image to be segmented. It is in our interest to
utilize the SRG in order to achieve proper and accurate semantic segmentation of the structures of
interest in this data. We do this by building an observation SRG Gobs based on the input image,
and attempting to match this new graph with the model SRG GM .

Super-segmentation

To generate an observation graph, we first apply an automatic super-segmentation method,
such as the watershed, which will divide the image into several sub-regions. This method will
often split the actual regions of interest into several sub-regions, but it should contain the actual
boundaries between regions as well. By extracting the proper features, we can build a SRG from this
super-segmentation, which we will call the super-observation graph or Gsuper. Thus, the problem of
matching the observation to the model is transformed into the problem of mapping which vertices
in Gsuper should be merged.

Definition 3.1.3. Let us formally define the super-observation graph as a Statistical-Relational
Graph Gsuper = (VS , ES , AV S ,ΘV S , AES ,ΘES) where:

1. each vertex in VS represents a subregion of the scene, as determined by the super-segmentation
algorithm;
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2. each edge in ES represents a relationship between two of the subregions in VS;

3. each random attribute vector in AV S and corresponding distribution parameters in ΘV S re-
presents the attributes of a given subregion ViS;

4. each random attribute vector in AES and corresponding distribution parameters in ΘES re-
presents the attributes of a given relationship between two subregions EiS.

Figure 3.2: Schematic representation of the super-segmentation of an observed image and construction
of the super-observation graph Gsuper. Edge information (name Eij, random vector AijE and distribution
parameters ΘijE) are omitted from the figure for clarity.

Observation solution

In order to compare the observed image with the model graph GM , we must build an observation
graph Gobs with the same number of vertices as the model. This Gobs is representative of our
segmentation and its quality will be measured by direct comparison with GM , through the use of
some sort of cost function. The observation graph is built by matching each vertex of Gsuper with
a vertex in GM – producing a matching solution S – and joining all vertices matched to the same
label. The matching solution should, optimally, result in an observation graph similar to the model
graph. This process is schematized in Figure 3.3.

Definition 3.1.4. Given a super-observation graph Gsuper with |Vsuper| = n, we can define a
solution S which maps every vertex of the Gsuper to an observation graph Gobs with |VO| = |VM | = m
as:

S = [s1, s2, ..., sn], si ∈ {1,m} (3.1)

Each vertex viO in the observation graph represents the union of all subregions sj of Gsuper where
sj = i.

Definition 3.1.5. Given a super-observation graph Gsuper and a solution S, let us formally de-
fine the observation graph as a Statistical-Relational Graph Gobs = (VO, EO, AV O,ΘV O, AEO,ΘEO)
where:
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1. each vertex in VO represents an approximation of an object of interest in the represented scene;

2. each edge in EO represents a relationship between the approximations of two objects of interest
in the represented scene;

3. each random attribute vector in AV O and corresponding distribution parameters in ΘV O re-
presents the estimate of the attributes of each approximate object in the scene;

4. each random attribute vector in AEO and corresponding distribution parameters in ΘEO re-
presents the estimate of the attributes of each relationship between the approximations of two
objects of interest in the scene.

Figure 3.3: Schematic representation of the construction of a solution S which matches Gsuper to the model
graph GM , and from S and Gsuper builds the observation graph Gobs.

Matching Optimization Algorithm

S must be initialized with a given set of values, or predictions. These may be further modified
by improvement algorithms, which will attempt to replace predictions in S in order to find a better
solution (i.e., one with a lower matching cost). As mentioned above, optimally, we wish to find the
solution S which generates an observation graph Gobs as close to the model graph GM as possible,
that is, whose random attribute vector distributions are as close to the model’s distributions as
possible.

Thus, we may phrase the problem of searching for the optimal S as finding the Gobs with the
highest probability of being equal to GM , or of maximizing P (Gobs = GM ). However, measuring this
probability directly requires knowledge of ΘV and ΘE , the parameters that control the distribution
of the attributes. The stochastic learning of these parameters is currently the subject of other
works related to this project. As such, lacking this knowledge, the value of P (Gobs = GM ) must be
estimated through other means, such as the computation of a “matching cost” [CJBBL05].
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Given the properties of the SRG presented so far, we can infer that the quality of the process of
semantic segmentation of an image using the SRG is dependent on two major steps: the quality of
the super-segmentation algorithm, as the final regional borders are directly dependent on the super-
segmentation subregions borders; and on the solution S, which fundamentally joins the subregions
into the expected regions, producing an observation graph Gobs which should both describe the
observed scene correctly, and be as close to the model graph GM as possible. Thus, the step of
determining and improving the matching of the distinct graphs Gsuper and GM – represented by
the solution S, and whose quality is measured by the matching cost C(S) – is of utmost importance.

Several graph matching algorithms have been proposed in the literature, aiming to find a suita-
ble matching solution between distinct graphs based on some sort of objective function (such as the
matching cost). [CJBBL05], in particular, explores and compares several sets of algorithms, such
as tree search algorithms (where each node of a search tree represents a possible match between
a super-observation vertex and a model vertex); genetic algorithms, where individuals represent
potential solutions and are evolved against the objective function; and estimation of distribution
algorithms, stochastic search strategies not unlike genetic algorithms, which perform evolution th-
rough estimation of the probability distribution of the fittest individuals.

However, while of great interest to the overall project, such techniques and algorithms are beyond
the scope of the current work, which aimed to implement a minimally-viable version of the SRG
semantic segmentation process. As such, a brute-force greedy substitution algorithm was proposed,
designed and implemented for the application of semantic segmentation in MRI and calibration
approaches. This algorithm and its properties are described and discussed in Section 3.3.6.

Matching Cost

To evaluate the quality of a solution S, a cost function C(S) must be established. This cost
function must be able to properly measure the similarity between Gobs and GM : it should be zero
when Gobs = GM , and it should be lower the more similar Gobs is to GM . The cost function
is utilized as a proxy to reflect P (Gobs = GM ); while this may appear incongruent at first, higher
costs represent lower probabilities of similarity and vice-versa (with C(S) = 0 representing P (GM =
Gobs) = 1) and, as such, the estimation of the probability is given by P (GM = Gobs) ∼ βC(S)−1,
where β is a scale factor. This is schematized in Figure 3.4.

The adopted cost of a solution S is defined as

C(S) = α
1

n

n∑
j=1

cV (sj) + (1− α)
1

n2

n∑
j=1

n∑
k=1

cE(sj , sk) (3.2)

where α ∈ [0, 1] is the weight of the vertex cost; the costs between vertices sj in Gobs and sj in GM ,
cV (sj), is defined as

cV (sj) =
∑
a∈AV

αada(sja) (3.3)

and the cost between the edges {sj , sk} in Gobs and {sj , sk} in GM , cE(sj , sk), is defined as

cE(sj , sk) =
∑
a∈AE

αada(sja, ska) (3.4)

with da being the distance function corresponding to each attribute a and αa being a customizable
parameter, used for tuning the weight of the distance between each attribute a in the final cost.
Note that

∑
a∈AE

αa =
∑

a∈AV
αa = 1. Experiments in Chapter 4 utilize the Euclidean distance as

d for all attributes, unless explicitly stated otherwise.
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It is important to mention that this cost requires the application of some normalization techni-
que, in order to avoid attributes with a higher dynamic range dominating those with smaller values
and variability. This is further detailed in Section 3.3.3.

Figure 3.4: Schematic representation of the assessment of matching solution S, through the estimation of
the probability that Gobs is equivalent to GM .

3.2 Calibration of the SRG

In Section 3.1, we describe the Statistical-Relation Graph and its many components. Given its
inherent complexity, a set of parameters must be set for its proper utilization. Those are:

• which attributes should be extracted for AV and AE ;

• which super-segmentation algorithm to utilize, and its own parameters;

• which distance function da to utilize for each attribute a ∈ AV
_AE ;

• which algorithms to use to both initialize and improve S.

Given the many degrees of freedom available and the lack of literature in using the SRG for
the task of medical image segmentation, a method for calibrating these parameters or, at least,
assessing the quality of a set of parameters, was deemed necessary.

The utilization of synthetic data, with known truth values and controlled noise, allows for
the determination of the quality of a set of parameters, measured as the difference between the
prediction and the ground truth (both qualitatively, with visualizations of the results and the
truth, and quantitatively using measures such as the similarity index, detailed in Section 3.2.1).
This may be further developed to a method akin to a musical tuner, which both assesses quality
and provides guidance on how to improve the parameter choice. An example of synthetic data, both
clean and noisy, simulating an organ and a vein inside a body, is presented in Figure 3.5.

Additionally, the use of controlled data with known expected results is a great aid in the testing
and debugging of the implementation of a SRG-based segmentation system.

