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Abstract
Ocular diseases affect millions worldwide and dramati-
cally influence the quality of life. Although much is known 
about ocular biology and disease pathologies, effective 
treatments are still lacking. The eye is well suited for ap-
plication of emerging cell-based therapies. This chapter 
explores the development of stem cell-based treatments 
for age-related macular degeneration (AMD), a prevalent 
ocular disease in the elderly. Retinal pigmented epithe-
lium (RPE), a cell type implicated in AMD, has been de-
rived from both induced pluripotent stem cells and em-
bryonic stem cells (ESC). Rapidly advancing research has 
generated various methods of RPE differentiation and 
several transplantation strategies. Clinical trials are al-
ready underway using suspensions of ESC-derived RPE 
and others are soon to follow. This chapter will provide 
an overview of current derivation and transplantation 
strategies for stem cell-derived RPE for the treatment of 
AMD and other related ocular diseases.

© 2014 S. Karger AG, Basel

Age-related macular degeneration (AMD) is a 
progressive disease leading to the loss of high-
acuity vision. More than 200,000 people are diag-
nosed per year, making AMD the leading cause of 

blindness in the elderly in the developing world 
[1]. Around 7.2 million people in the US alone 
suffer from this devastating disease with annual 
medical costs exceeding USD 250 billion [2]. The 
disease primarily affects a small region in the back 
of the eye responsible for central vision called the 
macula. Loss or dysfunction of macular retinal 
pigmented epithelium (RPE), which provides 
crucial supportive functions for the photorecep-
tors, is thought to play a crucial role in disease 
progression. There are two general forms of the 
disease, wet (exudative) AMD and dry (nonexu-
dative) AMD, with over 90% of patients suffering 
from the more slowly progressing dry form [3, 4]. 
Wet AMD is characterized by a quick progression 
of choroidal neovascularization (CNV), leading 
to rapid degradation of RPE and photoreceptors 
and impaired vision. However, this form of the 
disease is successfully treated in most patients us-
ing inhibitors of the vascular endothelial growth 
factor, such as ranibizumab, bevacizumab, and 
aflibercept [1, 5–7]. The advanced form of AMD 
not involving CNV growth, termed geographic 
atrophy, results in extensive RPE and photore-
ceptor death, which causes substantial vision loss 
as the fovea becomes threatened or involved di-
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rectly [8, 9]. This extensive loss of vision impairs 
daily activities including reading, driving, face 
recognition, and mobility. Currently, there are no 
reliable, effective treatments for dry AMD [10, 
11]. Although some experimental autologous 
transplants and retinal translocation surgeries 
have been performed, they are fraught with ob-
stacles and complications that have yet to be over-
come [12].

AMD is a multifactorial disease with numer-
ous genetic and environmental risk factors [13, 
14]. Polymorphisms within multiple complement 
system genes, including alternate complement 
factors H, B, and I, in addition to components 2 
and 3, lead to substantial genetic predisposition 
to AMD [15–21]. These findings suggest a chron-
ic inflammatory state in the disease and poten-
tially a progressive immune attack on RPE. Muta-
tions in noninflammatory-related genes, apolipo-
protein E (APOE) [22], hepatic triglyceride lipase 
(HL) [23], cholesteryl ester transfer protein 
(CETP) [23], vascular endothelial growth factor 
(VEGF) [24], and regions surrounding the tissue 
inhibitor metalloproteinase 3 (TIMP3) [23], also 
correlate with AMD onset. Genes associated with 
AMD also include Age-related Maculopathy Sus-
ceptibility 2 (ARMS2) [21] and HTR1A serine 
peptidase 1 (HTRA1) [25], although little is 
known about their mechanisms of action. A mu-
tation in the ATP-binding cassette transporter 
gene sub-family A (ABCA4) leads to Stargardt 
disease, causing early-onset macular degenera-
tion, often rendering patients blind before the age 
of 20 [26]. ABCA4 mutations may also be associ-
ated with some cases of AMD [27]. Environmen-
tal factors that influence AMD development and 
progression include, age, smoking, non-African 
descent, poor eating habits, and low physical ac-
tivity [14]. The precise mechanism of AMD cau-
sation is still not completely understood.

