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Supplementary data 

I. Patients 

1.1 Selection pathway 

 

Figure S1. The recruitment pathway in this study.  

1.2 Patient characteristics distribution in the training and validation set 

Table S1. Clinical characteristics of patients with pNETs in the training and validation set.  

Characteristics Training set (n=86) Validation set (n=51) p 

Gender (No [%])   0.884 

Male 36 (42%) 22 (43%) 
 

Female 50 (58%) 29 (57%) 

Age (year, range) 54 (25-81) 56(29-82) 0.368 

Endocrine symptom   0.449 

Yes 18 (21%) 8 (16%)  

No 68 (79%) 43 (84%)  

Multiple tumor   0.490 

Yes 3 (3%) 4 (8%） 
 

No 83 (97%) 48 (92%) 

Maximum diameter  

(cm, range) 3.1 [0.8-14.0] 3.8 [0.8-16.0] 0.145 

Clinical stage   0.976 

I/IIA 71 (83%) 42 (82%) 
 

IIB/III 15 (17%) 9 (18%) 

Pathological grade (No [%])   0.492 

Grade 1 42 (49%) 28 (54%) 
 

Grade 2/3 44 (51%) 23 (46%) 

Significant difference threshold (p<0.01). 
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II. Radiomics Features Extraction 

A total of 467 radiomics features from 137 patients were extracted in this study. The radiomics 

features included two categories: non-wavelet features and wavelet-based features. The non-wavelet 

features include histogram features, gray level co-occurrence matrix-based features, gray-level run-

length matrix based features, gray-level size zone matrix based features, and neighborhood gray-

tone difference matrix based features, as listed in Table S2. The wavelet-based features are derived 

from the wavelet transformed CT images using the same method as the non-wavelet features. 

 

The wavelet transform is a method to decompose the original signal into multiple attenuated 

wavelet bases, similar to the Fourier transform. After wavelet decomposition of the image, a series 

of wavelet transform coefficients can be obtained on different scales. These coefficients fully 

describe the image characteristics and, thus, can be used as a subset of the features for classification 

of pathological grades. By analyzing different scales of the wavelet decomposition results, multiple 

textural features can be extracted.  

 

Three-dimensional wavelet transform was applied to each CT image, which decomposes the 

original image, 𝐴,  into eight decompositions. 𝐿  and 𝐻  were used to represent a low-scale-

selection and high-scale-selection function, respectively. The wavelet decompositions of 𝐴 were 

labeled as 𝐴𝐿𝐿𝐿, 𝐴𝐿𝐿𝐻,,𝐴𝐿𝐻𝐿,,𝐴𝐿𝐻𝐻,,𝐴𝐻𝐿𝐿,,𝐴𝐻𝐿𝐻, 𝐴𝐻𝐻𝐿 and,𝐴𝐻𝐻𝐻. 𝐴𝐻𝐻𝐿 was constructed as:  

𝐴𝐻𝐻𝐿(𝑖 𝑗 𝑘) = ∑ ∑ ∑ 𝐻(𝑝)𝐻(𝑞)𝐿(𝑟)𝐴(𝑖 + 𝑥 𝑗 + 𝑦 𝑘 + 𝑧)

𝑁𝐿

𝑧=1

𝑁𝐻

𝑦=1

𝑁𝐻

𝑥=1

 

 𝑁𝐻 is the length of filter H and 𝑁𝐿 is the length of filter L. It represents that the image A was 

filtered with high-scale-selection along the x-direction, high-scale-selection along the y-direction 

and low-scale-selection along the z-direction to generate decomposition results. The other 

decompositions were constructed in a similar manner, applying their respective ordering of low or 

high-scale-selection in the x-, y- and z-direction. Wavelet decomposition of the image, A,  is 

schematically depicted in Figure S2.  

 

Figure S2. Schematic of the undecimated three-dimensional wavelet transform applied to each CT image. 

The original image, A, was decomposed into eight decompositions, by directional low-scale- selection 

and high-scale-selection: 𝑨𝑳𝑳𝑳, 𝑨𝑳𝑳𝑯,,𝑨𝑳𝑯𝑳,,𝑨𝑳𝑯𝑯,,𝑨𝑯𝑳𝑳,,𝑨𝑯𝑳𝑯, 𝑨𝑯𝑯𝑳 and,𝑨𝑯𝑯𝑯. 
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Table S2. Radiomics features extracted in this study. 