3.2.1 The Calibration Pipeline

In order to obtain useful results from the calibration, a pipeline must be observed. First, a
proper synthetic phantom must be generated, capable of simulating the real-world scenario but
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(a) (b)

Figure 3.5: Synthetic liver phantoms, used in the calibration of the SRG, simulating a darkened organ and
a bright vein. The background has been omitted for visualization purposes. (a) clean; (b) with noise.

simple enough for easy analysis. The phantom’s true labels must also be generated. Second, a noise
profile must be determined, and the generated noise may be added to the phantom. This aims to
simulate the difficulties in the acquisition of real images, often fraught with noise and artifacts.
Third, a model SRG must be learned, using a model learning technique. Fourth, we apply the
process of segmenting and matching the observation graph. Finally, we assess the quality of the
results found. These steps are detailed in the following sections.

Phantom Generation

The generation of a phantom consists of building a three-dimensional matrix of values, or simply
“image”, simulating but simplifying the conditions found in real-world MRI data. In addition, a set
of annotations must also be generated, correctly labeling each voxel as belonging to the represented
class.

In keeping with the project’s applications, a phantom representing the liver and the Vena Cava
inside a “body”, itself inside a black background, was generated to simulate a T2-weighted MRI.
All elements are homogeneous in intensity (that is, “color”). This phantom is depicted in Figure 3.5
(a). Its details may be found in Table 3.1.

Table 3.1: Details of the liver phantom, generated for the calibration. See Figure 3.5 (a).

Structure Shape Dimensions Center Intensity
Background Rectangular prism 300× 300× 50 (150, 150, 25) 0.0

Body Rectangular prism 200× 200× 50 (150, 150, 25) 0.5
Liver Truncated sphere 101× 101× 30 (150, 130, 28) 0.3

Vena Cava Rectangular prism 20× 20× 45 (150, 180, 22.5) 0.8

When utilizing positional attributes, such as the centroid of a region, it is important to ensure
that said attributes are discriminant for each class. In order to do so, enveloping structures such
as the background or the body (which envelop the body and the organs, respectively) are often
split into several classes. For calibration as related to MRI segmentation, we split the background
into two distinct regions separated by the sagittal (that is, X,Z) plane, resulting in an anterior
background and a posterior background; we also split the body into eight distinct regions utilizing
all planes centered on the body’s centroid. This process of class splitting can be seen in Figure 3.6.
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Unified Split

Figure 3.6: Representation of the body and background splitting process. The upper images are the central
axial slices of the phantom. The leftmost images show the background (in black) and the body (in beige);
the rightmost images show the background split in two (in black and grey) and the body split in eight. The
background is omitted from the 3D visualizations.
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(a) (b)

Figure 3.7: Application of the FSP noise profile in a image. (a) clean slice; (b) noisy slice.

Noise generation

In order to approach the diverse conditions found in real MRI data, the calibration includes
the generation and application of controlled noise to the phantom, which enables stress-testing
the SRG segmentation process. Noisy phantoms may be used both as model images – to calibrate
model learning techniques and algorithms – and as observation images – to calibrate the observation,
segmentation and recognition process.

With the intention of simulating one of the most daunting aspects of abdominal MRI segmen-
tation, the presence of a great number of extraneous elements inside both the background (that
is, the many organs that are not of interest comprising the rest of the body) and the foreground
(that is, the diverse structures, such as veins, inside the region of interest), the “Fat Salt & Pepper”
(FSP) noise profile was designed.

To generate FSP, we first define the “amount” of voxels to become new, noisy elements, which
we call p; and the “radius” of all noisy elements, which we call r. We then convert p randomly
chosen voxels to intensity 1.0 (the white “salt”), and other p randomly chosen voxels to intensity 0.0
(the black “pepper”). Finally, we apply morphological dilation with a 4-neighborhood to both salt
and pepper voxels r times (the “fattening”). The end result is a series of black and white “bubbles”
in the whole image, as can be seen in Figure 3.5 (b). Most of our applications additionally opt to
remove any bubbles left in the black background, as large artifacts in real MRI backgrounds are
quite rare. The results of this process on a 2D image can be seen in Figure 3.7.

Additional noise profiles, to be used separately or in conjunction, have been imagined, but
left as future work. These include Gaussian noise profiles, to simulate acquisition noise in MR
machines with smaller magnetic fields; and noise profiles which aim to simulate the Gibbs ringing
artifact [BZ15], utilizing operations in the Fourier space.

Model Learning

The learning of a proper model graph, capable of accurately describing the objects of interest in a
wide array of distinct images, is an essential step for the application of the SRG in the segmentation
and recognition of real images. Thus, we must be able to assess the quality of any model learning
techniques developed. However, as stated in Section 3.1.1, model learning is beyond the scope of
this dissertation and will be addressed by future works in the project. As such, currently the only
method utilized in calibration is the extraction the model from the clean phantom, utilizing its true
labeling as basis.
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However, the definition of the model also includes the definition of the attributes to be consi-
dered, both AV and AE . Different sets of attributes have different capabilities for description of
the scene, its objects and their relationships. As such, the set of attributes to be used is an impor-
tant parameter, whose quality the calibration process aids in assessing. Once defined, all desired
attributes are computed and the model graph is generated.

Observation and Segmentation

Observation, segmentation and recognition of images are the steps containing the greatest num-
ber of parameters and, as such, tend to be the main focus of calibration. Observation starts with
the observation image – typically, the phantom generated in the first step, with the addition of
noise from the profile generated in the second step.

Then, the chosen super-segmentation technique is applied. This is a significant calibration pa-
rameter, as improper super-segmentation may complicate the graph matching, or even render it
unfeasible. Through the use of different amounts of noise, and by utilizing the ground truth to
guide the matching step, we may specifically assess the quality of the super-segmentation techni-
que, by measuring how close the borders found match the ground truth borders.

In sequence, we must define two parameters simultaneously: the attribute distance function
da for each attribute a, and the algorithms for initialization and improvement of the matching
solution S. These are the core of the segmentation step, as it is expected that after initialization
and improvement, S will contain an accurate segmentation of the observed image, based on the
previously established model.

Quality Assessment

The final step, and arguably the main goal of the calibration, is the assessment of the quality
of the segmentation result. Given the output of the entire pipeline, we are interested in examining
its accuracy and applicability both qualitatively (by providing visualization capabilities) and, most
importantly, quantitatively. In order to do so, we utilize the similarity index:

Sl =
2|Tl ∩ Pl|
|Tl|+ |Pl|

, l ∈ {1, ..., |VGM
|} (3.5)

where Tl is the true binary mapping of the single label l, Pl is the predicted binary mapping of
the same label, and | · | is the cardinal. While not a true distance metric (as it does not satisfy
the triangle inequality), it is nonetheless commonly used to measure the quality of a given label’s
prediction in the context of image segmentation [CCB06].

3.3 Semantic Segmentation of MRI using the SRG

As shown by [Gra12, GCB14], the SRG is capable of properly describing distinct structures of
interest in abdominal MRI, along with their spatial relationships. Thus, by utilizing the process
described in Section 3.1 with an adequate set of parameters and a proper model, unknown MRI
images may be automatically segmented.
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3.3.1 MRI Data

The main source of data for this project is the Instituto da Criança (ICr-FM), with support from
Professors Lisa Suzuki and Marcelo Takahashi. Abdominal MRI of twelve patients, ranging from
four to eighteen years old, were acquired for use in this project. All acquisitions were performed
using ICr’s Philips Ingenia (1.5T) machine. Three sequences were acquired:

• A Dixon sequence [Dix84], which is a T1-weighted sequence that produces four complemen-
tary mappings; this sequence has a resolution of 1.21 x 1.21mm per slice, 2.5mm inter-slices;

• A T2 sequence; this sequence has a resolution of 0.72 x 0.72mm per slice, 5mm inter-slices;

• A multi-echo (ME) sequence, which contains twelve captures of a few (four to five) slices;
this sequence will be used for determining iron content in the liver.

The acquisitions from patient #4, a healthy, 11-years old female patient, were chosen for use in this
dissertation. This decision stems from the clearer images, with visually lower amount of noise and
artifacts. We focus on the T2 sequence (with 42 slices), with a dynamic range of 1500 values, as it
is one of the most commonly used in the literature. The sequence was annotated and verified by
medical experts.

3.3.2 Conceptual Modeling

In order to attempt segmentation and recognition of the structures of interest in MRI, the
following attributes of each structure were considered:

• Intensity;

• Volume;

• Absolute position in the body.

Additionally, the relationships between a structure and all others must also be taken into con-
sideration, with the following attributes being most relevant:

• Relative distance and position;

• Differences in volume;

• Differences in intensity.

We believe the combination of these statistical and relational attributes represent an accu-
rate approximation of the discriminant factors required for proper segmentation and recognition
of the relevant structures. Previous works have shown successful results produced by such attribu-
tes [CCB06, GCB14, MBCJ16].