The presence of drusen deposits is the hall-
mark pathology of both forms of AMD. Drusen 
are composed of lipids, carbohydrates, proteins, 
and cellular components, including secreted in-

flammatory proteins [28, 29]. These deposits 
build up in between the basal laminar side of the 
RPE and the surface of the Bruch’s membrane, a 
multilaminar extracellular matrix (ECM) barrier 
separating the RPE and choroid. The monolayer 
of RPE is disrupted by drusen and may play a role 
in RPE dysfunction. However, the direct effect of 
drusen on RPE and in AMD is still unclear [28]. 
Drusen biogenesis might cause RPE dysfunction, 
or RPE damage could lead to defective degrada-
tion of cellular components and consequent for-
mation of deposits [30]. Regardless, drusen are 
present in AMD where RPE undergo apoptosis, 
contributing to photoreceptor death [31, 32].

RPE are critical to photoreceptor viability [33, 
34]. The RPE create the blood-retina barrier and 
have multiple roles in maintaining photoreceptor 
health and visual function. RPE phagocytose rod 
outer segments, absorb of stray light, secrete tro-
phic factors, and assist in visual cycle retinol con-
version and nutrient diffusion from the choroid. 
Therefore, dysfunctional RPE leads to the subse-
quent damage and death of photoreceptors. Pho-
toreceptor loss within the macula causes central 
vision impairment with disease progression ex-
panding the extent of vision loss.

Retinitis pigmentosa (RP), Leber congenital 
amaurosis and Best disease are also associated 
with RPE dysfunction and might benefit from 
novel cell replacement therapies. Current treat-
ments, in various stages of development, involve 
gene therapy using associated adenoviral injec-
tions [35, 36]. Promising research using merTK 
gene therapy in mouse models of retinal dysfunc-
tion could lead to a novel RP treatment; merTK is 
a receptor located on the apical side of RPE, criti-
cal in phagocytosis of photoreceptor outer seg-
ments. RPE65 gene therapy is currently in clinical 
trials for Leber congenital amaurosis treatment. 
RPE65 is an RPE-specific enzyme involved in the 
retinoid visual cycle, necessary for continual pho-
toreceptor function [36]. To gain a better mecha-
nistic understanding of these diseases, induced 
pluripotent stem cell (iPSC) lines are being gener-
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ated from patients. The Gamm group has created 
several iPSC-derived RPE (iPSC-RPE) lines from 
Best disease patients to elucidate the normal and 
aberrant function and localization of bestrophin, 
the protein genetically altered in this disease [37].

The Case for Cellular Therapies

Current available treatment options for dry AMD 
are limited. Vitamin and mineral therapy can re-
duce the incidence of CNV but does not seem to 
affect the development of GA [38]. Although cell-
based therapies have challenges, including cellu-
lar production and characterization, immune re-
jection, inflammatory response, tumor forma-
tion, and integration and survival of the transplant, 
the eye has many advantages that make this ap-
proach feasible. The macula averages 6 mm in di-
ameter, requiring approximately 120,000 RPE 
cells for complete coverage. The subretinal space 
is immune privileged, lacking significant immune 
cell infiltration. The eye is also accessible, and re-
fined surgical techniques and tools are available 
for efficient subretinal transplantation. In addi-
tion, good end point parameters of transplant 
success can be measured. Visual acuity can be de-
termined using simple tests (EDTRS Eye Charts) 
as well as more complex microperimetry. Ad-
vanced imaging techniques, such as optical co-
herence tomography and fundus autofluores-
cence can be done to assess transplant placement, 
RPE integrity, photoreceptor integrity, RPE-pho-
toreceptor integration, choroidal thickness, and 
complications such as retinal edema and CNV. 
Progress in imaging is advancing at a rapid pace, 
with the development of novel noninvasive adap-
tive optic methods that can resolve single RPE 
and photoreceptor cells [39].

Proof of concept for RPE transplantation 
comes from studies in rodents and humans that 
began 20 years ago. Extensive research has been 
carried out using a variety of cell types, transplan-
tation methods and tools, and retinal dysfunction 

models [12]. In rodents, while there is no ideal 
model for AMD, the Royal College of Surgeons 
(RCS) rat is used as a model of RPE dysfunction. 
It is important to note that rats do not have a mac-
ula (including a cone-rich fovea), and the RCS rat 
model does not recapitulate some critical aspects 
of human AMD (e.g abnormalities in Bruch’s 
membrane structure and composition). RCS rats 
harbor mutations in the merTK gene, which en-
codes a cell surface receptor required for the crit-
ical RPE process of photoreceptor outer segment 
phagocytosis. Without proper phagocytosis, RPE 
fail to maintain photoreceptor viability, causing 
substantial vision loss 3 months after birth. A 
number of cell types will rescue vision in this 
model. Suspensions of transformed and sponta-
neously derived RPE cells, h1RPE7 and ARPE19, 
injected into the subretinal space show improved 
visual performance and histology compared to 
sham-treated RCS rats [40–43]. Isolated fetal hu-
man neural cortical precursor cells also rescue vi-
sual function after injection. These precursors 
migrate to the retina and form a multi-layered 
structure on the Bruch’s membrane, increasing 
retinal sensitivity and function [44]. Although fi-
broblasts will not effectively rescue vision in the 
RCS rat, some salutary effects are observed in an-
imals undergoing subretinal injection without 
cell delivery [45]. In addition, the photoreceptor 
rescue effect often extends hundreds of microns 
beyond the border of the transplanted cells [43]. 
Therefore, it seems likely that secretion of trophic 
factors and activation of endogenous macro-
phages that clean up the debris zone contribute to 
the rescue and preservation of photoreceptors.

