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Abstract

The explosion in novel cancer immunotherapies has resulted in extraordinary clinical successes in 

the treatment of multiple cancers. Checkpoint inhibitors (CPIs) that target negative regulatory 

molecules have become standard of care. However, with the growing use of CPIs, alone or in 

combination with chemotherapy, targeted therapies, or other immune modulators, a significant 

increase in immune-related adverse events (irAEs) has emerged. The wide-ranging and currently 

unpredictable spectrum of CPI-induced irAEs can lead to profound pathology and, in some cases, 

death. Growing evidence indicates that many irAEs are a consequence of a breakdown in self-

tolerance, but the influence of genetics, the environment, and the mechanisms involved remains 

unclear. This review explores key questions in this emerging field, summarizing preclinical and 

clinical experiences with this new generation of cancer drugs, the growing understanding of the 

role of the immune response in mediating these toxicities, the relationship of CPI-induced 

autoimmunity to conventional autoimmune diseases, and insights into the mechanism of irAE 

development and treatment.
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Immune-related adverse events (irAEs) – the clinical experience

Cancer immunotherapies, including monoclonal antibodies, oncolytic viruses, and T-cell 

therapies, have yielded unprecedented clinical success in the treatment of advanced cancers. 

Immune checkpoint inhibitors (CPIs) antagonizing the negative regulatory molecules 

cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), programmed death-1 (PD-1), and 

programmed death-ligand 1 (PD-L1) have been approved by the FDA for a growing number 

of cancers and in some cases, are now being utilized as first-line treatments (1). However, 

with their increasing use, a significant increase in associated immunotoxicities, termed 

immune-related adverse events (irAEs) have been observed. These irAEs have been reported 

in nearly every organ system, often leading to profound pathology and, in some cases, death 

(2–4). Anti–CTLA-4 and anti–PD-1/PD-L1 therapies display distinct patterns of tissue-

specific irAEs, indicative of their differential roles in the maintenance of tolerance (5). 

Overall, prevalence and severity of irAEs is greater with anti-CTLA-4 treatment than with 

anti-PD-1/PD-L1 treatments, however their use in combination exacerbates the frequency of 

irAEs. Ipilimumab (anti–CTLA-4) preferentially promotes colitis and hypophysitis, whereas 

while anti–PD-1 treatment is associated with higher rates of thyroiditis, and rare, but 

sometimes life-threatening, cases of pneumonitis and diabetes mellitus (Table 1)(2,6–8).

Although increasing experience with these therapeutic regimens has improved diagnosis and 

monitoring of irAEs in clinical settings, limited mechanistic understanding remains a major 

obstacle for their clinical management. In some cases, irAEs are recognized as a 

consequence of an autoinflammatory response, driven by systemic activation of innate 

immunity and often treated with high-dose steroids and other anti-inflammatory drugs (9). In 

other cases, the irAEs are more likely autoimmune in nature, with the presence of 

autoantibodies and, in some cases, documented antigen-specific, memory T-cell responses 

indicative of adaptive immunity (6,10–12). These apparent autoimmune conditions raise a 

number of key questions. (i) Do CPI-induced autoimmune irAEs develop by unmasking 

underlying conventional autoimmune diseases, or do they represent an alternate process for 

initiation of autoimmunity? (ii) Are there conventional adaptive immune mechanisms 

involved, or are immunotherapies altering novel mechanisms of immune tolerance, inducing 

systemic or tissue-specific immunity? (iii) What are the genetic or environmental triggers 

that lead to this collateral damage? In this perspective, we will focus on a number of current 

efforts to answer these questions. A detailed understanding of the interplay between 

antitumor immunity and irAEs, preclinical and clinical investigations in irAE development, 

and methods of identifying patients at risk will be highlighted. Defining the mechanistic 

basis of irAEs induced by individual immune therapies will lead to more precise therapeutic 

strategies to dampen or prevent irAEs without impeding antitumor immunity.

