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Supplemental data file 
 

Inherent limitations of rare event detection 1 - 3 

 
 Three principle issues in rare event detection were evaluated.  First, what is the 

lowest number of CTC that would need to be in a tube of blood to detect one CTC?  

Second, what is the theoretical level of variability in measuring the reproducibility of rare 

events based on a random distribution?  Third, if one obtains a given result in clinical 

practice, what is the range of CTC numbers that might have actually been in the tube 

based on statistical considerations?   

 

 The probability of a random sample of size n containing x events in a total of n tests 

using the binomial distribution is given by the following formula: 
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Where:    P(x) = the probability of an event (x) in a unit of space 

        x = number of events 

        p = probability of detecting (or observing) x events 

  1 – p = probability of not detecting (or observing) x events 

        n = sample size 

 

 The mean µ  and variance 2σ  of the binomial distribution are given by the following: 

µ  = np    and    2σ  = np(1 – p) 
 

 The minimum average number of CTCs (n) required to be present in a single 7.5mL 

sample of blood to ensure the detection on average of at least 1 CTC ( µ ) given an 

average assay recovery of CTCs spiked into 7.5mL of blood of ~85% (p), is therefore: 

µ  = np 

1 = n(85%) 

n = 1 / 0.85 ~= 1.2 CTC 
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 The standard deviation σ  for this value of n would be determined as follows: 

σ  = )1( pnp −  = )85.01(85.0*2.1 −  = 0.4 

 These results indicate that in order to detect on average 1 CTC with an average 

assay recovery of 85%, a 7.5mL blood sample would have to contain on average 1.2 

CTCs.   

 

 For CTC detection, imagine a volume of blood that has been divided into CTC size 

units.  This creates a very large sample size n, with a very small probability p of any 

single volume n containing an event x (i.e. a CTC).  In this situation, with a large n and a 

small p, the Poisson distribution can be used to approximate the binomial probability.  

The Poisson distribution is important in describing random (or rare) occurrences where 

each sample (or volume) n has an equal probability of containing an event x, such as is 

the case with the distribution of CTC in a volume of blood. 

 The probability of a random sample of size n containing x events can be calculated 

using the Poisson distribution and is given by the following formula: 
 

P(x) = !x
e xµµ−

 
 

 An interesting and useful property of a Poisson distribution is that the variance 
2σ  is 

equal to the mean µ .   This would make the standard deviation equal to µ , and the 

theoretical coefficient of variation (%CV) equal to µ
µ

. 

 Using the above %CV formula, at CTC counts of 4, 18, 71, 286, and 1142, the 

inherent %CVs of actually counting those numbers of events would be predicted to be 

50%, 24%, 12%, 6%, and 3%, respectively.  These predicted %CVs are very similar to 

the observed %CVs of 47%, 22%, 11%, 2%, and 5%, respectively, shown in Table 1.  

These findings suggest that the CellSearch assay does not add additional variation to 

the inherent variation of counting random events due to the Poisson distribution. 
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 When calculating confidence intervals (CI) for rare events (i.e. CTC counts), one 

must keep in mind that the Poisson distribution assumes the shape of a normal 

distribution when the number of events is greater than about 100.  So we use a Poisson 

distribution for rare events (when the number of events is less than 100), but when the 

number of events is greater than 100, we can use a modified formula from the normal 

distribution to determine the 95% CI’s. 

 Table 2 provides the lower and upper confidence factors used to calculate an exact 

95% CI based on a specified number of events (or counts), from 1 to 100.  To calculate 

the exact 95% CI, multiply the number of events (or counts) by the associated 

confidence factors and add these values separately to the count.  For example, in Table 
1, the average observed number of CTC at the 18 CTC spike was 22 CTC (122% 

recovery).  The lower and upper confidence limits are calculated using the confidence 

factors provided in Table 2.  The factors for 22 events are 0.6267 and 1.5140 for the 

lower and upper limits of the 95% CI, respectively.  Therefore, the exact 95% CI for the 

average CTC count of 22 would be: 
 

Lower limit = 22(0.6267) = 13.8 

Upper limit = 22(1.5140) = 33.3 

Thus, for the average % recovery of 122% (22 / 18 CTC) 

Lower limit = (14 / 18) * 100% = 77.7% 

Upper limit  = (33 / 18) * 100% = 183.3% 

95% C.I. for average of 122% recovery = 78% to 183% 
 

 The formula for the calculation of an approximate 95% CI for a Poisson distribution 

with more than 100 counts µ  is: 

Approximate C.I. = µ  + µαz  

Where:  αz  = 1.645 for a 90% CI, 1.96 for a 95% CI, or 2.58 for a 99% CI 

 

 Lastly, similar considerations apply to the issue of estimating the range of CTC 

numbers when a given number is measured by the assay.  Recall that for a Poisson 

distribution the variance 2σ  is equal to the mean µ , which would make the standard 
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deviation equal to the square root of the mean µσ = .  For a sample size of n=1, σ  is 

indeterminate, as we have no knowledge of σ  from a single determination ( 1x ).  