3.3.3 Computational Modeling

Considering the conceptual model proposed in Section 3.3.2, we then define the set of attributes,
both statistical (that is, represented in the vertices) and relational (that is, represented in the edges),
to be extracted.
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Three vertex attributes are computed for each vertex. Considering the structure they represent,
these attributes are i) the average of the intensity values in the structure; ii) the total volume of the
structure; and iii) the position of the centroid of the structure, given as three distinct attributes,
x, y and z.

These attributes may be computed on the data space, that is, voxel-wise, with centroids given
as the voxel’s indexes in the 3D volume and volume as the count of voxels in the region of interest;
or they may be computed in real space, with centroids given as real-valued positions, utilizing the
MRI’s metadata to determine the real coordinates of a given voxel, and volume computed using the
actual volume of each voxel in the region of interest. We have chosen to compute attributes using the
real-valued positions and volume. It is important to note that, as patients may position themselves
in different heights of the scanning table, a position normalization method may be required for
model learning and observation with multiple patients.

Three edge attributes are computed for each edge. Considering the structures represented by
the connected edges, these attributes are i) the vector between the centroids of each structure,given
as three distinct attributes, a, b and c where ~v = (a, b, c); ii) the absolute difference in volume
between the structures; and iii) the contrast (that is, difference) between the average intensities of
each structure.

Edge attributes are derived directly from the vertex attributes, but are explicitly defined and
stored as distinct elements. The reason for this explicit definition is threefold; first, doing so allows
us to optimize the computation of edge distances; second, these values are used frequently in graph
matching and description and as such, storing them is more efficient than constantly recomputing
them; and finally, we may design other edge attributes which are not derived from the vertex
attributes.

After computing all attributes, a normalization operation was applied to each attribute in turn,
transforming them into distributions with a mean of 0 and a standard deviation of 1. The values
used in this transformation – that is, the mean and deviation of the model – are stored to be
used in normalizing the observation graph, by applying the same transformation. Thus, observation
attributes may not have a mean of 0 and a deviation of 1, but they are in the equivalent dynamic
range of the model attributes.

Figure 3.8 shows an example of a simplified SRG, with three fully connected vertices, repre-
senting Segment I (SI), Segment V (SV) and the Vena Cava (VC); vertex attributes: centroid and
mean intensity; and a single edge attribute: distance.

Figure 3.8: Schema of a simple, example SRG for MRI description. Vertex attributes are between square
brackets. Edge attributes are between curly braces.

Experiments in Chapter 4 utilize this set of attributes, unless explicitly stated otherwise.

As model learning from multiple sources was not included in the scope of this dissertation, we
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Figure 3.9: Example of the regions produced by watershed techniques on the body phantom. The yellow lines
denote the borders between super-segmented regions.

opted to build our model from a single annotated MRI volume. The same image would be used as
observation input; this allows for the investigation of the observation graph building and matching
process without concerning ourselves with general model learning.

3.3.4 Super-segmentation

To build the observation graph Gobs, we must first build the super-observation graph Gsuper

from the output of a super-segmentation algorithm applied over the observed image. This algorithm
should ideally be able to discern or approximate the true borders of the elements of interest; the
SRG matching should then eliminate the superfluous borders, obtaining the true segmentation or
an approximation thereof.

The classic algorithm for automatic super-segmentation is the watershed, applied over the gra-
dient of the image. The watershed needs a set of markers, which represent initial basins and may be
thought of as region seeds. These markers may be distributed equally spaced, or automatically de-
termined (e.g., as the local minima of the gradient). An example of watershed segmentation results
is presented in Figure 3.9.

Other algorithms, such as the Simple Linear Iterative Clustering (SLIC) [ASS+12] or the com-
pact watershed [NP14], may be used to achieve super-segmentation. In Section 4.1.2, we conduct
experiments to explore and compare these super-segmentation algorithms. We find that the com-
pact watershed more closely approaches the borders of the liver, while the SLIC performs better
when taking the average of the quality of the borders for all classes.
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3.3.5 Initial Matching

As the matching algorithm is dependent on a fully-defined cost function, we first define the
distance function da as the Euclidean distance for all attributes a ∈ AV

_AE . Experiments in
Chapter 4 utilize this distance function, unless explicitly stated otherwise.

We subsequently define an algorithm for initializing S based on the nearest model vertex for each
vertex in Gsuper. This initialization cannot take into consideration the “size” attribute, however, as
the super-segmented regions are of smaller size than the model regions; thus we use the vertex cost
function c∗V , which is the cost function cV but without taking into consideration the size attribute.
This algorithm is displayed in Algorithm 1.

Algorithm 1 Solution Initializer
1: procedure initializer(Vsuper, VM ) . Closest vertex solution
2: S is an empty vector of size |Vsuper|
3: for all vertex v in Vsuper do . c∗V does not include size attribute
4: C ← [c∗V (v, vM0), c

∗
V (v, vM1), ...] where vMi is the i-eth element of VM

5: S[i]← argmin(C)
6: end for
7: return S
8: end procedure

After the initialization, it is possible that some noncontiguous vertices are assigned to the same
model vertex. As the structures of interest which we deal with are all contiguous, we apply Algo-
rithm 2 to guarantee the contiguity of each region in Gobs. To achieve this, we need the adjacency
graph of all regions in the super-segmentation, adj.

Algorithm 2 Solution Contiguity Guarantee
1: procedure contiguity(Vsuper, VM , S, adj) . Contiguity guarantee
2: for i← 1, |VM | do
3: T ∗ ← argx(S[x] = i) . T ∗ is the list of regions assigned to i
4: T ← connected_components(T ∗, adj) . T joins all adjacent regions in T ∗

5: best← argminj(cV (Tj , VMi)) . Find best connected region as “true”
6: for all j in T and j 6= best do
7: S[j]← UPDATE . Other regions are flagged for updating
8: end for
9: end for

10: for all j in S where S[j] = UPDATE do
11: S ← improvement(j,Gsuper, GM , S, adj) . improvement is defined in Algorithm 3
12: end for
13: return S
14: end procedure

3.3.6 Solution Improvement

The proposed algorithm for initialization of S does not take into consideration the relational
aspect of the SRG, being based exclusively on vertex similarity. However, as stated, there are
significant gains to be achieved by taking structural information into consideration. As such, we
designed an algorithm for improving upon S through exhaustive consideration of all attributes,
both statistical and relational. This algorithm is described in Algorithm 3. This algorithm depends
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on the adjacency graph of all regions in the super-segmentation, adj, as it maintains the contiguity
of each region in Gobs.

Of particular note is the consideration that, as this is a greedy algorithm, the choice of which
vertex(ices) to improve – that is, the choice of the set of js to be passed as an argument to the
function – is a significant one. In this work, we have found it better and intuitive to improve the
vertices in order of initial matching cost, that is, min(C) of C in line 4 of Algorithm 1, going from
costliest to cheapest. Depending on the experiment, a cutoff may be introduced, such as a cost
threshold or an absolute number of vertices to improve.

Experiments in Chapter 4 utilize these graph matching algorithms, unless explicitly stated
otherwise.

Algorithm 3 Solution Improvement
1: procedure improvement(j, Gsuper, GM , S, adj) . Improving vertex j from Gsuper

2: candidates← adj[j]_j . Contiguity guarantee
3: costs is an empty vector of size |candidates|
4: for all c in candidates do
5: S∗ ← copy(S)
6: S∗[j]← c
7: Gobs ← build_srg(Gsuper, S)
8: costs(index of c)← C(Gobs, GM ) . Compute cost of each candidate
9: end for

10: best← candidates[argmin(costs)] . Get cheapest candidate
11: S[j]← best
12: return S
13: end procedure



Chapter 4

Experimental Results and Discussions

A set of experiments were designed with the dual goals of determining whether the calibration
method is capable of properly assessing the quality of a SRG segmentation method, helping to set
its parameters, and of attempting segmentation of real data with the SRG. We demonstrate the
correlation between matching cost and accuracy, reinforcing the results obtained by [Gra12] in the
context of the calibration pipeline; we then leverage said pipeline to explore and assess the relative
quality of several super-segmentation methods and attribute weight sets. Finally, we perform a
preliminary experiment of real MRI data segmentation and recognition, in preparation for future
work.

All of the code utilized in both the implementation of our version of the SRG, as well as the
executable scripts of the experiments here described and their results, may be found in the project’s
Git repository1.

4.1 Experimental Setup

4.1.1 Correlation of Cost and Accuracy

In order to utilize the SRG as a segmentation and recognition technique, we must demonstrate
both its robustness and the correlation between the cost of matching two SRGs and the similarity of
the represented objects. To do so, we must first show that the SRGs of two identical representations
are identical themselves, and that the cost of matching two identical SRGs is zero. This is proven
mathematically.