Histogram (n=6) GLCM (n=22) GLSZM (n=13) GLRLM (n=13) NGTDM (n=5) 

Variance Autocorrelation Small Zone Emphasis Short Run Emphasis  Coarseness 

Skewness $Contrast Large Zone Emphasis Long Run Emphasis  $Contrast 

Kurtosis Correlation ^Gray-Level Non-uniformity  ^Gray-Level Non-uniformity Busyness 

Mean Correlation2 Zone-Size Non-uniformity  Run-Length Non-uniformity  Complexity 

*Energy Cluster Prominence Zone Percentage  Run Percentage Strength 

#Entropy Cluster Shade Large Zone Low Gray-Level Emphasis  Low Gray-Level Run Emphasis   

 Dissimilarity Large Zone High Gray-Level Emphasis  High Gray-Level Run Emphasis   

 *Energy Small Zone Low Gray-Level Emphasis  Short Run Low Gray-Level Emphasis   

 #Entropy Small Zone High Gray-Level Emphasis Short Run High Gray-Level Emphasis  

 Homogeneity Low Gray-Level Zone Emphasis  Long Run Low Gray-Level Emphasis   

 Homogeneity2 High Gray-Level Zone Emphasis  Long Run High Gray-Level Emphasis   

 Maximum probability &Gray-Level Variance &Gray-Level Variance  

 Sum average Zone-Size Variance Run-Length Variance   

 Sum of squares Variance    

 Sum variance    

 Sum entropy    

 Difference variance    

 Difference entropy    

 Information measure of correlation1    

 Information measure of correlation2    

 Inverse difference normalized    

 Inverse difference moment normalized    

NOTE: GLCM: gray level co-occurrence matrix, GLRLM: gray-level run-length matrix, GLSZM: gray-level size zone matrix, NGTDM: neighborhood gray-tone difference matrix; *, #, $, ^, 

&: Different calculation methods are employed, though the same names are indicated.  
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III. The least absolute shrinkage and selection operator (LASSO) method 

The LASSO regression method was used to select the potential pathological grade predictors 

from 233 radiomics features to construct a radiomics signature. The LASSO method is a popular 

high dimensional feature selection method that can be utilized for these radiomics feature data 

because it can simultaneously perform regularization and variable selection, which can improve 

both prediction accuracy and interpretation. The radiomics features screening process to select the 

optimal features for constructing the radiomics signature refers to the procedure that selectively puts 

a subset group of radiomics features combined into the model to obtain better performance than the 

one if all the 233 radiomics features were put into the model for fitting.  

 

Complexity adjustment is performed via adjusting a series of parameters to control the 

complexity of a model during model fitting of LASSO regression in order to avoid overfitting. For 

a linear model, the complexity is directly related to the number of variables in the model, whereby 

more variables introduced lead to a higher complexity of model. Adding more variables tends to 

generate a seemingly “nicer” model while fitting, but it might also increase the risk of overfitting 

the data. This overfitting usually yields poor results if the validation dataset is used to verify the 

model constructed. In general, overfitting is possible when the number of variables (i.e., radiomics 

features in this study) used is more than the number of data points available (i.e. the patients’ amount 

in this study). 

 

The complexity degree of LASSO regression is adjusted by a control parameter λ. For the 

binary logistic regression model in this study, the LASSO method minimizes the negative log-

likelihood, subjecting to the sum of the absolute value of the coefficients being less than the 

parameter λ. As the tuning parameter gets smaller, some coefficients shrink towards zero or are set 

to zero. The features with non-zero coefficients were finally selected.  