Profiling autoimmunity in preclinical models

Preclinical studies examining the role of inhibitory checkpoints can play an important role in 

delineating clinically-relevant immune interactions (Fig. 1). Investigation of CTLA-4 and 

PD-1 blockade revealed that these molecules elicit differential effects on T-cell immunity. 

CTLA-4 predominantly alters CD4+ T-cell activation in the lymph nodes, whereas PD-1 

mediates CD8+ T-cell activity in the tissue (5). CTLA-4–deficient mice rapidly succumb to 
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lymphoproliferative disease with severe multi-organ failure (13,14). In contrast, mice with 

PD-1–deficiency have more delayed and restricted pathologies, with tissue-specific 

infiltration in a strain dependent-manner (15,16). In non-obese diabetic (NOD) mice, 

genetically susceptible to the development of autoimmune type 1 diabetes (T1D), anti–PD-1 

rapidly induces diabetes, whereas anti–CTLA-4 only precipitates disease in neonates 

(17,18). Additional immune checkpoints targeted by either gene-knockout or antibody-

directed therapies have been shown to abrogate tumor growth, leading to early phase clinical 

testing. However, targeting many of these molecules, including inhibitory receptors TIM-3, 

LAG-3, and TIGIT [reviewed by ref. (19)] have also been shown to potentiate autoimmunity 

in preclinical models, illustrating the range of tolerogenic mechanisms that contribute to 

control of a self-directed immune response. CPIs may also act on cells other than naïve and 

effector or memory T cells. For anti–CTLA-4, evidence in mouse models shows that these 

antagonists alter regulatory T-cell (Treg) numbers and function (20,21). For anti–PD-1/PD-

L1 therapy, this remains unclear, but the PD-1 engagement may functionally control CD28 

signaling, a critical co-stimulatory pathway in Tregs, suggesting they influence these cells as 

well (22,23).

The potential for improved antitumor immunity through targeting multiple, non-redundant 

immunomodulatory pathways has led to early phase clinical trials for a variety of 

combinatorial strategies. These combination treatments may improve the efficacy of cancer 

immunotherapy but may also amplify irAEs. Examining gene-targeted mice with multiple 

immunoregulatory molecule deficiencies may assist in recognizing potential pathologies and 

mechanisms for organ-specific disruption of tolerance in response to immunotherapy 

combinations. PD-1 and VISTA dual-knockout C57BL/6 (B6) mice display increased 

immune infiltration into tissues, whereas CD96 and PD-1 double-deficient mice have 

minimal impact on immune homeostasis or pathologies (24,25). Combined loss of PD-1 and 

LAG-3 results in lethal autoimmunity in mice (26,27). Despite differential effects on 

autoimmunity, each molecule in combination with anti–PD-1 enhances antitumor immunity 

(24,26,28). Thus, co-targeting complementary pathways of immune regulation can clearly 

impact tumor immunity, but the frequency and severity of irAEs remains to be evaluated 

fully in clinical trials. Although mouse models may suggest an augmentation in the 

frequency of irAEs in combination studies, clinical efforts may not reflect this. Anti–LAG-3 

plus nivolumab (anti–PD-1) demonstrates a similar safety profile to nivolumab alone (29). 

Nonetheless, animal models provide a valuable tool for interrogation of organ-specific 

tolerogenic mechanisms maintained by different immunoregulatory molecules.

The study of CPI-induced toxicity has been limited in many clinical settings due to the rarity 

of specific events and absence of appropriate tissue material. Animal models have been 

limited to strains such as B6 and BALB/c mice, which are generally resistant to autoimmune 

sequelae. Thus, the adverse effects of CPIs have benefited from animal studies that have 

compromised regulatory pathways. CPI treatment of mice, in which Tregs have been 

transiently depleted to heighten immune cell activation and lower the threshold to overcome 

immune tolerance, have been used to increase the risk for immunotoxicity (30). Using a 

short-term Treg depletion strategy, individual antibodies that antagonize inhibitory and 

agonize stimulatory immune modulators have been compared. As a single agent, both anti–

PD-1 antagonism and agonistic anti-CD137 treatment enhance antitumor activity. However, 