We then demonstrate that deviations from an accurate prediction result both in decreased
accuracy and increased costs. To do so, we proceeded as follows:

1. Acquire the calibration phantom as our model and observation image;

2. Build the model graph GM from the phantom’s ground truth (we split the body and back-
ground labels);

3. Build the super-observation graph Gsuper utilizing watershed with x × y × z initial markers
(distributed evenly along each axis), plus 5 markers to ensure the vena cava’s segmentation;

1https://github.com/MarEe0/STAP-liver
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4. Build the matching solution S as follows: each Gsuper vertex is matched to the GM vertex
whose label is predominant in the super-segmentation region it represents. This results in the
optimum S;

5. Compute cost and accuracy for optimum S;

6. Repeat k times:

(a) Randomly replace p predictions in S with a different label;

(b) Compute cost and accuracy for current S.

We measure the accuracy using two distinct values: the similarity index of the predicted li-
ver region and the ground truth liver region, and as the average of all similarity indexes for all
labels in the phantom. We compute cost utilizing even-weighted Euclidean distance, as described
in Section 3.3.5. We explore values of (x, y, z) = {(6, 6, 4), (7, 7, 5), (8, 8, 6)}. For each set of initial
markers, p =

⌊x×y×z
20

⌋
and k =

⌊x×y×z
10

⌋
. Each experiment is repeated 100 times to smooth out the

random factor in the disturbance of the solution.

4.1.2 Exploration of Super-Segmentation Techniques

As proper super-segmentation (that is, which approaches all true borders) is essential to SRG
segmentation, it is in our best interests to ascertain which method has the greatest performance.
Thus, we devise an experiment utilizing part of the calibration pipeline in order to explore the rela-
tive gains between different super-segmentation techniques. To ascertain each technique’s robustness
to noise, different noise profiles were investigated. For a given super-segmentation algorithm A, we:

1. Acquire the calibration phantom as our model;

2. Build the model graph GM from the phantom’s ground truth (we do not split the body and
background labels);

3. Generate a set of m noise profiles F = {f0, .., fm};

4. For each fi ∈ F :

(a) Apply fi to the phantom to generate the observation;

(b) Build the super-observation graph Gsuper utilizing A;

(c) Build the matching solution S as follows: each Gsuper vertex is matched to the GM vertex
whose label is predominant in the super-segmentation region it represents. This results
in the optimum S;

(d) Compute accuracy for optimum S.

We measure the accuracy using two distinct values: the similarity index of the predicted liver
region and the ground truth liver region, and as the average of all similarity indexes for all labels
in the phantom.

We utilize the set of noise profiles F = {f0, f1, f2, f4}, where fi is a FSP profile (see Section 3.2.1)
with r = 7 and p = |D|i10−5, |D| being the number of voxels in the image. For the calibration
phantom, |D| = 300 × 300 × 50 = 4.500.000 voxels, and thus the set of p for each f in F is
P = {0, 45, 90, 180}.

We explore the following super-segmentation algorithms:
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1. Traditional watershed, three-dimensional, with both gradient local minima and 4×4×4 points
distributed evenly across each axis as initial markers;

2. Compact watershed [NP14], three-dimensional, with 8×8×6 initial markers distributed evenly
across each axis;

3. Compact watershed, three-dimensional, with 10 × 10 × 8 initial markers distributed evenly
across each axis;

4. Single-channel SLIC Superpixel [ASS+12], three-dimensional, with anisotropic voxel spacing
(6× 6× 1) and 400 regions;

5. Single-channel SLIC Superpixel, three-dimensional, with anisotropic voxel spacing (6× 6× 1)
and 600 regions.

All algorithms are prefaced by preprocessing with an anisotropic Gaussian filter, with σ = (5, 5, 1).
Each experiment is repeated 100 times to smooth out the random factor in the generation of noise.

4.1.3 Weight Calibration

As stated in Section 3.1.2, when defining the cost function, several weights must be set:

• the relative weighting between vertex cost and edge cost, in order to increase the impact of
the statistical or the relational attributes;

• the relative weighting between each attribute, in order to increase the impact of some attri-
butes over the others.

In order to improve the quality of the segmentation, we must determine a set of optimal weights.
The calibration pipeline allows us to assess the quality of a given set of weights. To ascertain each
set’s robustness to noise, different noise profiles are investigated. For a given set of weights W and
super-segmentation algorithm A, we:

1. Acquire the calibration phantom as our model;

2. Build the model graph GM from the phantom’s ground truth (we split the body and back-
ground labels);

3. Generate a set of m noise profiles F = {f0, .., fm};

4. For each fi ∈ F :

(a) Apply fi to the phantom to generate the observation;
(b) Build the super-observation graph Gsuper utilizing A;
(c) Build the matching solution S utilizing the initialization and improvement algorithms

described in Section 3.3.5;
(d) Compute cost and accuracy for S.

We measure the accuracy using two distinct values: the similarity index of the predicted liver
region and the ground truth liver region, and as the average of all similarity indexes for all la-
bels in the phantom. We compute cost utilizing W -weighted Euclidean distance, as described in
Section 3.3.5.
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Table 4.1: Weight sets for the weight calibration experiment. Each weight set emphasizes a specific attribute.

Wi Emphasized attribute
W0 All weights are equal
W1 Region centroid x coordinate (vertex attribute)
W2 Region centroid y coordinate (vertex attribute)
W3 Region centroid z coordinate (vertex attribute)
W4 Mean region intensity (vertex attribute)
W5 Total region size (vertex attribute)
W6 Relative position vector x coordinate (edge attribute)
W7 Relative position vector y coordinate (edge attribute)
W8 Relative position vector z coordinate (edge attribute)
W9 Mean region intensity contrast (edge attribute)
W10 Region size difference (edge attribute)

We utilize the same set of noise profiles F = {f0, f1, f2, f4} described in Section 4.1.2.

We utilize the Compact Watershed 10 × 10 × 8 super-segmentation algorithm as A, chosen
because of its high performance in obtaining the true liver borders, as shown and discussed in
Section 4.2.2. We utilize the improvement algorithms discussed in Section 3.3.6, attempting to
improve the costliest half of the vertices in the Gsuper.

We explore eleven sets of weights, as follows: vertex and edge costs are even-weighted (that
is, α = 0.5 in Equation 3.2); the first set of weights W0 is even-weighted for all attributes; all
subsequent sets of weights Wi are even-weighted except for the i-th attribute, which has double the
weight of the other attributes. Table 4.1 shows which attribute (as described in Section 3.3.3) is
emphasized for each Wi.

Thus, the set W1 has vertex weights αV = (0.3, 0.16, 0.16, 0.16, 0.16) and edge weights αE =
(0.2, 0.2, 0.2, 0.2, 0.2); the set W2 has vertex weights αV = (0.16,0.3, 0.16, 0.16, 0.16) and edge
weights αE = (0.2, 0.2, 0.2, 0.2, 0.2); the set W6 has vertex weights αV = (0.2, 0.2, 0.2, 0.2, 0.2) and
edge weights αE = (0.3, 0.16, 0.16, 0.16, 0.16); and so on. Each experiment was repeated 100 times
to smooth out the random factor in the generation of noise.

4.1.4 Preliminary Application on Real Data

After building a segmentation pipeline and assessing its quality through calibration, the next
natural step is to apply said pipeline to real MRI data. The purpose of this is twofold: first,
to measure the progress towards the project’s stated goal of accurate segmentation of MRIs; and
second, to analyze potential deficiencies of the calibration method. This analysis allows us to improve
the calibration method with better phantoms and noise profiles, which in turn allows us to improve
real MRI segmentation in a positive feedback loop. Thus, given a super-segmentation algorithm A
and a set of weights W , we:

1. Acquire annotated real MRI data as both model and observation image;

2. Build the model graph GM from the image’s ground truth (we split the body and background
labels);

3. Build the super-observation graph Gsuper utilizing A;

4. Build the matching solution S utilizing the initialization and improvement algorithms descri-
bed in Section 3.3.5;
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5. Compute cost and accuracy for S.

We measure the accuracy using two distinct values: the similarity index of the predicted liver
region and the ground truth liver region, and as the average of all similarity indexes for all la-
bels in the phantom. We compute cost utilizing W -weighted Euclidean distance, as described in
Section 3.3.5.

The weight set W chosen, based on the results of the previous experiment, as presented in
Section 4.2.3, is W = 4, which emphasizes the vertex attribute mean region intensity. We utilize
the Compact Watershed 10× 10× 8 super-segmentation algorithm as A, chosen because of its high
performance in obtaining the true liver borders, as shown and discussed in Section 4.2.2. Due to the
nature of real MRI data, the anisotropic Gaussian smoothing was performed with σ = (5, 5, 3). We
utilize the improvement algorithms discussed in Section 3.3.6, attempting to improve the costliest
half of the vertices in the Gsuper.

