Thromb Haemost 2015; 113(05): 1084-1094
DOI: 10.1160/TH14-09-0748
Endothelium and Angiogenesis
Schattauer GmbH

Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential

Coralie L. Guerin
1   Paris Descartes University, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S970, PARCC, Paris Research Cardiovascular Research Center, Paris, France
3   Inserm UMR-S1140, Paris, France
,
Xavier Loyer
1   Paris Descartes University, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S970, PARCC, Paris Research Cardiovascular Research Center, Paris, France
,
José Vilar
1   Paris Descartes University, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S970, PARCC, Paris Research Cardiovascular Research Center, Paris, France
,
Audrey Cras
1   Paris Descartes University, Sorbonne Paris Cité, Paris, France
3   Inserm UMR-S1140, Paris, France
4   AP-HP, Saint Louis Hospital, Cell therapy Department, Paris, France
,
Tristan Mirault
1   Paris Descartes University, Sorbonne Paris Cité, Paris, France
5   AP-HP, European Georges Pompidou Hospital, Vascular Medicine Department, Paris, France
,
Pascale Gaussem
1   Paris Descartes University, Sorbonne Paris Cité, Paris, France
3   Inserm UMR-S1140, Paris, France
6   AP-HP, European Georges Pompidou Hospital, Hematology Department, Paris, France
,
Jean-Sébastien Silvestre
1   Paris Descartes University, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S970, PARCC, Paris Research Cardiovascular Research Center, Paris, France
,
David M. Smadja
1   Paris Descartes University, Sorbonne Paris Cité, Paris, France
3   Inserm UMR-S1140, Paris, France
6   AP-HP, European Georges Pompidou Hospital, Hematology Department, Paris, France
› Author Affiliations
Further Information

Publication History

Received: 09 September 2014

Accepted after minor revision: 07 January 2014

Publication Date:
24 November 2017 (online)

Summary

Very small embryonic-like stem cells (VSELs) are multipotent stem cells localised in adult bone marrow (BM) that may be mobilised into peripheral blood (PB) in response to tissue injury. We aimed to quantify VSELs in BM and PB of patients with critical limb ischaemia (CLI) and to test their angiogenic potential in vitro as well as their therapeutic capacity in mouse model of CLI. We isolated BM VSELs from patients with CLI and studied their potential to differentiate into vascular lineages. Flow and imaging cytometry showed that VSEL counts were lower in BM (p< 0.001) and higher (p< 0.001) in PB from CLI patients compared to healthy controls, suggesting that ischaemia may trigger VSELs mobilisation in this patient population. Sorted BM-VSELs cultured in angiogenic media acquired a mesenchymal phenotype (CD90+, Thy-1 gene positive expression). VSEL-derived cells had a pattern of secretion similar to that of endothelial progenitor cells, as they released low levels of VEGF-A and inflammatory cytokines. Noteworthy, VSELs triggered post-ischaemic revascularisation in immunodeficient mice (p< 0.05 vs PBS treatment), and acquired an endothelial phenotype either in vitro when cultured in the presence of VEGF-B (Cdh-5 gene positive expression), or in vivo in Matrigel implants (human CD31+ staining in neo-vessels from plug sections). In conclusion, VSELs are a potential new source of therapeutic cells that may give rise to cells of the endothelial lineage in humans.