To date, human RPE transplantation has uti-
lized three types of RPE: autologous, allogenic, 
and stem cell-derived. Autologous RPE trans-
plantation involves excision of a patch of healthy 
RPE plus choroid from the ocular periphery fol-
lowed by placement under the macula. Macular 
translocation, another form of autologous sur-
gery, originally used to treat exudative AMD pa-
tients, involves retinal detachment and rotation, 
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locating healthy RPE and Bruch’s membrane un-
der the macula. However, when macular translo-
cation is done to treat GA, GA develops rather 
rapidly under the new location of the fovea for 
unknown reasons [46]. Fetal and cadaver RPE 
have been injected in suspension, small sheets, or 
gelatin matrices into patients with varying ocular 
diseases to improve visual performance [12]. 
There is a suggestion that better results have been 
obtained with patches or sheets, rather than sus-
pensions of cells [47, 48]. However, the results of 
RPE transplantation studies in AMD patients 
have been variable and time will tell which meth-
od proves to be superior [49]. The relatively few 
documented cases of visual improvement follow-
ing RPE transplantation demonstrate that cellular 
therapy is feasible and may be a useful approach 
for treating selected AMD patients.

A number of important issues must be ad-
dressed for cell-based AMD therapy to be opti-
mized, e.g. long-term cell survival (independent 
of immune rejection), identification of the 
stage(s) of the disease most appropriate for sur-
gical intervention, and development of a safe, 
simple surgical technique. A critically important 
issue also involves identification of sources of 
cells for transplantation. Apart from ethical 
concerns, fetal RPE (fRPE) are not available in 
abundance and cannot be propagated indefi-
nitely (abnormal morphology is evident by the 
fifth passage in most cases), which limits their 
commercial utility. The ideal cell source for 
therapies would have infinite expansion proper-
ties, reproducible and well-defined differentia-
tion capabilities, and stable cryopreservation 
and shipment abilities. Human pluripotent stem 
cells meet the starting cell material criteria for 
the large source of RPE needed for ocular dis-
ease cell therapy.

In this chapter, we will discuss the methods of 
RPE derivation from pluripotent stem cells and 
the various transplantation methods undergo-
ing development as cell therapies move forward 
into the clinics. While many excellent reviews 

have been written on this topic [47, 50–52], the 
field is developing fast enough to warrant a new 
discussion.

Derivation of Retinal Pigmented Epithelium 
from Pluripotent Stem Cells

There are two main types of human pluripotent 
stem cells: human embryonic stem cells (hESCs) 
and induced pluripotent stem cells (iPSCs). 
hESCs are harvested from the inner cell mass of 
a 3- to 5-day-old fertilized embryo. hESCs can be 
cultured indefinitely with maintained stem cell 
characteristics and the potential to differentiate 
into all three germ layers [53]. The first five hESC 
lines generated in 1998 by Prof. Jamie Thomson’s 
laboratory at the University of Wisconsin are still 
in use today. Theoretically, these lines could be 
used to supply enough cells for research and 
treatment of all patients of any disease for which 
cellular therapies are developed, including AMD. 
iPSCs are derived from differentiated somatic 
cells that have been reprogrammed to revert back 
to a pluripotent state. This reprogramming was 
first accomplished using integrative viral vectors 
encoding specific embryonic transcription fac-
tors associated with pluripotency. The stem cell 
colonies that formed, like hESCs, could divide in-
finitely and differentiate into any cell type in the 
body [54, 55]. The potential advantage of iPSCs 
over hESCs is that patient-specific cells could be 
generated that might avoid immune rejection af-
ter autologous transplantation. While initial re-
ports suggested that autologous undifferentiated 
iPSCs might still be rejected [56], more recent 
studies have shown that differentiated cells are 
immune compatible [57, 58]. Improved methods 
for generation of iPSCs that lack integrating vec-
tors have been discovered that utilize excisable 
transgenic systems, micro RNAs, modified 
mRNAs, and small molecules [59–63]. Thus, 
both iPSCs and hESCs are promising sources for 
future cellular therapies.
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Differentiation of Pluripotent Stem Cells into RPE 85