 

    (A)                                   (B) 

 

Figure S3. The construction procedure of radiomics signature model. (A) Radiomics features selection 

procedure using LASSO regression method. To determine the best features combination for building the 

radiomics signature, the control parameter λ value in the LASSO model was selected via 10-fold cross-

validation with minimum criteria. The x-axis is the value of log (λ) and the y-axis is the binominal 
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deviance in the 10-fold cross-validation. The upper x-axis is the number of non-zero-coefficient features 

with a given λ. The red curve indicated the average binominal deviance value with the vertical bars 

showing the upper and lower boundaries. The left vertical dotted line defined the λ with the least binomial 

deviance and was set as 0.09462539 in this study. The right vertical dotted line indicates the largest 

value of λ such that the binominal deviance is within one standard error of the minimum binominal 

deviance. (B) The LASSO coefficient profiles of the 233 radiomics features. The figure showed the 

feature coefficient change with the tuning of λ value. The dotted line was plotted at the λ value determined 

in (A) resulting 8 non-zero-coefficient radiomics features. 

IV. Definition of net benefit in the decision curve analysis. 

 

The net benefit was defined by the following equation: 

Net,Benefit = TPR ∗ ω −
𝑃𝑡

1 − 𝑃𝑡
∗ 𝐹𝑃𝑅 ∗ (1 − 𝜔) 

𝑃𝑡 ,is the “threshold possibility” to stratify the patients into high-risk or low-risk 

groups. Patients with a probability of having G2/3 pNETs higher than 𝑃𝑡 are high-risk 

patients. These patients would be recommended for aggressive intervention(s), while 

others (low-risk) would be referred to relatively mild treatment(s). TPR is the true 

positive rate, defined as the proportion of high-risk patients in the patients having G2/3 

pNETs. FPR is the false positive rate, defined as the proportion of high-risk patients in 

the patients having G1 pNETs. 𝜔,is the prevalence of having G2/3 pNETs, calculated 

by dividing the total patients number by the number of patients with G2/3 pNETs. In 

the condition of “treat none”, no patient is classified as high risk, both the TPR and FPR 

are zero, so the Net Benefit is zero. In the condition of “treat everyone”, all patients are 

classified as high risk (TPR=FPR=1), so the Net Benefit is calculated as 

Net,Benefit𝑇𝑟𝑒𝑎𝑡,𝐸𝑣𝑒𝑟𝑦𝑜𝑛𝑒 = ω −
𝑃𝑡

1 − 𝑃𝑡
∗ (1 − 𝜔) 

=
1 − 𝜔

𝑃𝑡 − 1
+ 1 

, which is a monotonically decreasing curve in the figure. 

 

Reference: 

[1] Kerr KF, Brown MD, Zhu K, Janes H. Assessing the Clinical Impact of Risk Prediction Models 

With Decision Curves: Guidance for Correct Interpretation and Appropriate Use. Journal of Clinical 

Oncology 2016;34(21):2534-40 doi 10.1200/JCO.2015.65.5654. 

[2] Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction 

models, molecular markers, and diagnostic tests. The BMJ 2016;352:i6. doi 10.1136/ bmj.i6. 

 

V. Clinical and biological association of selected radiomics features 

(1) Clinical association 

The correlation analysis showed the potential of the selected radiomics features in reflecting tumor 

pathological grades, endocrine symptoms and clinical stages. As shown in Figure S4, all selected 

radiomics features showed a significant correlation with tumor pathological grades. Five radiomics 

features (except LLH_GLSZM_ZP, HLH_GLCM_corrm and HHL_GLSZM_SZE) showed a 
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significant correlation with endocrine symptoms. Seven radiomics features (except HHL_ 

GLSZM_SZE) showed a significant correlation with patient clinical stage. 

 

Figure S4. The correlation matrix for the selected radiomics features and clinical characteristics. The 

size and color of the circle in the square characterizes the magnitude of the absolute value of the 

correlation coefficient between the two variables corresponding to the square. The larger the circle, the 

higher the correlation between the two variables. The value of the correlation coefficient corresponding 

to different colors can be seen by the color bar on the right side of the figure. The squares corresponding 

to the two variables whose correlation is statistically non-significant (p>0.05) are marked with a cross in 

the figure. 

(2) Ki-67 index and rate of nuclear mitosis 

 

The Ki-67 index in this study was detected using Immunohistochemical Envision method 

(1:100 dilution, Santa Cruz Biotechnology, Santa Cruz, CA, USA) for pNETs tissue staining. The 

rate of nuclear mitosis was counted by randomly selecting 10 high power fields (×400 magnification) 

in the Hematoxylin and Eosin sections for mitotic counting. Both the Ki-67 index and rate of nuclear 

mitosis were evaluated by two senior pathologists.  