Young et al. Page 3

Cancer Immunol Res. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



anti-CD137 treatment leads to more severe toxicities than anti–PD-1, consistent with clinical 

observations, particularly for hepatoxicity (31). Antibody-mediated neutralization of tumor 

necrosis factor (TNF)-α reverses anti-CD137–induced irAEs without impeding antitumor 

immunity (30). These results suggest that animal models may not only be useful in 

determing irAE risk but may also facilitate development of combinations that can avoid 

toxicities while maximizing antitumor activity. B6 mice expressing humanized CTLA-4 

identified human CTLA-4 monoclonal antibodies with reduced irAEs compared to clinically 

approved ipilimumab without compromising tumor control (32). Ipilimumab-mediated 

antitumor immunity in mouse models expressing human CTLA-4 or human Fcγ receptors 

was attributed to Treg depletion in the tumor (20,32). Although limited evidence exists for 

Treg depletion in anti–CTLA-4–treated cancer patients, ipilimumab patients with Fcγ 
receptor polymorphisms have improved survival outcomes in tumors with high mutational 

burden (20). Further testing of novel immunotherapy combinations in these Treg-

compromised models will determine antitumor efficacy versus immunotoxicity in these 

autoimmune-prone settings.

Although the manipulation of standard mouse strains has been useful, developing tumor 

models in mouse strains prone to autoimmune and other immune-related toxicities will 

provide additional benefits. NOD mice are predisposed to developing autoimmune 

manifestations and multiple genetic loci that precipitate autoimmunity have been identified 

[reviewed by ref. (33)]. Some insulin-dependent diabetes (Idd) susceptibility loci prevent 

anti–PD-1–induced diabetes (34). Autoimmune mice allow for detailed investigations of 

target expression during autoimmune and antitumor immune conditions. PD-L1 expression 

is increased with accumulation of immune infiltrate in the islets of Langerhans in NOD 

mice, suggesting that the PD-1/PD-L1 axis may be critical for disarming autoreactive T cells 

and preventing T1D onset (35). Diabetes in NOD mice can be induced months after 

tolerance induction using anti–PD-1 and anti–PD-L1 (36). Ectopic CTLA-4 expression on 

pituitary gland endocrine cells may be the direct target of antibody-mediated hypophysitis 

following anti–CTLA-4 treatment through activation of complement (10,37). Thus, it will be 

essential to develop tumor models in autoimmune-prone strains to enable interrogation of 

the autoimmune and antitumor immune interface and provide insights into the clinical 

manifestations of irAEs, as well as various genetic and environmental parameters that better 

define the human experience (Fig. 1).

Comparing conventional and immunotherapy-induced autoimmunity in 

patients

Determining whether irAEs develop similarly to conventional forms of spontaneous 

autoimmunity and, therefore, share common features such as autoantibody presentation, 

autoreactive T cells, and underlying genetic risk factors is of great interest. For conventional 

T1D, autoantibody positivity for islet-associated antigens is present in over 90% of cases at 

diagnosis (38), but in CPI-induced diabetes, the same autoantibodies are positive in less than 

half the cases (39). Similarly, patients with rheumatological irAEs are negative for 

rheumatoid factor and cyclic citrullinated protein antibodies and frequently have low or 

negative titers for anti-nuclear antibodies at presentation (40). In contrast, thyroid antibodies 
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are associated with thyroid irAEs induced by anti–PD-1 treatment in non-small cell lung 

cancer (NSCLC), suggesting that humoral immunity may play a role in some forms of irAEs 

(6).

When autoantibodies related to conventional disease are not present, screening for alternate 

antibodies may both assist with defining disease and providing mechanistic insight by 

identifying functionally significant pathways for irAEs. In patients receiving intralesional 

Bacillus Calmette–Guérin (BCG) and ipilimumab for melanoma, an increased number of 

autoantibody specificities was found in individuals with severe irAEs (41). Similarly, 

interrogation of global antibody profiles prior to CPI treatment identified toxicity-associated 

antibody signatures that were heightened in patients that developed severe irAEs (42). 