Numerous cell types have been derived from 
both hESCs and iPSCs including RPE. RPE dif-
ferentiation from hESCs was first described in 
2004 by Klimanskaya’s group, and since then 
multiple groups have optimized the protocol for 
producing a pure population of hESC-derived 
RPE (hESC-RPE) and iPSC-RPE [40, 47, 50, 64–
74]. In culture, stem cells and RPE need to be 
grown on a substrate to support their attachment 
and growth. hESCs and iPSCs originally were 
grown on inactivated mouse or human embry-
onic fibroblasts; however, Matrigel, a composite 
of ECM proteins from a mouse sarcoma, and 
mouse PA6 stromal cells have also been used 
[53–55, 64, 75]. Endogenous RPE normally re-
side on an ECM layer called Bruch’s membrane. 
In culture, a similar substrate is needed to facili-
tate RPE attachment, differentiation, and surviv-
al. Several substrates have been used: human 
Bruch’s membrane explants, gelatin, laminin, vi-
tronectin, bovine corneal endothelial cell ECM, 
and Matrigel. Comparisons show that Matrigel, 
laminin, vitronectin, and bovine corneal endo-
thelial cell ECM lead to the purest RPE pheno-
type [76–78]. Ideally, a xeno-free (non-animal 
containing) protocol would be used throughout 
the entire differentiation process.

The Continuous Adherent Culture Method

Derivation of RPE from either pluripotent starting 
source can be achieved in a continuous adherent 
culture. Stem cells are allowed to overgrow on a 
feeder cell layer of mitotically inactivated mouse 
embryonic fibroblasts or Matrigel. Stem cell colo-
nies become confluent and multilayered. They 
lose their tight borders and begin to differentiate. 
At this time, the media is changed from a stem 
cell-supporting media, to a differentiating media 
without basic fibroblast growth factor (bFGF) to 
further promote differentiation. Cultures main-
tained in this bFGF-free media will begin to show 
small spots of pigmentation after 1–8 weeks. These 
spots are differentiating RPE. Over time, the pig-
mented spots multiply and expand within the cul-
ture. Although there are other differentiated cell 
types in the cultures, the spontaneously derived 
RPE are easy to distinguish because of their pig-
ment granules, a major advantage in hESC/iPSC-
RPE differentiation. When the pigmented RPE 
spots become frequent and large, they can be me-
chanically dissected and passaged [40, 65–67, 73, 
79, 80]. The excised cells are grown to a mono-
layer and exhibit the RPE-distinctive cobblestone 
morphology and pigmentation patterns (fig.  1). 

Fig. 1. Depiction of spontaneous RPE differentiation from hESCs using a continuous adherent culture method. From 
left to right, overgrown hESCs through the spontaneous differentiation process. a Pigmented colonies are excised 
after 100 days in culture and re-plated to yield a mostly homologous population of RPE cells. b Enriched RPE exhibit 
typical cobblestone cuboidal morphology and pigmentation. Scale bar = 10 mm (a) and 100 µm (b).
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The downside of this RPE enrichment method is 
that the manual isolation technique is difficult to 
fit within the Good Manufacturing Practice 
(GMP) production guidelines. This limitation 
could prevent advancing hESC/iPSC-RPE cellular 
therapies into human clinical trials. Therefore, en-
zymatic techniques are under investigation to sep-
arate RPE from other differentiated cell types [80].

After the pigmented RPE are enriched and 
plated, quality control must be performed to en-
sure these derived cells express similar gene ex-
pression patterns and function as endogenous 
RPE. Assays to establish RPE identity and poten-
cy must be created. Quantitative real-time PCR 
can be done to compare transcript levels of hESC 
and iPSC-RPE with human RPE. A number of 
RPE genes [e.g RPE-specific transcription factors, 
microphthalmia-associated transcription factor 
(MITF) and orthodenticle 2 isoform b homeobox 
protein (OTX2); visual cycle proteins, cellular 
retinaldehyde-binding protein (CRALBP) and 
RPE protein 65 kDa (RPE65); secreted factors, 
pigment epithelium-derived factor (PEDF); tight 
junction marker, zona occludens 1 (ZO-1), and 
phagocytosis component, mer tyrosine kinase 
(MERTK)] are analyzed by quantitative real-time 
PCR to ensure mRNA levels coincide with human 
fRPE [40, 65–67, 73, 79]. Current data suggest 
some differences between fRPE, the benchmark 
comparison. Overall, bioinformatics analyses 
show that hESC-RPE are very similar to fRPE but 
may correspond to a less mature RPE state [73]. 
RPE65, a mature RPE marker, appears to increase 
with culture of hESC-RPE, and could also be used 
as a biomarker to determine RPE identity. It is 
interesting to note that fRPE share a much more 
similar gene profile with hESC-RPE than iPSC-
RPE [73]. In addition, hESC-RPE and fRPE show 
equivalent low levels of genes associated with ag-
ing, energy metabolism, and the complement sys-
tem, all factors associated with AMD pathophysi-
ology [73; Hikita et al. unpubl.].

