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Zusammenfassung
Die zytotoxische Chemotherapie wurde bei der Behand-
lung von Tumoren traditionell als immunsuppressiv ein-
geschätzt. Immer mehr Hinweise belegen das Gegenteil 
und führten zur Einführung des Konzeptes der «immuno-
genen» Chemotherapie oder, mit anderen Worten, zum 
Konzept, dass das angeborene und das adaptive Immun-
system für die Festlegung der Langzeiteffektivität einiger 
Zytotoxin-basierter (und Strahlentherapie-basierter) Re-
gime ausschlaggebend sind. Die zugrunde liegenden 
Mechanismen, über die diese Therapien eine Antitumor-
Immunantwort auslösen können, sind kürzlich gezeigt 
worden. In diesem Artikel beleuchten wir den Hinter-
grund dieses neuen Paradigmas und bieten einen Über-
blick, wie Kombinationen von traditionellen Medikamen-
ten mit den neuen immuntherapeutischen Therapien die 
Behandlung von Brustkrebs beträchtlich verbessern 
könnten.
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Summary
Cytotoxic chemotherapy in the treatment of tumors has 
traditionally been thought to be immunosuppressive. 
 Increasing evidence suggests the contrary and has intro-
duced the concept of ‘immunogenic’ chemotherapy or, 
in other words, the concept that the innate and adaptive 
immune systems are critical in determining the long-
term efficacy of some cytotoxic-based (and radiother-
apy-based) regimens. The underlying mechanisms how 
these therapies can stimulate an antitumor immune re-
sponse have been demonstrated recently. In this article, 
we review the background of this new paradigm and 
how combinations of traditional agents with the new im-
munotherapeutic therapies may significantly advance 
our treatment of breast cancer.

Introduction

Traditionally, cytotoxic chemotherapy has been thought to  
be immunosuppressive. Increasing evidence has proposed the 
concept of ‘immunogenic’ chemotherapy or, in other words, 
the concept that the innate and adaptive immune systems  
are critical in determining the long-term efficacy of some 
 cytotoxic-based (and radiotherapy-based) regimens. Various 
mechanistic aspects of the way these therapies can stimulate 
an antitumor immune response have been revealed recently. 
In this article, we review the data behind this new paradigm 
and how combinations of traditional cytotoxic agents with the 

new targeted agents may significantly advance our treatment 
of solid tumors and, in particular, of breast cancer.

Cancer Immunoediting

In the past decade, cancer immunology has emerged as a 
 fundamental discipline of oncology, and immunotherapy as a 
reality for cancer patients [1, 2]. Immunity has 2 seemingly 
paradoxical effects on cancer. On the one hand, immunity 
prevents the development of nascent tumors, a concept 
known as cancer immunosurveillance [3, 4]. On the other 
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hand, immunity shapes the intrinsic nature of developing 
 tumors through immunological pressure. This combination of 
host-protective and tumor-sculpting functions of the immune 
system is termed cancer immunoediting [5]. Immunoediting is 
a dynamic process composed of 3 phases: elimination, equilib-
rium, and escape. Elimination refers to the classical concept 
of cancer immunosurveillance where premalignant and early-
stage malignant cells are directly or indirectly removed by 
 immune cells. The concept of cancer immunosurveillance  
was initially proposed by Burnet and Thomas [6] and was ex-
perimentally validated in the late 1990s using gene-engineered 
mouse models of immunodeficiency [7–9]. Equilibrium refers 
to a period of ‘tumor dormancy’ after incomplete immune-
mediated tumor destruction, where equilibrium is reached 
 between immune-mediated killing and survival of tumor cells 
[10]. Escape refers to the outgrowth of tumors that have sur-
vived and have been selected for by immunological pressure. 
The importance of cancer immunoediting was recently dem-
onstrated in a carcinogen-induced mouse sarcoma model 
where a mutated antigen was found to be a major tumor 
 rejection antigen that eventually led to the outgrowth of 
 tumors lacking the immunogenic epitope [11]. Thus, despite 
tumor immunosurveillance, tumors develop and are shaped in 
a Darwinian way in the presence of a functioning immune 
system.