 
  • References

  • 1 Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 2012; 110: 624-637.
  • 2 Silvestre JS, Smadja DM, Levy BI. Postischaemic revascularisation: from cellular and molecular mechanisms to clinical applications. Physiol Rev 2013; 93: 1743-1802.
  • 3 Yoder MC, Mead LE, Prater D. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109: 1801-1809.
  • 4 Heeschen C, Lehmann R, Honold J. et al. Profoundly reduced neovascularisation capacity of bone marrow mononuclear cells derived from patients with chronic ischaemic heart disease. Circulation 2004; 109: 1615-1622.
  • 5 Case J, Mead LE, Bessler WK. et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 2007; 35: 1109-1118.
  • 6 Timmermans F, Van Hauwermeiren F, De Smedt M. et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 2007; 27: 1572-1579.
  • 7 Mauge L, Sabatier F, Boutouyrie P. et al. Forearm ischaemia decreases endothelial colony-forming cell angiogenic potential. Cytotherapy 2014; 16: 213-224.
  • 8 George J, Shmilovich H, Deutsch V. et al. Comparative analysis of methods for assessment of circulating endothelial progenitor cells. Tissue Eng 2006; 12: 331-335.
  • 9 Khan ZA, Boscolo E, Picard A. et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 2008; 118: 2592-2599.
  • 10 Boscolo E, Mulliken JB, Bischoff J. VEGFR-1 mediates endothelial differentiation and formation of blood vessels in a murine model of infantile hemangioma. Am J Pathol 2011; 179: 2266-2277.
  • 11 Jiang Y, Vaessen B, Lenvik T. et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002; 30: 896-904.
  • 12 Zuba-Surma EK, Ratajczak MZ. Overview of very small embryonic-like stem cells (VSELs) and methodology of their identification and isolation by flow cytometric methods. Curr Protoc Cytom. 2010. Chapter 9: Unit9 29.
  • 13 Ratajczak MZ, Zuba-Surma EK, Shin DM. et al. Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp Gerontol 2008; 43: 1009-1017.
  • 14 Ratajczak MZ, Zuba-Surma EK, Machalinski B. et al. Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterisation, and biological significance. Stem Cell Rev 2008; 04: 89-99.
  • 15 Duong-Van-Huyen JP, Smadja DM, Bruneval P. et al. Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischaemia. Mod Pathol 2008; 21: 837-846.
  • 16 Smadja DM, d’Audigier C, Guerin CL. et al. Angiogenic potential of BM MSCs derived from patients with critical leg ischaemia. Bone Marrow Transplant 2012; 47: 997-1000.
  • 17 Smadja DM, Duong-van-Huyen JP, Dal Cortivo L. et al. Early endothelial progenitor cells in bone marrow are a biomarker of cell therapy success in patients with critical limb ischaemia. Cytotherapy 2012; 14: 232-239.
  • 18 Smadja DM, Bieche I, Silvestre JS. et al. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol 2008; 28: 2137-2143.
  • 19 Wojakowski W, Tendera M, Kucia M. et al. Mobilisation of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 2009; 53: 1-9.
  • 20 Pittenger MF, Mackay AM, Beck SC. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147.
  • 21 Smadja DM, Guerin CL, Boscolo E. et al. alpha6-Integrin is required for the adhesion and vasculogenic potential of hemangioma stem cells. Stem Cells 2014; 32: 684-693.
  • 22 Melero-Martin JM, De Obaldia ME, Kang SY. et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 2008; 103: 194-202.
  • 23 Tateishi-Yuyama E, Matsubara H, Murohara T. et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-435.
  • 24 Guven H, Shepherd RM, Bach RG. et al. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol 2006; 48: 1579-1587.
  • 25 Massa M, Campanelli R, Bonetti E. et al. Rapid and large increase of the frequency of circulating endothelial colony-forming cells (ECFCs) generating late outgrowth endothelial cells in patients with acute myocardial infarction. Exp Hematol 2009; 37: 8-9.
  • 26 Toshner M, Voswinckel R, Southwood M. et al. Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med 2009; 180: 780-787.
  • 27 Smadja DM, Mauge L, Gaussem P. et al. Treprostinil increases the number and angiogenic potential of endothelial progenitor cells in children with pulmonary hypertension. Angiogenesis 2011; 14: 17-27.
  • 28 Smadja DM, Mauge L, Nunes H. et al. Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis 2013; 16: 147-157.
  • 29 Fadini GP, Sartore S, Albiero M. et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 2006; 26: 2140-2146.
  • 30 Ingram DA, Mead LE, Tanaka H. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004; 104: 2752-2760.
  • 31 Smadja DM, Bieche I, Emmerich J. et al. PAR-1 activation has different effects on the angiogenic activity of endothelial progenitor cells derived from human adult and cord blood. J Thromb Haemost 2006; 04: 2729-2731.
  • 32 Smadja DM, Mauge L, Susen S. et al. Blood outgrowth endothelial cells from cord blood and peripheral blood: angiogenesis-related characteristics in vitro: a rebuttal. J Thromb Haemost 2009; 07: 504-506. author reply 506–508.
  • 33 Asahara T, Murohara T, Sullivan A. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967.
  • 34 Ohtani K, Vlachojannis GJ, Koyanagi M. et al. Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells. Circ Res 2011; 109: 1219-1229.
  • 35 Bompais H, Chagraoui J, Canron X. et al. Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 2004; 103: 2577-2584.
  • 36 Smadja DM, Bieche I, Uzan G. et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol 2005; 25: 2321-2327.
  • 37 Gehling UM, Ergun S, Schumacher U. et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95: 3106-3112.
  • 38 Kawamoto A, Iwasaki H, Kusano K. et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularisation after myocardial infarction compared with total mononuclear cells. Circulation 2006; 114: 2163-2169.
  • 39 Kocher AA, Schuster MD, Szabolcs MJ. et al. Neovascularisation of ischaemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte, apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 07: 430-436.
  • 40 Barcelos LS, Duplaa C, Krankel N. et al. Human CD133+ progenitor cells promote the healing of diabetic ischaemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 2009; 104: 1095-1102.
  • 41 Shin DM, Zuba-Surma EK, Wu W. et al. Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4 (+) very small embryonic-like stem cells. Leukemia 2009; 23: 2042-2051.
  • 42 Havens AM, Sun H, Shiozawa Y. et al. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev 2014; 23: 689-701.
  • 43 Zuba-Surma EK, Guo Y, Taher H. et al. Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction. J Cell Mol Med 2011; 15: 1319-1328.
  • 44 Al-Khaldi A, Al-Sabti H, Galipeau J. et al. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischaemia model. Ann Thorac Surg 2003; 75: 204-209.
  • 45 Al-Khaldi A, Eliopoulos N, Martineau D. et al. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther 2003; 10: 621-629.
  • 46 Kucia M, Reca R, Campbell FR. et al. A population of very small embryonic-like (VSEL) CXCR4 (+)SSEA-1 (+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857-869.
  • 47 Kucia M, Zuba-Surma E, Wysoczynski M. et al. Physiological and pathological consequences of identification of very small embryonic like (VSEL) stem cells in adult bone marrow. J Physiol Pharmacol 2006; 57 (Suppl. 05) 5-18.
  • 48 Paczkowska E, Kucia M, Koziarska D. et al. Clinical evidence that very small embryonic-like stem cells are mobilised into peripheral blood in patients after stroke. Stroke 2009; 40: 1237-1244.