4.2 Results and Discussion

4.2.1 Correlation of Cost and Accuracy

Let us prove that two identical objects generate identical SRGs.

Lemma 4.2.1. Given two identical objects, x and y, and a deterministic SRG generation function
F , then the graphs generated by x and y, Gx and Gy respectively, are equal.

Proof. Let us assume the function for the generation of an SRG from an image, called F , is deter-
ministic and surjective. This is the function proposed in Section 3.1.1, and instantiated in Section
3.3.3. Thus, Gx = F (x) and Gy = F (y).

If F is deterministic and surjective, then x = y =⇒ F (x) = F (y) =⇒ Gx = Gy.

Let us prove that two identical SRGs have a cost of zero.

Lemma 4.2.2. Given two identical graphs, Gx and Gy, and a cost function C whose atomic distance
functions are zero for identical objects, then C(Gx, Gy) = 0.

Proof. Let us assume a cost function C as described in Section 3.1.2. Let us assume that every
distance function da∀a equals zero when measuring the distance between two identical elements,
e.g. da(x, x) = 0∀a, x. The Euclidean distance utilized in this implementation of the SRG obeys
this assumption.

Equation 3.2 shows that the total matching cost of two SRGs is given by a weighted mean of
both partial costs CV and CE , described in Equations 3.3 and 3.4 respectively. As both partial costs
are sums of the distances, then if we are measuring the cost between two identical graphs Gx and
Gy, Gx = Gy =⇒ da = 0∀a =⇒ CV = CE = 0 =⇒ C(Gx, Gy) = 0.

Taken together, these two lemmas show that the matching cost for graphs derived from identical
objects is zero, as we intended.

We report the results of the correlation experiment in Figure 4.1. Due to the random nature of
the experiment, 100 repetitions of each experiment were executed, and we report both the mean of
the results and the 95% confidence interval for 100 repetitions.
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Discussion

Figure 4.1 shows that, as disturbances are introduced (represented by the x-axis), the solution
naturally steps away from the optimum. This process is demonstrated by the lowering of the so-
lution accuracy, as estimated by both the similarity index of the solution liver and the true liver
(represented by the red lines in the plots) and the average similarity indexes between the prediction
of all classes and their respective ground truths (represented by the green lines in the plots).

Meanwhile, as disturbances increase and the accuracy decreases, the cost of matching the ob-
servation graph Gobs to the model graph GM (represented by the blue lines) steadily increases,
inversely proportional to the estimated accuracy. It is evident upon visualization that the mat-
ching cost is inversely proportional to the accuracy of the prediction. As stated in Section 3.1.2,
the matching cost should also inversely proportional to P (GM = Gobs), which is directly related
to the similarity of the predicted regions and the ground truth. Thus, the evidence backs up the
assumption that the inverse of the cost is a good estimator of solution quality.

The shaded areas in the plots are the 95% confidence intervals for each value, given by the
repetition of the experiments 100 times. As the tight intervals show, the nature of the disturbances
and their progressions (as determined randomly each execution) does not significantly impact the
results obtained; that is, despite the difference in the nature of the disturbances, accuracy steadily
decreases and cost steadily increases, thus demonstrating the robustness of the hypothesis of the
correlation between cost and accuracy.

Additionally, these results can be observed across all three sets of initial markers. Regardless
of the nature of the super-segmentation (and of its myriad subregions), as disturbances increase
and similarity decreases, the cost steadily increases, thus demonstrating that this correlation does
not depend on the nature of the super-segmentation and of the disturbances, and instead is a
property intrinsic to the relationship between similarity and matching cost. It is worth noting that
the average SI is lower than the liver SI in the 7 × 7 × 5 experiment; this is a result of improper
super-segmentation of the other classes. However, the observations made above are still valid.

This correlation strengthens the hypothesis that a SRG with the attributes specified in Sec-
tion 3.3.3 is capable of properly representing and describing the phantom’s objects and their rela-
tionships. As the phantom is a simulation of real medical MRI data, this points to robustness of
representing real MRI data with such a SRG. This corroborates results found in [Gra12] and is the
fundamental assumption behind SRG segmentation and recognition of images.

One thing must be kept in mind about the SRG matching costs: the comparison of costs between
different executions of SRG-based semantic segmentation is only valid when costs obtained from
the same model SRG are compared. SRGs with fundamental differences (such as distinct attributes,
distinct cost functions or even distinct attribute weights) may possess different matching costs for
the same observation image. This derives from Lemma 4.2.1, as identical objects with distinct SRG
configurations will not necessarily generate identical SRGs.
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Figure 4.1: Results for the correlation of cost and accuracy experiments, for different distributions of
initial markers. We present the results for (6, 6, 4), for (7, 7, 5), and for (8, 8, 6) markers. Shaded areas
represent the 95% confidence interval. We report the matching cost (Equation 3.2), the Similarity Index, or
SI (Equation 3.5), of the liver and the average of the SIs of all labels.
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4.2.2 Exploration of Super-Segmentation Techniques

We report the results of the super-segmentation experiment on Table 4.2. The best value for
each category is highlighted. Due to the random nature of the experiment, 100 repetitions of each
experiment were executed, and we report both the mean of the results and the 95% confidence
interval for 100 repetitions.

Table 4.2: Results for the super-segmentation experiments. Average similarity index (SI, Equation 3.5)
of all classes and liver similarity index were reported for each algorithm, on each noise profile. The 95%
confidence interval is reported.

Noise Algorithm A Average SI Liver SI

f0

Traditional Watershed 0.6523± 0 0.9410± 0
Compact Watershed 8× 8× 6 0.8345± 0 0.9354± 0

Compact Watershed 10× 10× 8 0.8408± 0 0.9593± 0
Slic, 400 regions 0.8979± 0 0.8688± 0
Slic, 600 regions 0.9057± 0 0.8782± 0

f1

Traditional Watershed 0.6504± 0.0007 0.9395± 0.0008
Compact Watershed 8× 8× 6 0.8221± 0.0056 0.9309± 0.0010

Compact Watershed 10× 10× 8 0.8359± 0.0047 0.9548± 0.0009
Slic, 400 regions 0.8910± 0.0020 0.8592± 0.0045
Slic, 600 regions 0.8991± 0.0017 0.8720± 0.0048

f2

Traditional Watershed 0.6498± 0.0008 0.9418± 0.0009
Compact Watershed 8× 8× 6 0.8124± 0.0077 0.9273± 0.0012

Compact Watershed 10× 10× 8 0.8272± 0.0068 0.9504± 0.0011
Slic, 400 regions 0.8900± 0.0027 0.8603± 0.0052
Slic, 600 regions 0.8968± 0.0018 0.8618± 0.0059

f4

Traditional Watershed 0.6489± 0.001 0.9453± 0.0008
Compact Watershed 8× 8× 6 0.7716± 0.0133 0.9189± 0.0015

Compact Watershed 10× 10× 8 0.8106± 0.0097 0.9428± 0.0013
Slic, 400 regions 0.8869± 0.0032 0.8570± 0.0047
Slic, 600 regions 0.8905± 0.0022 0.8490± 0.0050

We display some of the super-segmentation results for the Slic, 600 regions and the Compact
Watershed 10× 10× 8 algorithms in Figures 4.2 and 4.3. For one instance of each noise profile, we
display the central axial and coronal slices, with yellow lines indicating the border between adjacent
regions.

Discussion

As Table 4.2 shows, the super-segmentation algorithm which consistently obtains the best ap-
proaches to the true liver borders is the Compact Watershed 10 × 10 × 8, while the one with the
best overall approximation of the all classes’ borders is the Slic, 600 regions. As Figures 4.2 and
4.3 reveals, however, many regions in the SLIC segmentation are not properly split across the sa-
gittal/coronal axis. Given the results displayed, the watershed algorithm is the best suited for the
task at hand, even when given a relatively low number of starting regions.

Overall, the watershed algorithms had better accuracy for the liver borders, and the SLIC
algorithms had better average accuracy overall. As can be seen from the images provided, SLIC
segmentation tends to utilize a large number of thin regions in the borders; however, these regions
are often heterogeneous and, as such, envelop the actual true border. Additionally, noisy regions
near the border of the liver would result in significant disturbances to the real border, as can be



4.2 RESULTS AND DISCUSSION 37
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Figure 4.2: Selected results for the super-segmentation experiments. (a) and (b) are results for the noise
profile f0; (c) and (d) are results for the noise profile f1. The upper image in each pair is the central axial
slice; the lower image is the central coronal slice. Yellow lines denote the border between adjacent super-
segmented regions. Results for f2 and f4 are found in Figure 4.3.

seen, for example, in Figure 4.2 (d).