Immunogenic Chemotherapy:  
Mechanisms of Immune Stimulation

In addition to being involved in the natural progression of 
cancer, immunity can affect the activity of various anticancer 
agents [12]. Accordingly, recent evidence suggests that some 
chemotherapeutic drugs, such as anthracyclines and oxalipla-
tin, rely on the induction of anticancer immune responses. In 
mouse models of cancer, chemotherapy with anthracyclines or 
oxaliplatin requires the priming of interferon (IFN)-g-pro-
ducing CD8+ T cells for optimal treatment response [13]. In 
cancer patients, high levels of IFN-g and CD8+ T cells are 
 predictive of a good clinical response to anthracyclines [14]. 
The immune-stimulating properties of anthracyclines and 
oxaliplatin were shown to require preapoptotic translocation 
of calreticulin (CRT) on the tumor cell surface, post-apoptotic 
release of the chromatin-binding protein high-mobility group 
B1 (HMGB1), and extracellular release of adenosine tri-
phosphate (ATP). CRT, HMGB1, and ATP act in concert  
to promote tumor antigen presentation by dendritic cells 
(DCs) via activation of CD91, Toll-like receptor (TLR)-4, and 
purinergic P2X7 receptors, respectively [15]. It was recently 
demonstrated that chemotherapy-induced autophagy is essen-
tial for the release of ATP and subsequent anticancer immu-
nity [16]. Accordingly, autophagy-deficient tumor cells are 
unable to release ATP in response to anthracyclines or oxali-
platin and fail to elicit CD8+ anticancer T cells. This suggests 
that patients with autophagy-deficient tumor cells might 

 benefit from therapeutic strategies designed to compensate 
this process in order to trigger immunogenic signaling. Extra-
cellular ATP thus appears as a central activator of anticancer 
immunity. However, tumors have been shown to overexpress 
ecto-nucleotidases able to hydrolyze extracellular ATP to 
 adenosine [17]. The expression of these ecto-nucleotidases, 
such as CD39 and CD73, will potentially have 2 major conse-
quences: decreasing the concentration of extracellular ATP 
available for DC activation and increasing the concentration 
of extracellular adenosine, a potent suppressor of anticancer 
T cell functions. Several groups have now demonstrated the 
importance of CD73, considered as the rate-limiting enzyme 
in the production of extracellular adenosine, in the suppres-
sion of anticancer immunity [18]. Taken together, these stud-
ies suggest that targeted blockade of ecto-nucleotidases such 
as CD39 and CD73 may provide effective means to enhance 
antitumor immune responses.

Immunity in Targeted Therapy

Immune responses also play a major role in the efficacy of 
 targeted therapies with monoclonal antibodies (mAbs).  
9 mAbs directed against 6 cancer-associated proteins (namely 
human epidermal growth factor receptor 2 (HER2), CD20, 
EGFR (epidermal growth factor receptor), CD52, CD33, and 
VEGF (vascular endothelial growth factor)) are currently 
 approved for the treatment of various types of cancer [2]. 
Studies have shown that mAbs such as trastuzumab (anti-
HER2) and rituximab (anti-CD20) rely in part on immune-
mediated killing through antibody-dependent cellular cyto-
toxicity (ADCC) [19]. While innate immune responses appear 
to be important for tumor antigen-targeted mAb therapies, 
recent studies in mice and correlative clinical evidence suggest 
that mAbs such as trastuzumab may also stimulate adaptive 
antitumor immunity. 2 studies in mice showed that anti-HER2 
mAb therapy required adaptive CD8-dependent immunity to 
mediate its optimal effect [20, 21]. Experimental evidence 
supports a model whereby trastuzumab activates MyD88-de-
pendent TLR signaling (most likely via the release of HMGB1 
following ADCC), stimulates the release of type I IFNs and 
primes adaptive IFN-g-producing CD8+ T cells. These studies 
raise the possibility that combination strategies may be used 
to capitalize on the adaptive tumor-specific immunity gener-
ated by anti-HER2 mAbs. Consistent with this notion, Stagg 
et al. [21] demonstrated that anti-PD-1 and anti-CD137 mAbs 
can each synergize with anti-HER2 mAb therapy. Similar 
synergistic activity between anti-CD137 and anti-HER2 
mAbs was reported by a different group [22]. Notably, it was 
also shown that immunosuppressive chemotherapeutic drugs, 
such as paclitaxel or cyclophosphamide, can dramatically 
 interfere with the tumor-specific immune memory generated 
by anti-HER2 mAb [20]. Taken together, these studies sug-
gest that first-line chemotherapeutics should be carefully 
 considered to prioritize those that directly or indirectly prime 
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suggests that tumor immunosurveillance does not regulate 
primary breast tumor initiation and growth [37]. This is also 
reinforced by other reports that used breast cancer murine 
models, where immune effects on metastases were indepen-
dent of primary tumor initiation and growth [38, 39]. Further-
more, an increase in circulating myeloid-derived suppressor 
cells (MDSCs) in human cancer was associated with stage 4 
disease [40]. Lately, suppression of an IRF7-driven type I in-
terferon innate pathway, intrinsic to breast cancer cells, was 
shown to restrict systemic immunosurveillance and result in 
increased metastases in a breast cancer murine model, further 
supporting this concept [41].