Minimal signature or functional overlap was identified between different CPI treatment 

groups, including monotherapy versus combination anti–PD-1 and anti–CTLA-4 treatment 

(42). This finding also highlights the potential variation in the mechanism by which 

autoimmune sequelae develop in response to CPI treatment but should be replicated with 

separation of irAEs based on organ pathology rather than severity alone. Decreased 

circulating B cells after CPI treatment correlates with time to onset and severity of 

immunotoxicity, irrespective of site, with cellular changes preceding clinical manifestation 

of irAEs (43). However, whether reduced proportions of B cells reflect egress to tissues, 

differentiation, or apoptotic programs and the subsequent effect on antibody production is 

not known.

Alterations to the T-cell repertoire in response to CPI treatment have been reported to 

correlate with both therapeutic response and severity of irAEs. An increased number of 

expanded CD8+ T-cell clones in the periphery of prostate cancer patients receiving 

ipilimumab correlated with severe irAEs (44). Another study confirmed that patients who 

develop irAEs display increased T-cell diversification in the periphery two weeks after 

treatment initiation with ipilimumab and GM-CSF (11). Determining pathogenic antigen 

recognition versus bystander expansion of T-cell clones is of major interest and may 

represent an opportunity to develop tolerogenic therapies in the form of antigen-specific 

Tregs and peptide-based approaches to be given prophylactically to at-risk individuals. 

Similarly, the presence of previously defined autoreactive T cells from spontaneous 

autoimmune disease has not been assessed in CPI-treated patients developing irAEs.

Major histocompatibility complex (MHC) genes [human leukocyte antigens (HLA)] are 

known to confer risk to the development of many spontaneously occurring autoimmune 

diseases. In hypophysitis, HLA-markers DQ8 and DR53 are associated with sporadic, but 

not anti-CTLA-4 treatment-associated disease (45). In CPI-induced diabetes, the T1D high-

risk HLA allele, DR4, is significantly more prevalent than reported frequencies in USA 

Caucasians and individuals who develop spontaneous T1D (39). As the association between 

individual irAEs and genetic variation, including HLA type, are discovered, it may become 

clinically useful to carry out genetic risk screening prior to choosing an appropriate CPI 

treatment plan if multiple treatment lines have similar antitumor efficacy but are disparate 

for an individual’s risk of irAE.
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Serum cytokine levels may also provide predictive value and mechanistic insight for patient 

susceptibility to CPI-induced irAEs. Pre-existing, circulating IL17 may predict which 

ipilimumab-treated melanoma patients could develop severe diarrhea and colitis (46). IL17 

plays a critical role in the pathogenesis of inflammatory immune-mediated diseases, 

including various forms of arthritis and bowel diseases. Gastrointestinal irAEs are the most 

common co-occurring immunotoxicities in CPI-treated patients with inflammatory arthritic 

irAEs (40). Although defining a correlation between multiple irAEs requires a greater 

number of patients, it may suggest a link between IL17-driven pathogenesis and the type of 

autoimmune sequelae that co-occur in response to CPI treatment, with potential for a 

targeted approach to relieve irAEs.

Taken together, these data suggest that for autoimmune irAEs, T cells and antibodies 

recognizing autoantigens may, at least in part, be responsible for immunotherapy-induced 

pathologies, but in many cases, display alternate features compared to conventional 

autoimmune diseases. However, a more complete interrogation of these immune processes 

will be necessary in the human setting by initiating dedicated efforts to collect clinical and 

mechanistic data longitudinally, starting prior to immunotherapy commencement to 

understand key parameters of disease etiology and mechanistic considerations.