However, the SLIC does provide a small improvement over the watershed to the average overall
similarity index. This is due to a better representation of both background and venal borders,
specially when faced with noise surrounding these regions. An example of improper vein super-
segmentation by the watershed algorithm can be seen in Figure 4.2 (a), as the venal regions contains
a significant amount of voxels from the body. As our goal is accurate liver segmentation, though,
the results present by the watershed algorithms are of greater interest.
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Figure 4.3: Selected results for the super-segmentation experiments. (e) and (f) are results for the noise
profile f2; (g) and (h) are results for the noise profile f4. The upper image in each pair is the central axial
slice; the lower image is the central coronal slice. Yellow lines denote the border between adjacent super-
segmented regions. Results for f0 and f1 are found in Figure 4.2.

As expected, a larger amount of initial markers – and, consequently, a larger amount of subregi-
ons – results in a higher chance of the true borders being represented. However, while not the focus
of this experiment or its analysis, practical concerns may arise, as a large number of regions may
significantly increase the running time of high-complexity matching algorithms.

All of the results’ 95% confidence interval have bounds separated by no more than 2% of the
mean, pointing to said results’ robustness to noise. Thus, we have reason to believe that each
algorithm will perform as expected when faced with any new observation generated by these noise
profiles. As such, we decide to utilize the Compact Watershed 10 × 10 × 8 algorithm for further
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experimentation, such as in Experiment 4.1.3.

Future implementations of SLIC, potentially reinforcing the anisotropic aspect of the 3D algo-
rithm, could be explored as an alternative to those presented here. As the number of regions may
adversely affect the matching algorithms, there is interest in future work that attempts to achieve
precise borders with a small amount of regions.

4.2.3 Weight Calibration

We report the results of the weight calibration experiment in Table 4.3 and in Figures 4.4 and
4.5, considering the weight sets presented in Table 4.1. Due to the random nature of the experiment,
100 repetitions of each experiment were executed, and we report both the mean of the results and
the 95% confidence interval for 100 repetitions.

We also provide visualizations of the predicted liver (in green) and vein (in red) for selected
weight sets, with the accompanying ground truth in dark green and dark red for liver and vein,
respectively, in Figures 4.6-4.11.

Discussion

Figures 4.4 and 4.5, along with Table 4.3, put into evidence several particular aspects of the
effects of each attribute in the process of segmentation proposed, while further demonstrating
the usefulness and potential of the calibration technique in the tuning of the SRG segmentation
pipeline’s parameters. Indeed, the results produced by this experiment are the fundamental example
of use of the calibration approach proposed in this work.

It is important to reiterate the conclusions found in Section 4.2.1, and in particular the discussion
on how the range of costs changes when the SRG context is different. With this in mind, the costs
of one weight set are not necessarily directly comparable to those of another weight set; and while
some of the lower costs are related to the best accuracies (as seen in Figure 4.4 (a) for W = 4) and
some of the highest costs are related to the worst accuracies (as seen consistently across all results
for the weight set W = 2), there is not a consistent cost-accuracy correlation across different weight
sets; costs should only be directly compared within the same weight set.

The objective of generating different noise profiles, with increasing amounts of noise, was to
verify the capabilities of a given SRG configuration in a controlled environment, and to test said
configuration’s robustness to the different levels of noise and artifacts that may be found in real
data. As the results of this experiment show, even as the amount of noise increases, following the
progression of the charts from (a) to (d), the quality of the results (as measured by the similarity
index) remains consistent throughout. As expected, costs tend to increase as noise increases, as
even the optimal noisy solution performs worse than the solution for the clean model. Even so, high
accuracy scores are produced even when faced with great noise. The high noise profile, f4, shows a
drop of only 5% in liver SI for the highest scoring case when compared with the zero-noise profile,
f0.

Consistently across all noise profiles, the weight set with the best accuracy results – both liver
and overall average – is W = 4, that is, the set which emphasizes the vertex intensity attribute.
This may be due to the relative homogeneity of the intensities of the calibration phantom in the
current setup, where each structure of interest has a relatively specific intensity, even with the FSP
noise. This may also be due to the relative simplicity of the liver segmentation task in the given
context, where in fact a human expert might default to utilizing intensity in assessing the nature
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Table 4.3: Results for the weight calibration experiments, for the weight sets defined in Table 4.1. Cost
(Equation 3.2, average similarity index (SI, Equation 3.5) of all classes and liver SI were reported for each
of the weight sets presented in Table 4.1, on each noise profile. The 95% confidence interval is reported.

Noise Weight Set Cost Average SI Liver SI

f0

W0 0.0850± 0.0000 0.8394± 0.0000 0.9012± 0.0000
W1 0.0603± 0.0000 0.8612± 0.0000 0.9340± 0.0000
W2 0.2365± 0.0000 0.6015± 0.0000 0.7352± 0.0000
W3 0.1513± 0.0000 0.6621± 0.0000 0.5890± 0.0000
W4 0.0306± 0.0000 0.9188± 0.0000 0.9680± 0.0000
W5 0.0854± 0.0000 0.8394± 0.0000 0.9012± 0.0000
W6 0.1700± 0.0000 0.7218± 0.0000 0.9012± 0.0000
W7 0.1679± 0.0000 0.7194± 0.0000 0.9012± 0.0000
W8 0.1677± 0.0000 0.7218± 0.0000 0.9012± 0.0000
W9 0.1852± 0.0000 0.7194± 0.0000 0.9012± 0.0000
W10 0.1313± 0.0000 0.7805± 0.0000 0.9012± 0.0000

f1

W0 0.1696± 0.0608 0.8157± 0.0046 0.8955± 0.0017
W1 0.3600± 0.4014 0.8317± 0.0077 0.9136± 0.0062
W2 0.6556± 0.1760 0.5773± 0.0049 0.7329± 0.0058
W3 1.1305± 0.4085 0.6577± 0.0047 0.6064± 0.0082
W4 0.1215± 0.0908 0.8997± 0.0016 0.9510± 0.0012
W5 0.1700± 0.0608 0.8168± 0.0041 0.8954± 0.0017
W6 0.2402± 0.0501 0.7028± 0.0038 0.8955± 0.0017
W7 0.2372± 0.0511 0.7031± 0.0039 0.8957± 0.0016
W8 0.2383± 0.0501 0.7028± 0.0038 0.8955± 0.0017
W9 0.2534± 0.0507 0.7030± 0.0038 0.8957± 0.0016
W10 0.3007± 0.1097 0.7242± 0.0093 0.8955± 0.0017

f2

W0 0.5575± 0.2214 0.7809± 0.0089 0.8864± 0.0032
W1 0.8943± 0.7127 0.8084± 0.0093 0.9012± 0.0068
W2 1.7681± 0.3493 0.5425± 0.0069 0.7351± 0.0076
W3 2.5906± 0.6798 0.6385± 0.0076 0.6286± 0.0130
W4 0.5974± 0.2901 0.8703± 0.0042 0.9367± 0.0017
W5 0.5579± 0.2215 0.7821± 0.0085 0.8844± 0.0041
W6 0.5628± 0.1838 0.6734± 0.0072 0.8848± 0.0049
W7 0.5614± 0.1852 0.6755± 0.0074 0.8854± 0.0042
W8 0.5610± 0.1838 0.6734± 0.0072 0.8848± 0.0049
W9 0.5756± 0.1845 0.6754± 0.0075 0.8854± 0.0042
W10 0.9387± 0.3694 0.6958± 0.0112 0.8868± 0.0033

f4

W0 1.5742± 0.4751 0.7342± 0.0099 0.8770± 0.0032
W1 1.9123± 1.2918 0.4417± 0.0737 0.5183± 0.0847
W2 4.1689± 0.7545 0.4910± 0.0081 0.7305± 0.0093
W3 4.2040± 0.7979 0.6095± 0.0077 0.6315± 0.0143
W4 1.8234± 0.4904 0.8188± 0.0057 0.9111± 0.0025
W5 1.5748± 0.4751 0.7357± 0.0096 0.8754± 0.0038
W6 1.4084± 0.3955 0.6327± 0.0083 0.8750± 0.0052
W7 1.4134± 0.3970 0.6336± 0.0085 0.8758± 0.0043
W8 1.4065± 0.3955 0.6327± 0.0083 0.8750± 0.0052
W9 1.4246± 0.3964 0.6331± 0.0085 0.8758± 0.0043
W10 2.6395± 0.7909 0.6370± 0.0101 0.8737± 0.0059
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(a)

(b)

Figure 4.4: Results for the weight calibration experiments, for the weight sets defined in Table 4.1. (a) are
the results for the noise profile f0; (b) are the results for the noise profile f1. The black bars are the 95%
confidence interval for each result. We report the matching cost (Equation 3.2), the Similarity Index, or SI
(Equation 3.5), of the liver and the average of the SIs of all labels.

of each region in the phantom. In fact, future calibration experiments can measure the impact
each individual attribute has in the final matching cost and, through that, automatically provide
a reasoning for a decision, such as “this region is liver because it has the intensity of liver, despite
not having exactly the position of liver”.