In addition, it has been shown in breast cancer that high 
levels of immune infiltrates are associated with certain breast 
cancer subtypes: A report in 1992 first highlighted this associ-
ation with rapidly proliferating breast tumors [42]. Why this 
could be more relevant for breast cancers that are negative 
for estrogen receptor expression as well as the HER2-over-
expressing breast cancer subtypes as opposed to other breast 
cancer subtypes is unknown; we speculate that it could be due 
to the poorly differentiated nature and high genomic instabil-
ity of these subtypes [43]. Furthermore, HER2 is a well- 
described tumor antigen. However, this association with 
 different breast cancer subtypes may explain why prognosis 
has been inconsistently associated with breast cancer and 
 immune infiltrates. In the triple-negative subtype, baseline 
immune  infiltrate is strongly associated with prognosis, 
 in dependent of the adjuvant type of chemotherapy given  
[43, 44]. Hence, it seems that, for certain patients, immune 
memory has already been generated. Lately, baseline immune 
infiltrates at diagnosis have been shown to predict benefit 
from immunogenic therapies such as higher-dose doxorubicin 
and trastuzumab. These effects were seen only in the HER2-
overepxressing subtype [43, 44]. This raises the interesting 
possibility that a baseline pre-existing T cell response predicts 
for a better outcome to immunogenic-based therapies in 
HER2-overexpressing disease.

Immune Checkpoint Inhibitors

Anti-CTLA-4 mAb
Several members of the immunoglobulin superfamily of re-
ceptors including CTLA-4, PD-1, BTLA (band T lymphocyte 
attenuator), TIM-3 (T cell immunoglobulin and mucin do-
main-containing protein 3) and VISTA (V-domain immu-
noglobulin suppressor of T cell activation) serve as inhibitory 
immune checkpoints that prevent uncontrolled immune reac-
tions [45]. Much of the recent successes in cancer immuno-
therapy come from the generation of blocking mAbs targeting 
these inhibitory receptors. The anti-CTLA-4 mAb ipilimu-
mab was the first to be tested in a phase III clinical trial [46, 
47]. In 2011, the FDA approved the use of ipilimumab in pa-
tients with metastatic melanoma, either as initial therapy or 
after relapse. Anti-CTLA-4 mAb therapy enhances the anti-

or alter tumor-specific immunity, and need careful attention 
when used in combination with mAb therapies. They also 
 suggest that one of the mechanisms of synergy between pro-
immunogenic anthracyclines and trastuzumab may be through 
increased antitumor immune responses [21]. Recent evidence 
suggests that targeted therapies with small inhibitors may also 
benefit from antitumor immune responses. Accordingly, the 
administration of a BRAF inhibitor in advanced melanoma 
patients has been reported to increase the level of tumor-infil-
trating T cells within 7 days of treatment, with CD8+ T cells 
increasing significantly more than CD4+ T cells [23]. This in-
crease in CD8+ T cells correlated with a decrease in tumor 
size. This suggests that the combined use of small-molecule 
inhibitors, such as BRAF inhibitors, and immunotherapy 
might be synergistic.