Although σ  is unknown, it is possible to determine the true mean value µ  within a 

certain confidence interval [ ]21,µµ .  For ∞→n , a Poisson distribution with a mean µ  

and standard deviation σ  is known.  If we take one sample from this distribution (n=1), 

this sample will contain 1x  number of CTCs.  If we assume that this sample falls within a 

given confidence interval ( αz ), the true average falls within [ ]21,µµ  with the same given 

confidence, if 1µ  and 2µ  are defined as follows: 

111 µµ αzx −=  and 221 µµ αzx +=  

when you solve the above equation for 1µ  and 2µ , you get 
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 Figure 1 shows 1µ  and 2µ  for a 95% CI ( αz  = 1.96, solid line), the 68% CI ( αz  = 

1.00, short dashed line), and the 38% CI ( αz  = 0.50, long dashed line) for 1x  values of 0 

to 25 CTC.  The range of the true average, µ , based on a single blood draw resulting in 

1x  number of CTC, can be read from Figure 1 with 38%, 68%, and 95% confidence.  

For example when 5 CTC are detected ( 1x =5), you can be 95% confident that the true 

average lies between the 2 and 12 CTC, 68% confident that the true average lies 

between 3 and 9 CTC, and 38% confident that the true average lies between 3 and 8 

CTC. 
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Table 1. Method accuracy measured by recovery of SKBR-3 tumor cells spiked 
into 7.5 mL blood of 5 healthy donors 
 
 
 
 
 
 
 
 

Expected
CTC Count Average StDev 95% C.I. Average 95% C.I.

4 4 2     1  -    11 110 25  -  275 47
18 22 5   14  -    33 122 78  -  183 22
71 70 8   55  -    88 99 77  -  124 11

286 247 5 216  -  277 86 76  -    97 2
1142 971 46 910 - 1032 85 80  -    90 5

Observed CTC Count % Recovery %CV
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Table 2.  95% Confidence Interval Factors for Poisson-Distributed Events 
number of 

events 
95% CI, Lower 
Limit Factor 

95% CI, Upper 
Limit Factor 

 number of 
events 

95% CI, Lower 
Limit Factor 

95% CI, Upper 
Limit Factor 

0 0.0000 3.7000  51 0.7446 1.3148 
1 0.0253 5.5716  52 0.7468 1.3114 
2 0.1211 3.6123  53 0.7491 1.3080 
3 0.2062 2.9224  54 0.7512 1.3048 
4 0.2725 2.5604  55 0.7533 1.3016 
5 0.3247 2.3337  56 0.7554 1.2986 
6 0.3670 2.1766  57 0.7574 1.2956 
7 0.4021 2.0604  58 0.7593 1.2927 
8 0.4317 1.9704  59 0.7612 1.2899 
9 0.4573 1.8983  60 0.7631 1.2872 

10 0.4795 1.8390  61 0.7649 1.2845 
11 0.4992 1.7893  62 0.7667 1.2820 
12 0.5167 1.7468  63 0.7684 1.2794 
13 0.5325 1.7100  64 0.7701 1.2770 
14 0.5467 1.6778  65 0.7718 1.2746 
15 0.5597 1.6493  66 0.7734 1.2722 
16 0.5716 1.6239  67 0.7750 1.2700 
17 0.5825 1.6011  68 0.7765 1.2677 
18 0.5927 1.5804  69 0.7781 1.2656 
19 0.6021 1.5616  70 0.7795 1.2634 
20 0.6108 1.5444  71 0.7810 1.2614 
21 0.6190 1.5286  72 0.7824 1.2593 
22 0.6267 1.5140  73 0.7838 1.2573 
23 0.6339 1.5005  74 0.7852 1.2554 
24 0.6407 1.4879  75 0.7866 1.2535 
25 0.6471 1.4762  76 0.7879 1.2516 
26 0.6532 1.4652  77 0.7892 1.2498 
27 0.6590 1.4549  78 0.7905 1.2480 
28 0.6645 1.4453  79 0.7917 1.2463 
29 0.6697 1.4362  80 0.7929 1.2446 
30 0.6747 1.4276  81 0.7941 1.2429 
31 0.6795 1.4194  82 0.7953 1.2413 
32 0.6840 1.4117  83 0.7965 1.2397 
33 0.6884 1.4044  84 0.7976 1.2381 
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Table 2 (con’t).  95% Confidence Interval Factors for Poisson-Distributed Events 
number of 

events 
95% CI, Lower 
Limit Factor 

95% CI, Upper 
Limit Factor 

 number of 
events 

95% CI, Lower 
Limit Factor 

95% CI, Upper 
Limit Factor 

34 0.6925 1.3974  85 0.7988 1.2365 
35 0.6965 1.3908  86 0.7999 1.2350 
36 0.7004 1.3844  87 0.8010 1.2335 
37 0.7041 1.3784  88 0.8020 1.2320 
38 0.7077 1.3726  89 0.8031 1.2306 
39 0.7111 1.3670  90 0.8041 1.2292 
40 0.7144 1.3617  91 0.8051 1.2278 
41 0.7176 1.3566  92 0.8061 1.2264 
42 0.7207 1.3517  93 0.8071 1.2251 
43 0.7237 1.3470  94 0.8081 1.2237 
44 0.7266 1.3425  95 0.8091 1.2224 
45 0.7294 1.3381  96 0.8100 1.2212 
46 0.7321 1.3339  97 0.8109 1.2199 
47 0.7348 1.3298  98 0.8118 1.2187 
48 0.7373 1.3259  99 0.8128 1.2175 
49 0.7398 1.3221  100 0.8136 1.2163 
50 0.7422 1.3184     
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Appendix Figure 1 
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