Figures 4.10 and 4.11 display the results of W = 4 segmentation on a sample set of noise
profiles. The results for the liver region (represented in bright green) are encouraging and highly
accurate, even in the high noise case (noise profile f4). The borders are maintained quite close to
the optimum (as limited by the super-segmentation algorithm) and to the ground truth. The vein
is also accurately segmented, especially in comparison to the other visualizations; however, it is
noteworthy to point out that this weight set completely mislabels the vein with the noise profile f4.

The even weight setW = 0 also presented consistently good performance across all noise profiles.
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(c)

(d)

Figure 4.5: Results for the weight calibration experiments, for the weight sets defined in Table 4.1. (c) are
the results for the noise profile f2; (d) are the results for the noise profile f4. The black bars are the 95%
confidence interval for each result. We report the matching cost (Equation 3.2), the Similarity Index, or SI
(Equation 3.5), of the liver and the average of the SIs of all labels.
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Ground Truth

Noise Profile f0 Noise Profile f1

Noise Profile f2 Noise Profile f4

Figure 4.6: 3D visualizations of the results for the W = 0 calibration experiment. The predicted liver region
is shown as the green volume, and the predicted vein region is shown as the red volume. The observation
volume’s body and noise are also represented. The ground truth is the topmost image. Noise was generated
with a fixed seed of 1.

This is an encouraging result, as it does demonstrate the value of utilizing the ensemble of the
attributes devised in order to properly represent each segment visualized. This also showcases the
“semantic” nature of the segmentation, as a representation of what attributes go into the reasoning
for a given segmentation. As discussed above, relative comparison of the impact of each attribute
in a given cost – specially when the even-weighted set provides good and accurate results – may
provide further guidance for the calibration process.

Figures 4.6 and 4.7 display the results of W = 0 segmentation on a sample set of noise profiles.
The segmentation of the liver region (represented in bright green) shows good accuracy, which
nonetheless declines more with the increase in noise than the weight set W = 4; with the results
for the noise profile f4 displaying a significant dip in quality. The segmentation of the vein region
also displays good accuracy, declining as noise rises. As with W = 4, most of the inaccuracies take
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Figure 4.7: 2D visualizations of the central slices of the results for the W = 0 calibration experiment. The
upper image in each pair is the central axial slice; the lower image is the central coronal slice. The predicted
liver region is shown as the bright green area, and the predicted vein region is shown as the bright red area.
The ground truth is shown as the dark green and dark red area for the true liver and true vein, respectively.
Noise was generated with a fixed seed of 1.

the form of false-positives, for both structures.

The results for weight sets W = 1, 2, 3 provide useful insight in one of the most intuitive
attributes, the region centroid. As can be expected given the nature of the calibration phantom –
which aligns all relevant structures on the x-axis – the weight sets W = 2 and W = 3, representing
focus on the centroid’s y and z attributes, respectively, present the worst results across all noise
profiles. In fact, they are most vulnerable to being affected by noise, as shown by the loose confidence
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Ground Truth

Noise Profile f0 Noise Profile f1

Noise Profile f2 Noise Profile f4

Figure 4.8: 3D visualizations of the results for the W = 1 calibration experiment. The predicted liver region
is shown as the green volume, and the predicted vein region is shown as the red volume. The observation
volume’s body and noise are also represented. The ground truth is the topmost image. Noise was generated
with a fixed seed of 1.

intervals. These factors point to a lower discrimination capacity for these attributes, which, given
the phantom’s nature (and an actual human liver’s nature, as well), is not unexpected.

Conversely, the weight set which emphasizes the centroid’s x coordinate, W = 1, displays
the second-best results. This may be explained by the same mechanisms which explain the poor
performance of the other coordinates: the nature of the phantom is such that the position of a region
alongside the x-axis is highly relevant. Thus, along with intensity, we can infer that the centroid’s x
coordinate is a vertex attribute with high capability for discrimination. In a sense, these results are
providing a semantic interpretation of the observation image, by stating that “in order to recognize
the structures in this, we can focus on their intensity and their position in the x-axis”. Indeed, when
examining the phantom (or even, indeed, a real MR image), a natural and intuitive observation is
“the liver is the dark-grey region on the center-left side of the image”.
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Figure 4.9: 2D visualizations of the central slices of the results for the W = 1 calibration experiment. The
upper image in each pair is the central axial slice; the lower image is the central coronal slice. The predicted
liver region is shown as the bright green area, and the predicted vein region is shown as the bright red area.
The ground truth is shown as the dark green and dark red area for the true liver and true vein, respectively.
Noise was generated with a fixed seed of 1.

However, when faced with a high amount of noise in the noise profile f4, the centroid’s x
coordinate becomes a much less discriminant attribute, demonstrating much lower mean accuracies
and a greater variability in both cost and accuracy, consistent with low-discriminative attributes
in other noise profiles. While the visualization present in Figures 4.8 and 4.9 do not showcase a
particularly inaccurate prediction, we can notice large mislabeled regions for both vein and liver
in comparison to the other weight sets, and in particular a much greater amount of false-positives.
In Figures 4.2 and 4.3, we also see larger regions in the f4 noise profile results, whose centroid
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Ground Truth

Noise Profile f0 Noise Profile f1

Noise Profile f2 Noise Profile f4

Figure 4.10: 3D visualizations of the results for theW = 4 calibration experiment. The predicted liver region
is shown as the green volume, and the predicted vein region is shown as the red volume. The observation
volume’s body and noise are also represented. The ground truth is the topmost image. Noise was generated
with a fixed seed of 1.

coordinates do not correlate neatly with the true region they represent. We may thus conclude that
the centroid’s x attribute is vulnerable to high amounts of noise.

Figures 4.8 and 4.9 display the results of W = 1 segmentation on a sample set of noise profiles.
The liver regions (represented as bright green) display somewhat good accuracy, with false-positives
to the left of the true liver and false-negatives in the posterior and anterior (that is, top and bottom
of the axial slice, respectively) of the true liver. This, of course, is to be expected when the centroid’s
x is the emphasized attribute. Of note is the increased susceptibility to noise of both the liver and
the vein prediction, when compared to the visualizations of the other weight sets.

The weight sets W = 6, 7, 8, 9, 10, by comparison, seem to have a much smaller impact on the
results than the others, specially when compared to the even-weighted set W = 0. As all of these
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Figure 4.11: 2D visualizations of the central slices of the results for the W = 4 calibration experiment. The
upper image in each pair is the central axial slice; the lower image is the central coronal slice. The predicted
liver region is shown as the bright green area, and the predicted vein region is shown as the bright red area.
The ground truth is shown as the dark green and dark red area for the true liver and true vein, respectively.
Noise was generated with a fixed seed of 1.

weight sets are those emphasizing the edge attributes, we can infer that the edge attributes have
a much smaller impact on the solution than the vertex attributes. Average accuracy does tend to
take a hit, likely because each body division may be inaccurately segmented but still maintain their
structural relationships. This is not particularly surprising, as the structural information is most
useful as a guide in improving the recognition of the individual structures than as the cornerstone
of the segmentation process. However, further experiments which emphasize the cost of the edges
over the cost of the vertex might produce more significant differences in the final result.
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4.2.4 Preliminary Application on Real Data

We report the results of the real data application experiment on Table 4.4, as well as provide
visualizations of the resulting segmentation in Figures 4.12 and 4.13. We also provide images of
some slices displaying the super-segmented regions in Figure 4.14. An in-depth analysis of the
results regarding the false-positives in the spine are shown in Figure 4.15.

Table 4.4: Results for the preliminary application of the SRG segmentation in real data. We report matching
cost, average similarity index (SI) between the prediction and truth of all classes and SI of the prediction
and truth of the liver.

Matching Cost 27.44
Average SI 0.5253
Liver SI 0.5618

Anterior view Posterior view

Left view Right view

Figure 4.12: Anterior, posterior, left and right views of the 3D visualization of the real MRI data segmen-
tation results. The green region is the predicted liver; the red region is the true liver.

Discussion

Table 4.4 displays the quantitative results for the segmentation of real data using the SRG. As
expected from a preliminary experiment, the results shown display insufficient accuracy for real
medical application. However, both the reported similarity index and the visualizations showcase
interesting results; for instance, most of the errors are due to false-positives, and not false-negatives
– thus, it is possible to apply further operations to increase accuracy using only the segmented
region. Additionally, the rough liver shape was acquired, and some of the most glaring mistakes are
similar to rookie human mistakes in manual segmentation (such as having trouble telling the lung
apart from the liver, as seen in Figure 4.13 Slice 40).
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Slice 40 (upper torax) Slice 36 Slice 32

Slice 28 Slice 24 Slice 20

Slice 16 Slice 12 (lower abdomen)

Figure 4.13: Axial slices of the real MRI data, with the liver prediction and the true liver overlayed (in
green and red, respectively). Higher-numbered slices are closer to the head of the patient.