Environmental influences on irAEs

Growing evidence suggests that an individual’s gut microflora can alter immune 

homeostasis and tolerance. Both microbial diversity and abundance may impact the 

development of immunotoxicity and antitumor immune responses to CPI treatment by 

altering the immune composition in the tumor and periphery (47–50). In preclinical models, 

the presence of certain species of Bacteroides and Burkholderiales not only potentiate anti–

CTLA-4 tumor control, but also reduce the severity of experimental colitis following 

CTLA-4 blockade (51). Similarly, enrichment of the Bacteroidetes phylum was identified in 

colitis-free, ipilimumab-treated melanoma patients (49,52), whereas the Firmicutes phylum 

was enriched preceding ipilimumab in patients developing colitis (49). Administration of 

antibiotics, which potently disrupt commensal microbiota, prior to CPI treatment reduces 

survival benefit for renal cell carcinoma and NSCLC patients (53) and may further highlight 

an interaction among microbiota, antitumor immunity, and irAEs. Mechanistically, microbial 

changes may alter immune responses through cross-reactivity and mimicry of endogenous 

molecules or tumor-derived neoantigens, promotion of metabolic activity, or influencing 

recruitment and polarization of inflammatory immune cells. Understanding the impact of the 

microbiome on the immune response will be essential in enabling the treatment of dysbiosis 

and to reestablish equilibrium of the protective gut microflora to limit irAEs. It will also be 

equally critical to determine the influence of non-gastrointestinal microbiota and whether 

anti–PD-1/PD-L1–driven irAEs are influenced by microbial composition and other 

environmental factors.

Treatment of irAEs without impeding antitumor immunity

Studies of differential treatment responses based on irAE development have been 

conflicting, with some reporting improved response in patients who develop irAEs (4,54) 
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and others that report no difference (3). Investigation of the effect of individual irAEs within 

different cancer subtypes may provide more clarity. Vitiligo occurs preferentially in 

melanoma patients, highlighting a crossover between antitumor immunity and 

autoimmunity, with hypopigmentation correlated to improved outcome to immunotherapy 

(55). This is likely due to an interaction between self-antigens that persist in the tumor, 

which also become an immune target in non-malignant, pigmented cells. The presence of 

autoimmune sequelae, such as hypophysitis in patients treated with ipilimumab for 

melanoma (56), thyroid dysfunction following pembrolizumab in NSCLC patients (6), and 

gastrointestinal irAEs for CPI treatment of advanced malignancy (57) all reveal favorable 

survival outcomes despite therapeutic intervention and without clear indication for the 

shared response. Understanding the mechanism by which autoimmunity and tumor 

immunity provide interactive responses will assist in developing therapeutic interventions to 

moderate autoimmune irAEs, without impacting the antitumor immune response.

The mainstay of irAE treatment is corticosteroids of varying doses, depending on the 

severity of the irAE (9,58). Some high-grade or corticosteroid-refractory irAEs are treated 

with additional immunosuppressive agents (9,58). Because corticosteroids act as a systemic 

immunosuppressive agent through induction of apoptosis of lymphocytes among other 

mechanisms, it has been theorized that corticosteriods may attenuate the antitumor immune 

response initiated after CPI treatment. Although multiple studies have suggested that 

corticosteroids do not worsen overall survival or other cancer outcome measures (3,4), these 

studies have not adequately accounted for the possibility that the response benefit from the 

irAEs was attenuated by the use of corticosteroids or other immunosuppressive agents. In a 

study of melanoma patients with ipilimumab-induced hypophysitis, patients treated with 

low-dose steroids, rather than high-dose steroids, had a significantly better melanoma 

response to ipilimumab with no difference in clinical benefit for treatment of hypophysitis. 

This study suggests that the high-dose corticosteroids used to treat irAEs may attenuate the 

improved response that the irAE portends. Additionally, NSCLC patients receiving 

corticosteroids at baseline experienced an inferior treatment response to PD-1/PD-L1 

inhibitors compared to patients not on chronic corticosteroids (59), suggesting that steroid 

treatment may be detrimental to CPI-induced antitumor responses.