Stem cell-derived RPE must also be tested to 
ensure these cells carry out critical physiological 

processes. As described previously, RPE are re-
sponsible for phagocytosing photoreceptor outer 
segments to maintain photoreceptor homeosta-
sis. Phagocytosis can be tested using an assay in 
which fluorescently labeled outer segments are 
incubated with cultured RPE, and the amount of 
internalized segments is quantified. hESC-RPE 
and several iPSC-RPE lines have phagocytic abil-
ities comparable to fRPE [66, 67, 73, 76, 79]. Sev-
eral studies have implanted both types of stem 
cell-derived RPE into rodent models of retinal 
dysfunction and shown improved visual perfor-
mance [40, 65, 68, 81]. In addition, subretinally 
injected iPSC-RPE enhanced visual acuity in a 
model of RP with no tumor formation [82]. Cur-
rently, all clinical trials involving hESC-RPE re-
quire immunosuppression, which could poten-
tially be avoided if a well-defined, rapidly devel-
oped iPSC-RPE line could be generated. One 
example of such an approach uses only Oct4 to 
reprogram into iPSCs in combination with small 
molecules [83]. These lines have been derived 
into RPE and hold great potential for clinical ap-
plication of autologous RPE grafts.

The Embryoid Body Approach

hESCs and iPSCs can also be differentiated into 
RPE using a second strategy called the embryoid 
body (EB) approach. Although this method may 
not be as efficient as the continuous adherent ap-
proach, it still yields viable RPE and is a spontane-
ous differentiation protocol [65]. To apply this 
method, stem cells are grown on feeder cells or 
substrate until 50–75% confluent. Colonies are 
dissociated using an enzyme, such as collagenase, 
and sectioned into pieces. The pieces are plated in 
a serum- and bFGF-free differentiation media on 
plates coated with a neutrally charged hydrophil-
ic hydrogel to diminish attachment. The cells will 
form spherical aggregates called EBs. These bod-
ies can differentiate into all three germ layers and 
show pigmentation. Twenty days following EB 
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formation, the aggregates are passed onto a coat-
ed plate, allowing for cell attachment. Within 
24 h, cells will attach and begin to spread. Over 
time, distinct RPE sheets will form. These RPE 
colonies can be excised manually and passaged 
onto another coated dish, creating a mostly ho-
mogenous RPE cell population [68, 69, 72, 79, 
84]. Gene expression profiles of resultant hESC-
RPE cells show patterns similar to fRPE, with ro-
bust expression of RPE specific genes: MITF, 
OTX2, CRALBP, RPE65, PEDF, ZO-1, MERTK 
[68, 69, 72, 74, 84]. In addition, these cells can 
phagocytose outer segments and rescue visual 
performance in rodent models of retinal dysfunc-
tion [68, 72, 79, 84]. This desired phenotype can 
also be achieved deriving RPE from iPSCs [69, 71, 
85–87]. 

Directed Differentiation

Spontaneous differentiation of RPE is time con-
suming, and efficiency varies between cell lines. 
Therefore, a number of groups have focused on 
improving protocols to speed up this process. 
The strategy is to mimic normal human RPE de-
velopment by adding small molecules to initiate 
signaling cascades at the correct time to promote 
retinal cell fate in vitro [69–71, 84]. These efforts 
have not only focused on hESC and iPSC differ-
entiation into RPE, but also on a range of retinal 
cell types [88]. RPE are ectoderm and originate 
from the anterior neural plate neuroepithelium 
during optic cup development. A range of signal-
ing cascades including the transforming growth 
factor-β (TGFβ) superfamily, Wingless-related 
integration site (Wnt), and FGF pathways are in-
volved in RPE specification [33, 89]. Stem cells 
must first be directed towards a retinal progeni-
tor fate before terminal RPE differentiation. Sev-
eral groups have directed differentiation by using 
Wnt and NODAL inhibitors, Dkk-1 and Lefty A, 
to induce a neural fate [70, 71, 74, 84]. Further 
neural and retinal induction has been obtained 