T Cell Infiltration, Immune Signatures,  
Prognosis, and Chemotherapy Response

Overwhelming data reveals the importance of tumor immune 
infiltrates in the survival of cancer patients, including breast 
cancer. Increased infiltration of tumors with CD8+ CD45RO+ 
memory T cells has been associated with a better prognosis in 
a variety of epithelial cancers [24–26]. Likewise, an increased 
ratio of CD8+ to CD4+ T cells (T helper 2 (Th2) cells or T 
regulatory cells (Tregs)) correlates with a good clinical out-
come in several types of cancers [27, 28]. In colorectal cancers, 
T cell infiltration measured by immunohistochemistry has 
shown superior prognostic power than standard tumor, node, 
metastasis (TNM) staging [29]. In breast cancer, 2 large series, 
both in newly diagnosed or early-stage breast cancer, also 
support a correlation with better clinical outcomes [30, 31].

Tumor lymphocytic infiltration can also be determined by 
gene expression signatures. In breast cancer, unsupervised 
 expression profiling of cancer-associated stroma revealed a 
gene signature predictive of good prognosis that was enriched 
for CD8+ T cell responses [32]. Also, in over 1,500 newly 
 diagnosed breast cancer samples, a metagene of STAT1 sig-
naling was associated with better outcomes in specific breast 
cancer subtypes: the ‘triple-negative’ (negative for expression 
of the estrogen receptor, progesterone receptor, and HER2) 
and HER2/neu-overexpressing subtypes [33, 34]. Other inde-
pendent groups have also observed this [35, 36]. Together this 
data supports that immune modulation may be most impor-
tant for these breast cancer subtypes.

Other solid cancer types have been traditionally consid-
ered more responsive to immunotherapies, such as melanoma 
and renal cell carcinoma. Why is this association not consid-
ered in breast cancer? We speculate that perhaps the immune 
system is more effective at preventing breast cancer metasta-
ses rather than influencing growth of the primary tumor. For 
example, the report that transplant patients who have been 
treated with immunosuppressive therapies do not have an in-
creased incidence of breast cancer, in contrast to melanoma, 
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tumor function of CD8+ T cells, increases the ratio of CD8+ T 
cells to Foxp3+ Tregs and inhibits the suppressive function of 
Tregs [1]. CTLA-4 blockade has also been shown to expand a 
subpopulation of tumor-infiltrating CD4+ T cells that express 
high levels of ICOS and secrete IFN-g [48]. These CD4+ 
ICOS+ T cells might play a role in the therapeutic activity of 
anti-CTLA-4 mAb therapy, as their frequency correlates with 
survival in treated melanoma patients. The major drawback 
to anti-CTLA-4 mAb therapy is the generation of autoim-
mune toxicities due to on-target effects. It has been reported 
that up to 23% of patients treated with ipilimumab developed 
serious grade 3–4 adverse events, reflecting the importance of 
CTLA-4 in maintaining immune homeostasis. Unfortunately, 
toxicity has not always been associated with therapeutic 
 benefit. Thus, a major challenge in the use of anti-CTLA-4 
mAbs is to define favorable clinical settings that strike an op-
timum balance between tumor immunity and autoimmunity.

Anti-PD-1 mAb
PD-1 is another inhibitory co-receptor expressed on activated 
and exhausted T cells. Administration of blocking anti-PD-1 
mAbs enhances adaptive antitumor immune responses by 
preventing T cell exhaustion. PD-1 is expressed by activated 
CD4+ and CD8+ T cells, B cells, monocytes and natural killer 
T (NKT) cells. It has two ligands, PD-L1 and PD-L2, with dis-
tinct expression profiles. Expression of PD-L1 has been 
shown to be associated with poor prognosis in melanoma and 
hepatocellular carcinoma [49, 50]. Anti-PD-1 and anti-PD-L1 
mAbs have been shown to reduce the tumor burden in a 
number of experimental cancer models. Recently, a phase II 
non-randomized clinical trial evaluating anti-PD-1 mAb ther-
apy in patients with melanoma, renal cell carcinoma, prostate 
cancer, non-small cell lung cancer or colorectal cancer re-
ported that 6/16 (37.5%) evaluable patients had objective 
tumor responses [51]. Taken together, clinical studies with 
anti-PD-1 and anti-PD-L1 mAbs yield very promising results. 
Of interest, anti-PD-1 mAbs appear to have safer  toxicity pro-
files than anti-CTLA-4 mAbs [52].