Other immunosuppressive agents used as second- or third-line therapies for specific irAEs 

include infliximab, vedolizumab, mycophenolate mofetil, cyclophosphamide, IVIg, 

plasmapheresis, and others (9,58), with mounting evidence for the safety and efficacy of 

these medications for treatment of irAEs. Infliximab neutralizes TNFα (57,60), whereas 

vedolizumab is a monoclonal antibody against α4β7 integrin, expressed primarily on a 

subset of CD4+ T cells in the gut (61), allowing for irAE treatment to be relatively gut-

specific. Both have been used for the treatment of steroid-refractory enterocolitis, and some 

experts recommend early use of infliximab (3,4,60). Two small studies (57,60) comparing 

cancer outcomes of patients with enterocolitis requiring infliximab in addition to high-dose 

corticosteroids to patients treated with high-dose corticosteroids alone did not identify a 

survival difference. However, it was suggested that shortened corticosteroid treatment 

alongside infliximab may reduce infection risk and improve immune recovery.
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Organ-specific and systemic immune responses are not just limited to cancer patients 

receiving CPIs or other immunomodulatory therapeutics. Cancer patients receiving chimeric 

antigen receptor (CAR) T-cell therapy can also develop cytokine release syndrome, which 

has some similarities to CPI-induced irAEs and may provide insights into the overall irAE 

experience. In the CAR T-cell therapy setting, anti-IL6/IL6 receptor agents are used in many 

patients prior to use of systemic corticosteroids because the latter may reduce the efficacy of 

the CAR T-cell therapy (62). The use of IL6 inhibition for CPI-induced irAEs is not 

common, but case reports of successful prevention and treatment of irAEs with use of IL6 

blockade exist (63–65). Evidence for improved antitumor immune responses with IL6 

blockade in combination with PD-1 blockade in preclinical mouse models has also been 

reported (66). As CAR T-cell therapies become more widely used in the cancer setting, 

including for solid tumors, it is likely that the number and kind of irAEs will increase, 

indicating a need to develop animal models to better understand and treat the irAEs (67,68).

Cancer immunotherapeutic strategies that prevent induction of irAEs

Although improved mechanistic understanding to monitor and treat irAEs will enhance 

clinical management of immunotherapy-treated patients, development of therapeutic 

strategies that induce tumor-specific immunity without the threat of systemic irAEs will 

provide greatest clinical benefit (Fig. 1). Targeting intratumoral Tregs without peripheral 

depletion may improve therapeutic specificity. Fc-optimization of a depleting anti-CD25 

enhanced intratumoral Treg depletion and, when combined with anti–PD-1, augmented 

tumor eradication (69). However, a reduction in peripheral Tregs remained evident, 

highlighting a need for identification of markers that define tumor-infiltrating Tregs. 

Modulating Treg stability may also promote antitumor immunity with increased therapeutic 

safety. Targeting Treg-derived EZH2 or NRP1, both having high expression in tumor-

infiltrating Tregs, bolster production of proinflammatory cytokines, leading to antitumor 

immunity without autoimmune consequences (70,71). Inhibitors of the epigenetic modifier 

EZH2 are in early phase clinical trials as anti-cancer agents, and their impact on immune 

cell function should be evaluated.

Bispecific antibodies, and alternate antibody-based structures, that target multiple tumor and 

immune components simultaneously may selectively enhance localized, tumor-targeted 

immune activity with reduced risk of irAEs. In the clinic, reversible autoinflammatory 

toxicities, but not autoimmunity, have been observed in some patients when co-targeting T 

cells by CD3 engagement alongside tumor antigens. Refined marker selection will be critical 

to ensure their clinical utility. Dual immunomodulators targeting inhibitory PD-1 and 

LAG-3, or targeting stimulatory OX40 and inhibitory CTLA-4 are entering early phase 

clinical testing (72), providing an opportunity to compare their therapeutic safety and 

efficacy to monoclonal antibody combination treatment. In addition to multi-arm antibody 

approaches, engineered cell therapies may assist in fine-tuning immune cell responses to 

provide greater therapeutic control. Orthogonalization of ligand and receptor interactions, 

which retain native receptor signaling but limit negative pleiotropic, off-target effects, may 

be employed for maximizing the potential of adoptive cell therapies and was achieved for 

the IL2/IL2Rβ interaction (73). Selection of the route for therapeutic administration may 

also alter the onset of irAEs. With increasing interest in intratumoral therapies and observed 
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abscopal effects, it will be important to learn if more localized immunotherapies impact 

irAEs.