utilizing supplements, N2 or B27 and heparin. 
Following differentiation into retinal progeni-
tors, RPE can be specified by epithelial driving 
factors. Activin A, BMP4, Wnt3A and an FGF in-
hibitor (SU5402) stimulate RPE derivation from 
neural retinal progenitors [69]. A class B vitamin, 
nicotinamide, also promotes RPE differentiation, 
and this effect is enhanced when added in com-
bination with Activin A [72]. Appropriate timing 
and duration of each molecule is critical to yield 
pigmented, functional RPE. In 2012, Zahabi et al. 
[90] reduced the time from beginning human 
iPSC differentiation to enrichment to 40 days us-
ing bFGF, TGFβ receptor inhibitor (SB431542), 
noggin, retinoic acid, and sonic hedgehog 
throughout their protocol. A new method of de-
riving RPE from pluripotent stem cells was pub-
lished by the Tanaka group in January, 2013. 
They described the formation of epithelial cysts, 
mimicking neural tube morphology, arising 
5  days after pluripotent cells are embedded in 
Matrigel. The cysts are extracted, re-plated onto 
Matrigel-coated wells using an RPE supporting 
media with supplemental factors, and develop 
into RPE within 30 days. These RPE become pig-
mented, express RPE65 and BEST1, show appro-
priate transepithelial resistance levels, and phago-
cytose rod outer segments. In addition, following 
transplantation into the RCS rat, they increase 
the thickness of the outer nuclear layer within the 
retina [91]. Most recently, an improved protocol 
of directed differentiation from hESCs to RPE 
has been achieved producing enrichable RPE 
sheets within only 14 days [75] (see fig. 2 for a 
comparison of all differentiation methods.)

Other Sources of Retinal Pigmented 
Epithelium

While pluripotent stem cells are the best source 
of RPE, other stem cell types are under investiga-
tion. Both rat neural stem cells, harvested from 
the cerebral cortex, and mesenchymal stromal 
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cells (MSC), isolated from human lipo-aspirate, 
were reported to yield cells with some RPE char-
acteristics using the same differentiation strate-
gy [92, 93]. Co-cultures with rat RPE, or condi-
tioned media from human RPE, in combination 
with vasointestinal peptide produced cells with 
some morphological features of RPE [92, 93]. 
The MSC-derived RPE were further character-
ized and showed some induction of BEST1 and 
RPE65, mature human RPE markers [93]. How-
ever, the levels of expression were not compared 
with fRPE, so it is difficult to be sure how RPE-
like these cells are. One group used bone mar-
row-derived mesenchymal stem cells cultured 
with human RPE-conditioned media and photo-
receptor outer segments to generate RPE that ex-
press RPE65 and phagocytose porcine rod outer 
segments [94]. Another potential alternate 
source of RPE is retinal stem cells (RSCs) ex-

tracted from the ciliary margin. Coles et al. [95] 
reported that there are 10,000 multipotent RSCs 
in each eye that can yield all retinal cell types, 
including RPE. After transplantation of RSCs 
into mice, the cells survived, integrated, and dif-
ferentiated into the retina. However, a subse-
quent study questioned whether these were ac-
tually RSCs [96]. It remains unclear if these cells 
can be expanded into a pure RPE population, 
and more characterization is needed. During de-
velopment, RPE are plastic cells, and some 
groups have harnessed this potential in mature 
RPE, claiming RPE can dedifferentiate into a 
multipotent stem cell which can then take on 
other cell phenotypes [97].

A direct conversion of human fibroblasts to 
RPE-like cells has also been achieved through 
overexpression of key RPE transcription factors 
and additional supplements. This protocol yields 

Removal of bFGF

Removal of bFGF

Directed RPE enrichment–Buchholz et al., 2013 

Continuous adherent culture approach

EB approach

7d 14d 21d 28d 35d 42d 49d 56d 63d 70d 77d 84d 91d 98d

Directed RPE enrichment–Zahabi et al., 2012

Initial pigmentation
Spontaneous RPE enrichment 

Low-attachment plating,
EB formation in suspension culture

Transfer EBs to adherent
substrate

Initial pigmentation
Spontaneous RPE enrichment

Epithelial cyst RPE derivation–Zhu et al., 2013
Direct conversion of fibroblasts to RPE–Zhang et al., 2013  

Fig. 2. Time course comparison of the continuous adherent culture and EB culture methods of spontaneous deriva-
tion of RPE from pluripotent stem cells. Colored lines indicate time to enrichment for other RPE differentiation 
methods.
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cells expressing some mature RPE markers within 
35 days. The function of these RPE-like cells, 
however, has not yet been reported [98].