These preliminary results point to the potential of the SRG pipeline for the accurate segmenta-
tion of structures of interest in real MRI data and, as such, provide motivation towards both this
work’s and the project’s stated goal of developing a SRG-based technique for semantic segmentation
of MRI data.

As Figures 4.12 and 4.13 point out, the vast majority of liver segmentation errors are false-
positives, that is, the segmentation algorithm labeled a non-liver region as liver. Some false-positives
of note: the lungs, located above the liver (visible in Figure 4.13 Slice 40), which have very similar
intensities to the liver in the image; the spine (emphasized in Figure 4.15); and the ribcage (visible
in Figure 4.13, Slices 28-36), which borders the liver. A few false-negatives are present, such as in
the Segment I of the liver, the central region which surrounds the vena cava (visible in Figure 4.13,
Slices 28-36) and the Segment III of the liver, the rightmost region of the inferior liver (visible in
Figure 4.13 Slice 24).

Figure 4.14 put into evidence the fact that some of the errors noted in the final segmentation
are the result of improper super-segmentation. Of immediate notice is the fact that both the spine
joints and the nerves are super-segmented as a single region each, while the vertebrae are segmented
as a small set of large, monolithic sub-regions (this is visible in the spine sagittal slice). Thus, the
mislabeling of one of these large regions, due to a local improvement of the matching cost, results
in a large segmentation error. Additionally, the upper abdomen axial slice reveals that the ribcage
(above and to the left of the liver) is inside the same subregion as the liver and, as such, it is
impossible to properly segment it from the liver. This showcases the need for a solid, adequate
super-segmentation algorithm, and feeds back into the calibration method in the form of putting
into evidence complications that the current phantom and noise profiles do not foresee.

Despite this, the choice of the weight set w = 4 produced interesting results, with relatively few
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Axial, lower abdomen Axial, upper abdomen

Sagittal, spine Sagittal, left

Figure 4.14: Selected representations of the super-segmentation of the real MRI data. Yellow lines denote
the border between adjacent super-segmented regions.

false-negatives; as the liver in real MRI data is quite distinguishable from most of its neighbours by
intensity alone. Some regions, however, are affected negatively by this focus on intensity, with the
lungs being the most obvious example. Intensity, however, does have particular challenges in a real
set, such as different dynamic ranges for different images – even if acquired from the same machine
– as external and environmental circumstances, such as disturbances in the magnetic field, may
affect the intensity reported for a given voxel. In fact, there is support for the use of the gradient
of the intensity as opposed to the true intensity as the image to be segmented.

These results showcase how to best improve the calibration technique. As the contrast between
the results of both the super-segmentation and the segmentation pipeline between the real data
and the calibration attest, there is a need to improve the representations of the real data difficulties
in the calibration technique. Perhaps most notable is the inhomogeneity of the real body when
compared to the calibration phantom’s body; as two of the greatest challenges put into evidence
are the distinguishing of regions with very similar intensity (such as the lung and the liver) and of
other macro-regions in the body (such as the spine).

The lack of accuracy in the final results, coupled with the high matching cost, point out to
an additional weak point in the current SRG pipeline: the improvement algorithm, which follows
a greedy brute-force approach and is thus vulnerable to local minima. Even after a large number
of improvement steps, the final results were subpar; better matching and solution improvement
algorithms may help improve these results. An exploration of different improvement algorithms
may be the subject of future work.

Further calibration phantoms of the abdomen may benefit from the simulation of other macro
structures (such as the spleen or the spine), and of less distinguishable regions (such as the lungs).
Additionally, other noise profiles may be devised to further approach the calibration to the real
data, by simulating artifacts common in real data such as Gibbs ringing.



52 EXPERIMENTAL RESULTS AND DISCUSSIONS 4.2

Three-quarters 3D vision

Coronal slice Sagittal slice

Figure 4.15: Selected representations of the real MRI data segmentation, emphasizing the false-positives in
the spine. The top image is a three-quarters view of a 3D visualization of the results; the slices intersecting
the 3D visualization are those shown in the bottom images. The green region is the predicted liver; the red
region is the true liver.



Chapter 5

Concluding Remarks

This work proposes the use of a Structural-Relational Graph-based approach to the semantic
segmentation of 3D Magnetic Resonance Images; along with a pipeline for the calibration of its
parameters. We explain the process of SRG segmentation, the effect and importance of each of
its parameters, and how to apply it to a set of data. We also explain the calibration process, its
use in the assessment of the quality of a given set of parameters, and how to apply it to a set of
parameters. We propose and perform experiments to demonstrate the usefulness and validity of the
calibration technique, and to open future avenues of research in the area.

In order to perform SRG-based semantic segmentation, a set of attributes, related to either
the structures of interest in the image or to the relationships between structures, must be chosen.
These attributes must be capable of adequately discriminating the structures of interest in the
image. A model graph must then be learned and built from annotated data; future observations
will be matched using this model as template. Each vertex in the graph corresponds to a single
structure of interest in the scene; each edge corresponds to the relationship between structures.
Observed data is super-segmented and a super-observation graph is built, with each vertex in this
graph representing a subregion of the observed data. The super-observation graph is then matched
to the model graph in order to build an observation graph, which represents the segmentation of
the image that best approaches the model. This representation offers a semantic segmentation of
the observed data.

The calibration technique begins with the generation of a predictable, controllable “phantom”
of the structured scene, which is a simplified simulation of the real scene. A set of SRG parameters,
including attributes, model learning technique, super-segmentation algorithm, cost functions and
improvement algorithms, is chosen for assessment. Controlled and known noise may be added to
this “phantom”, in order to test the robustness of the chosen parameter set to noise. Observation
data, with known ground truth values, is generated and segmented with the SRG pipeline. The
quality of the segmentation is assessed both quantitatively and qualitatively.

Experiments were designed in order to test the validity and usefulness of both the implemen-
tation of SRG segmentation and of the calibration technique. A correlation between the cost of
matching an observation graph with the model and the quality of the segmentation produced was
demonstrated. This supports our claim that the minimization of the matching cost is a good tech-
nique for maximizing the probability that the observation corresponds to the model. A comparative
study of super-segmentation algorithms in the context of calibration was conducted. A comparative
study of different weights for the cost of matching distinct attributes was conducted, demonstrating
the usefulness of the calibration technique in assessing the quality of a given set of parameters
for the SRG-based segmentation. A preliminary application of SRG semantic segmentation in real

53
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data was explored, with its results displaying further avenues for the improvement of both the
segmentation parameters and the calibration technique.

An open-source implementation of the segmentation and calibration software was produced and
is available on GitHub1. This software is the initial step towards building an application capable of
attending to the goals of the project into which this work is inserted, providing a tool for medical
experts to use in the segmentation of livers in pediatric MRI, for both assessment of iron liver
content and volumetry of liver subdivisions for guiding transplants and surgery.

5.1 Future Work

The conclusion of this work is the first step in a larger project, which aims to provide a framework
for fast and accurate segmentation of medical images. Future works in this project may tackle several
issues raised in this work.

Providing a more in-depth analysis of the matching cost in the calibration, by showcasing the
relative costs of vertex matching, edge matching, and the effect of each individual attribute in
both the final and partial matching cost, may help in guiding the choice and adjustment of the
parameter set chosen for the segmentation process, thus increasing the overall usefulness of the
calibration technique.

The stochastic learning of the parameters that control the distribution of attributes in a given
domain is of utmost importance to both model learning and to the determination of the probability
that the observation graph is equal to the model graph. As stated in Section 3.1.2, in this work we
have indirectly measured this probability through the use of the matching cost. We suspect that the
matching cost, in truth, represents an assumption that all parameters have a normal distribution
with the same co-variance matrices and thus the probability of the observation and the model being
equal is solely dependent on the mean of the attributes (whose distances we minimize, maximizing
the probability). One of the aims of the project is to both provide a method for parameter learning
and to test this assumption.

The calibration phantom may be improved by increasing its simulation capability, through the
representation of other body structures – further increasing its capabilities of simulating real MRI
data in a controlled manner – or, alternatively, through the development and usage of novel noise
profiles, capable of representing problems commonly found in real data, such as acquisition noise
caused by weaker magnetic fields, the “spotlight” effect caused by field inhomogeneity, and the very
common Gibbs ringing artifacts.

Finally, the parameters which compose the segmentation pipeline may be explored with greater
depth; future works may explore a larger set of both matching and improvement algorithms, as well
as different cost measures, in order to improve the quality of the final segmentation; and explore
other super-segmentation algorithms in order to improve the potential quality of the segmentation.

1https://github.com/MarEe0/STAP-liver

https://github.com/MarEe0/STAP-liver
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