Concluding remarks

The presence of irAEs is indicative of an inflammatory immune response and is precipitated 

due to potential cross-reactivity between tumor and self, underlying predisposition to 

autoimmunity, or collateral damage from cytokine-induced inflammation. Improving our 

mechanistic understanding of factors that lead to immunotherapy-induced autoimmune 

pathologies may facilitate identification of biomarkers to predict or monitor onset of disease, 

enabling clinicians to more accurately treat autoimmune irAEs in immunotherapy-treated 

cancer patients. Knowledge of those cancer patients with higher susceptibility for irAEs will 

provide improved clinical care and heightened monitoring to prevent complications from the 

development of potentially life-threatening irAEs and limit the impact of treatment 

disruption to an individual’s cancer care. As we improve our understanding of how each CPI 

treatment disrupts immune tolerance, we may be able to identify mechanisms to direct 

patients towards their most appropriate treatment type or engineer alternative therapies that 

control or prevent tissue inflammation without exacerbating tumor growth to provide 

optimal antitumor immunity with minimal irAEs for greatest clinical efficacy and safety.
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Figure 1. The intersection between preclinical and clinical studies.
Cancer immunotherapies undergo preclinical screening for their potential suitability for 

clinical use, with considerations to their ability to mediate antitumor immunity and 

autoimmunity determined. Following translation to clinical utility, the ability to answer 

clinical questions relating to response to therapy and safety profile is critical for clinical 

success. Many of these questions cannot be answered using available clinical parameters 

alone and rely on revisiting preclinical models. This represents an intersection between 

preclinical and clinical studies to improve our understanding of therapy-induced phenomena, 
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such as the development of irAEs, to improve mechanistic understanding and clinical 

management. Ag: antigen; BiTE: Bispecific T-cell engager; EZH2i: enhancer of zeste 

homolog 2 inhibitor; irAEs: immune-related adverse events; MHC: major histocompatibility 

complex; NRP1: neuropilin 1; TME: tumor microenvironment; Treg: regulatory T cell.
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Table 1.

Unique characteristics of CPI-induced irAEs observed in the clinic that aid in understanding immune 

mechanisms

irAE Autoimmune vs Autoinflammatory Preclinical and Translational 
Mechanistic Evidence

Severe irAE Treatment Evidence 
of 
Improved 
Clinical 
Objective 
Response

Anti-CTLA-4 Predominant irAE

    Colitis Autoinflammatory T cell repertoire diversification 
(44), Treg depletion (32), 
increased IL-17 (46), increased 
neutrophil gene signature and 
infiltrate (74)

Corticosteroids, 
Infliximab, Vedolizumab 
(9)

Yes (57)

    Hypophysitis Autoimmune CTLA4 expression on pituitary 
gland initiating activation of 
complement (10,37)

Hormone Replacement Yes (56)

Anti-PD-1/PD-L1 Predominant irAE

    Diabetes Mellitus Autoimmune PD-L1 expression on stressed 
beta cells (35)

Insulin Suggested 
with limited 
evidence 
(39)

    Hypothyroidism Autoimmune Autoantibody amplification(6) Hormone Replacement Yes (6)

    Pneumonitis Ambiguous Unknown Corticosteroid, infliximab 
or cyclophosphamide, 
mycophenolate mofetil or 
IVIg (9)

Suggested 
with limited 
evidence 
(75)

    Myocarditis Autoimmune Shared tumor and organ specific 
neoantigen (12)

Corticosteroids, IVIg, 
plasmapheresis (9)

Difficult to 
assess 
given irAE-
related 
mortality

Melanoma Patients

    Vitiligo Autoimmune Shared tumor and self-antigens 
(55)

None Yes (55)

CTLA-4 – cytotoxic T lymphocyte–associated protein-4; irAE – immune-related adverse event; IVIg - intravenous immunoglobulin; PD-1 – 
programmed death-1; PD-L1 – programmed death-ligand 1; Treg – regulatory T cell.
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