Induced Pluripotent or Human Embryonic 
Stem Cell-Derived Retinal Pigmented 
Epithelium?

An unanswered question remains: which starting 
source, hESCs or iPSCs is better for clinical use? 
A potential drawback to the iPSCs having the 
same genetic makeup and immunocompatibility 
as the patient is that they carry the same inherited 
defects predisposing to the disease. Another ca-
veat is that these cells show increased mutations, 
copy number variations, and abnormal methyla-
tion patterns when compared to hESCs, which 
could hinder their therapeutic value [86, 99–103]. 
hESC-RPE are a younger cell type and are not ma-
nipulated by viruses or small molecules. Although 
allogeneic hESC-RPE can be free of disease-asso-
ciated mutations, they might be rejected by the 
immune system. The subretinal space is an im-
mune privileged sight, but this privilege is relative 
and not absolute. Moreover, patients may have a 
compromised blood-brain barrier, which could 
allow a larger than normal immune response 
within the eye. A benefit of hESC-RPE is they can 
be ready for transplantation immediately follow-
ing diagnosis in appropriately selected patients. 
Currently, patient-specific iPSC-RPE would be 
extremely time-consuming to produce and char-
acterize before transplantation. In patients with 
rapidly progressing disease, this delay in treat-
ment might result in significant loss of vision. Fi-
nally, generation of autologous cells would be 
costly and require a 9-month tumorigenicity 
study under current FDA policies. However, 
banks of HLA-matched iPSCs might overcome 
this problem.

iPSC-RPE also show memory of their previous 
terminal fate and show differences in gene pro-
files from fRPE [104]. These differences, however, 

vary from cell line to cell line, and with new non-
integrative systems, iPSC-RPE appear to be more 
similar to fRPE [55, 73, 83]. There is great vari-
ability between cell lines for both hESC- and 
iPSC-derived RPE, which has yet to fully be ex-
plained and could lead to clinical complications 
for either source [69, 85, 105, 106]. More hESC-
RPE and iPSC-RPE research is needed to eluci-
date the optimal starting cell material. Therapies 
moving forward with either cell line must take 
precautions to ensure reliable and fully character-
ized cells are manufactured for transplantation.

Transplantation Strategies

In addition to the debate over whether to use 
hESCs or iPSCs to derive RPE for transplanta-
tion, there is also a question about how to de-
liver the cells. Grafted cells must integrate and 
function properly with the existing retina to pre-
vent further photoreceptor damage and de-
crease progression of disease. Two main tech-
niques are being studied currently. The first 
technique administers a bolus injection of dis-
sociated RPE into the subretinal space. Both 
hESC-RPE and iPSC-RPE have been delivered 
with this approach, and both showed photore-
ceptor rescue and preserved vision in rodent 
models of retinal dysfunction [40, 65, 72, 81]. 
An important study in 2009 showed some trans-
planted cells, in two distinct rat models of ocular 
disease, survived the duration of the 220-day ex-
periment with no teratoma formation [68]. This 
study is crucial in proof of principle that cells 
implanted into the eye can possess the longevity 
needed to slow disease progression without tu-
mor formation [68]. However, efficiency of cell 
survival and integration are still in question. 
Some reports have concluded that the majority 
of injected cells form aggregates in the subreti-
nal space, do not integrate into the RPE mono-
layer, and are unaccounted for after a period of 
time. Importantly, only a subset of injected dis-
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sociated cells possesses the ability to phagocy-
tose rod outer segments [81]. These results are 
not surprising. It is known that epithelial cells, 
like RPE, need to maintain contact with a base-
ment membrane to function properly and re-
main viable [12]. Cells in suspension undergo 
‘anoikis,’ a term coined by Ruoslahti to describe 
cells that undergo apoptosis after being dis-
placed from their anchor of ECM proteins [107]. 
Bruch’s membrane has specific ECM proteins 
that are required for RPE adhesion, survival and 
function [34]. It is also crucial that RPE cells 
form tight junctions to fulfill their necessary 
barrier functions.

The above considerations suggest a second 
strategy for RPE transplantation: grow RPE on a 
scaffold substrate that mimics the support of the 
Bruch’s membrane and allows the RPE to be 
transplanted as a fully differentiated, polarized 
monolayer. The idea behind the scaffold tech-
nique is that RPE cells will survive longer and re-
main located over the diseased retinal area, lead-
ing to greater functionality and improved visual 
performance. In addition, RPE grown on sub-
strates can polarize and be implanted in the cor-
rect orientation with their apical microvilli facing 
the photoreceptor outer segments [108]. In AMD, 
Bruch’s membrane deteriorates along with the 
RPE; therefore, transplanting healthy RPE on a 
biomimetic scaffold could improve the function-
ality and long-term survival of the RPE transplant 
[109].