Combining Immune Checkpoint Inhibitors
While inhibition of a single immune checkpoint can prolong 
the survival of cancer patients, an important question that 
 remains is whether combinatorial checkpoint blockade can by 
synergistic in promoting anticancer activity. As reported by 
Curran et al. [53], ‘blockade of single negative costimulatory 
pathways often leads to enhanced effector T-cell (Teff) infil-
tration of tumors, but these T cells accumulate high levels of 
the unblocked negative coreceptors that eventually limit their 
expansion’. The first combination of immune checkpoint in-
hibitors to be tested was the combination of anti-CTLA-4 and 
anti-PD-1 mAbs. Curran et al. demonstrated that blockade of 
CTLA-4 and PD-1 allows CD8+ and CD4+ T cells to survive 
in the tumor microenvironment, to proliferate and to carry 
out effector functions. More recently, TIM-3 has been identi-
fied as another important inhibitory receptor expressed by ex-

hausted CD8+ T cells. It was shown that the most dysfunc-
tional tumor-infiltrating CD8+ T cells actually co-express 
PD-1 and TIM-3 [54]. Based on these findings, a direct com-
parison of the therapeutic activity of anti-CTLA-4, anti-PD-1 
and anti-TIM-3 mAbs was made in various mouse models of 
cancer [55]. It was observed that anti-CTLA-4 mAb was only 
weakly effective against established tumors, which is consist-
ent with other studies. However, the same regimen of anti-
PD-1 mAb or anti-TIM-3 mAb, administered as single agent, 
significantly delayed established tumor growth. Most impor-
tantly, the combination of anti-PD-1 and anti-TIM-3 mAbs 
had the most potent anticancer effect against well-established 
experimental and carcinogen-induced tumors. Nevertheless, 
the extent of cooperative interactions between various im-
mune checkpoints still remains largely unknown. LAG-3 is 
another recently identified inhibitory receptor that acts to 
limit effector T cell function and to augment the suppressive 
activity of Tregs. Woo et al. [56] recently revealed that PD-1 
and LAG-3 are extensively co-expressed by tumor-infiltrating 
T cells and that combined blockade of PD-1 and LAG-3 pro-
vokes potent synergistic antitumor immune responses.

Other Regulators of T Cell Function

TNF Receptor Superfamily
Members of the tumor necrosis factor (TNF) receptor super-
family also play an important role as regulators of T cell 
 function [57]. Activation of these costimulatory receptors may 
further enhance the generation of tumor-reactive T cells in 
the context of cancer therapy. Costimulatory receptors of the 
TNF receptor family are composed of OX40 (CD134), 4–1BB 
(CD137), CD27, CD30, and HVEM (herpes virus entry me-
diator). When activated, each of these receptors can enhance 
cytokine production and T cell proliferation in response to  
T cell receptor (TCR) signaling. OX40 and CD137 activation 
are particularly effective in allowing activated T cells to sur-
vive and proliferate in the late phase of immune responses. 
The administration of agonistic mAbs against OX40 or 
CD137 has been shown to enhance tumor immunity and 
 induce regression of established mouse models of cancer [58–
60]. The use of agonists to costimulatory receptors or antago-
nists to inhibitory receptors may rescue or enhance the activ-
ity of tumor-reactive T cells.

Blocking Tumor Immunosuppressive Factors
Targeting immunosuppression by soluble mediators is  another 
attractive approach for cancer immunotherapy. A plethora of 
immunosuppressive factors has been associated with tumori-
genesis, including transforming growth factor b (TGF-b), in-
doleamine 2,3-dioxygenase (IDO), arginase, prostaglandin-E2 
(PGE2), and extracellular adenosine [3]. To determine which 
immunosuppressive factors are minimally required for main-
taining tumor tolerance in a given patient population remains 
a great challenge. Recent studies in mouse models of cancer 



Breast Care 2012;7:267–272Immunomodulation as Therapy  
in Breast Cancer

271

patients in combination with classical treatment, which includes 
cytotoxic chemotherapy, radiotherapy, and trastuzumab  
(fig. 1). Understanding the ligands that switch off T cells in 
breast cancer will also be the key to determining the T-cell 
immunotherapies most interesting for evaluation.