 

Reference: 

[1] Khan MS, Luong TV, Watkins J, Toumpanakis C, Caplin ME, Meyer T. A comparison of Ki-67 

and mitotic count as prognostic markers for metastatic pancreatic and midgut neuroendocrine 

neoplasms. British Journal of Cancer 2013;108(9):1838-45 doi 10.1038/bjc.2013.156. 

 

(3) Biological association 

The selected radiomics features showed capability in reflecting cell proliferation of tumors. As 

shown in Figure S5, six out of eight radiomics features showed a significant correlation with Ki-67 

expression level and all features showed a significant correlation with the rate of nuclear mitosis 
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with a p value smaller than 0.05 reflecting the biological significance of the selected radiomics 

features. 

 

 

 

Figure S5. The correlation matrix for the selected radiomics features and Ki-67 Index/rate of 

nuclear mitosis. 

 

Figure S6. Scatter plots for selected radiomics features and Ki-67 index. (rho: Spearman's rank 

correlation coefficient)  
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Figure S7. Scatter plots for selected radiomics features and rate of nuclear mitosis.  

 

VI. Association between radiomics signature/nomogram, the Ki-67 Index and the rate of 

nuclear mitosis 

The correlation analysis showed both the radiomics signature and nomogram are associated with 

Ki-67 expression level and the rate of nuclear mitosis (p < 0.0001). The radiomics nomogram 

showed a higher correlation coefficient with Ki-67 index and the rate of nuclear mitosis than the 

radiomics signature. 

 

 

Figure S8. Scatter plots for radiomics signature/nomogram and the Ki-67 Index/rate of nuclear 

mitosis. 
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VII. Predictive performance of the radiomics signature, maximum diameter, and tumor clinical 

stage 

The performance of the combined nomogram incorporating radiomics signature with clinical 

characteristics was assessed. Different combinations (Radiomics signature, Clinical stage, Maximum 

diameter, Radiomics signature & Clinical stage, Radiomics signature & Maximum diameter, Radiomics 

signature & Maximum diameter & Clinical stage) were tested in this study (Table S3). The nomogram 

incorporating Radiomics signature with Clinical stage (AUC=0.906: training set; AUC=0.891: validation 

set) with the lowest AIC score among these combinations was selected as the final prediction model. 

Table S3. Predictive performance of the radiomics signature incorporating maximum diameter and 

tumor clinical stage. 

Variables & Model Training set AIC Validation set 

 AUC (95% CI)  AUC (95% CI) 

Radiomics signature 
0.870 

(0.780-0.933) 
89.29 

0.862 

(0.736-0.942) 

Clinical stage 
0.670 

 (0.561-0.768) 
111.42 

0.696  

(0.551-0.817) 

Maximum diameter 
0.811 

(0.712-0.888) 
110.25 

0.825 

(0.693-0.917) 

Radiomics signature  

& Clinical stage 

0.906  

(0.824-0.959) 
80.23 

0.891  

(0.772-0.961) 

Radiomics signature  

& Maximum diameter 

0.872  

(0.783-0.935) 
91.03 

0.859 

 (0.733-0.940) 

Radiomics signature  

& Maximum diameter  

& Clinical stage 

0.911 

 (0.830-0.961) 
81.51 

0.891  

(0.772-0.961) 

Abbreviations: AUC: area under the ROC curve; CI: confidence interval. Significant difference threshold (p<0.01). 

The multivariable regression results of radiomics signature and clinical stage were summarized in 

Table S4. 

Table S4. Multivariable Regression Results for Radiomics Signature. 

Factor Estimate coefficient p 

Maximum diameter -0.0001719 0.933 

Multiple tumors -0.0371430 0.814 

Endocrine symptoms 0.0437733 0.628 

Clinical stage -0.4001779 <0.001* 

Radiomics signature 0.2672986 <0.001* 

Gender -0.0375348 0.933 

Age 0.0022691 0.399 

 

 