A variety of scaffolds have been investigated. 
Natural biomaterial scaffolds include: human 
amniotic membranes [110–114], human lens 
capsule [115, 116], and explants of Bruch’s mem-
brane [117, 118]. Using these unaltered natural 
tissue supports could lead to issues with disease 
transmission from host and would be difficult to 
conform to FDA guidelines for transplantation 
production [119]. Natural polymers could be 
more advantageous and are currently being puri-
fied and used to grow hESC-RPE and iPSC-RPE. 
ECM proteins secreted from RPE [120] and cor-

neal endothelial cells [120, 121], isolated gelatins 
and collagens [117, 120, 122–125], alginates 
[108], hyaluronic acid [108], fibrinogens [126], 
vitronectin [117, 118], laminins [117, 118, 121], 
and fibronectins [118, 121] all can support RPE 
growth. In addition to human purified proteins, a 
combination of ECM proteins derived from the 
mouse Englebreth-Holm-Swarm tumor called 
Matrigel is also efficient for culturing RPE [124]. 
The caveats to using ECM proteins are the lot-to-
lot variation in composition and the difficulties to 
regulate production using GMP due to the animal 
source of the substrate.

The search for a synthetic polymer to support 
RPE growth and maturation has yielded several 
promising candidates. These compounds can be 
manufactured with knowledge of specific compo-
sition, are tailored to optimize RPE growth, and 
can be mass produced. In addition, adhesive pep-
tides and growth factors can be embedded within 
the polymers to promote attachment and surviv-
al. Materials are nonimmunogenic and can be 
biodegradable or biostable supports. Parylene, 
poly(lactic-co-glycolic acid) (PLGA), poly(L-lac-
tic acid) (PLLA), polycaprolactone, poly(glycerol 
sebacate), and polyhydroxyalkanoates are among 
those that have been investigated [108]. The poly-
mers that successfully allowed culturing of RPE 
include: PLGA [127–131], PLLA [127, 131, 132], 
a polyethylene glycol-PLLA [129], polydimethyl-
siloxane [133], poly(hydroxybutyrate-cohy-
droxyvalerate) [134], polyether urethanes [135, 
136], and parylene [137]. Parylene is already ap-
proved for use in the eye, and it can be microma-
chined to include ultrathin areas that mimic the 
permeability of Bruch’s membrane. Hydrogels 
composed of methacrylate and (meth) acryl-
amide also promote RPE growth [114]. Current 
research is making progress toward completely 
xeno-free derivation of RPE from hESC and iPSC, 
and discovering the optimal synthetic scaffold 
would allow the entire process from differentia-
tion to transplantation to be xeno-free. This ap-
proach provides benefits when creating GMP 
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protocols and potentially eliminates complica-
tions from using animal products within the 
transplant [85, 138].

Clinical Trial Progression

Many groups are well on their way to bringing 
pluripotent stem cell-derived RPE cells to the 
clinic for treating ocular diseases like AMD. The 
first clinical trial was granted approval after long-
term safety experiments and proof of concept 
were documented in rodents. Clinical trials be-
gan with 2 patients, one with Stargardt macular 
dystrophy and one with AMD. A bolus injection 
of dissociated hESC-RPE cells was administered 
into one eye of human patients. A preliminary 
report was published 4 months after transplanta-
tion [139]. Improved visual performance in the 
Stargardt disease patient was documented in the 
surgical eye only, but there is some controversy 
regarding this result [140]. The AMD patient 

showed improvement in the uninjected eye as 
well as in the injected eye, however the immuno-
suppressive regimen was not followed. Perhaps 
the most important result from this preliminary 
study is that patients presented no loss of vision 
or formation of ocular tumors. The next round of 
patients enrolled in the study will receive a great-
er number of hESC-RPE cells with the intent of 
increasing integration and efficiency [139]. Tri-
als for wet and dry AMD using monolayers of 
hESC-RPE on scaffolds are soon to begin in Lon-
don and California, and a trial using autologous 
iPSC-RPE has been approved in Japan. Other tri-
als for AMD using non-RPE cells (neural stem 
cells and cord blood) have also been initiated. Be-
cause the eye has many advantages for develop-
ing cellular therapies, a number of groups have 
seized upon the opportunity. It seems likely, 
based on proof of concept studies in both rodent 
and human, that these trials have tremendous 
potential for the treatment of AMD as well as 
other ocular diseases. 
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