All preclinical data in mouse models, as well as prognostic 
and predictive data in human breast tumors, are strongly sup-
portive of their role in determining long-term outcomes for 
these molecular subgroups of breast cancer.
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and clinical correlative studies suggest that interleukin (IL)-23 
may be a key cytokine governing the balance between pro- 
and antitumorigenic immune responses [61–63].

Enzymes that metabolize l-arginine (such as arginase I), 
the tryptophan-catabolizing enzyme IDO as well as enzymes 
that regulate extracellular adenosine levels (such as the ecto-
nucleotidases CD39 and CD73) also significantly contribute 
to the inhibition of anticancer immune responses [17, 64]. 
CD73 works at a critical checkpoint in the conversion of im-
mune-activating ATP into immunosuppressive adenosine, 
making it a potential therapeutic target. Tumors often over-
express CD73 as a consequence of tissue hypoxia or, in the 
case of breast cancer, loss of estrogen receptor expression. 
Proof-of-principle studies have revealed that anti-CD73 mAb 
therapy can reduce tumor burden and prevent metastasis in 
mice [65–69]. While tumor-derived CD73 is a significant 
 contributor to the generation of adenosine, host CD73 also 
exacerbates tumorigenesis, highlighted by the reduced suscep-
tibility of CD73-deficient mice against a number of trans-
plantable and spontaneous tumors. Given the promising re-
sults of anti-CD73 targeted therapy in mice, future studies 
aimed at translating this approach into the clinic are war-
ranted. Combination of these agents with immunogenic cyto-
toxic agents could also be a reasonable approach in order to 
enhance tumor antigen recognition by the host.

Conclusions and Possible Future Directions

As seen, the role of enhancing host antitumor immunity as 
part of cancer therapy now seems to be a feasible option, and 
the increased understanding of its interplay in therapies using 
both traditional cytotoxic and the new targeted agents sug-
gests that combinations of these with directly immunomodu-
latory agents could lead to a viable new paradigm in breast 
cancer as well as other cancer types. The key will be the iden-
tification of those patients who require specific immune thera-
pies and of the respective best specific therapy. We propose 
that breast cancer patients (the triple-negative and HER2-
overexpressing subtypes) could be stratified according to the 
level of immune infiltrates at diagnosis as a surrogate of de-
termining which patients have potentially already generated 
some anti tumor immune memory. Using this stratification,  
we believe that immunotherapies such as the checkpoint in-
hibitors currently approved for melanoma will be most bene-
ficial and could have a significant role for these breast cancer 

Fig. 1. Proposal for stratification of breast cancer patients for immuno-
therapy approaches: We propose that separate therapeutic approaches 
will probably be necessary for breast cancer subtypes (triple negative 
and HER2 overexpressing) depending on whether they have existing 
lymphocytic infiltrate (TILs) at diagnosis. Those that do (top) will need 
optimal standard cytotoxic chemotherapy including an anthraycline and 
radiotherapy with immunogenic capabilities. Levels of T cell-inhibitory 
ligands present in the tumor may dictate the need for the addition of 
further immunotherapy. In contrast, for patients without TILs (bottom) 
cancer therapy upfront must include maximum immunotherapy in combi-
nation with standard cytotoxic chemotherapy (± trastuzumab for HER2-
positive patients) in order to stimulate the host immune system to see 
tumor antigen. This could involve immunogenic chemotherapy (provoke 
tumor antigen recognition), targeted mAbs (ADCC, stimulating adap-
tive immunity), inhibition of CD73 (inducing ATP), and TLR-3 agonists 
(stimulating cytokine production to expand antigen-specific CD8+ T cells 
and generate IFN-g-producing CD8+ T cells).
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