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Inherent limitations of rare event detection 3

Three principle issues in rare event detection were evaluated. First, what is the
lowest number of CTC that would need to be in a tube of blood to detect one CTC?
Second, what is the theoretical level of variability in measuring the reproducibility of rare
events based on a random distribution? Third, if one obtains a given result in clinical
practice, what is the range of CTC numbers that might have actually been in the tube

based on statistical considerations?

The probability of a random sample of size n containing x events in a total of n tests

using the binomial distribution is given by the following formula:

n! (n]
Pe) = X=X pa—p) =V - p)

Where: P(x) = the probability of an event (x) in a unit of space
X = number of events
p = probability of detecting (or observing) x events
1 — p = probability of not detecting (or observing) x events

n = sample size

The mean u and variance o of the binomial distribution are given by the following:
g =np and o°=np(l-p)
The minimum average number of CTCs (n) required to be present in a single 7.5mL

sample of blood to ensure the detection on average of at least 1 CTC (u«) given an
average assay recovery of CTCs spiked into 7.5mL of blood of ~85% (p), is therefore:
4 =np
1 = n(85%)

n=1/085~=12CTC



The standard deviation o for this value of n would be determined as follows:

o = \np(l- p) = 1.2*0.85(1-0.85) = 0.4
These results indicate that in order to detect on average 1 CTC with an average

assay recovery of 85%, a 7.5mL blood sample would have to contain on average 1.2

CTCs.

For CTC detection, imagine a volume of blood that has been divided into CTC size
units. This creates a very large sample size n, with a very small probability p of any
single volume n containing an event x (i.e. a CTC). In this situation, with a large n and a
small p, the Poisson distribution can be used to approximate the binomial probability.
The Poisson distribution is important in describing random (or rare) occurrences where
each sample (or volume) n has an equal probability of containing an event x, such as is
the case with the distribution of CTC in a volume of blood.

The probability of a random sample of size n containing x events can be calculated
using the Poisson distribution and is given by the following formula:

Px)= X

An interesting and useful property of a Poisson distribution is that the variance o’ is

equal to the mean x. This would make the standard deviation equal to +/x , and the

Jz

theoretical coefficient of variation (%CV) equalto # .

Using the above %CV formula, at CTC counts of 4, 18, 71, 286, and 1142, the
inherent %CVs of actually counting those numbers of events would be predicted to be
50%, 24%, 12%, 6%, and 3%, respectively. These predicted %CVs are very similar to
the observed %CVs of 47%, 22%, 11%, 2%, and 5%, respectively, shown in Table 1.
These findings suggest that the CellSearch assay does not add additional variation to

the inherent variation of counting random events due to the Poisson distribution.



When calculating confidence intervals (CI) for rare events (i.e. CTC counts), one
must keep in mind that the Poisson distribution assumes the shape of a normal
distribution when the number of events is greater than about 100. So we use a Poisson
distribution for rare events (when the number of events is less than 100), but when the
number of events is greater than 100, we can use a modified formula from the normal
distribution to determine the 95% CI's.

Table 2 provides the lower and upper confidence factors used to calculate an exact
95% CI based on a specified number of events (or counts), from 1 to 100. To calculate
the exact 95% CI, multiply the number of events (or counts) by the associated
confidence factors and add these values separately to the count. For example, in Table
1, the average observed number of CTC at the 18 CTC spike was 22 CTC (122%
recovery). The lower and upper confidence limits are calculated using the confidence
factors provided in Table 2. The factors for 22 events are 0.6267 and 1.5140 for the
lower and upper limits of the 95% ClI, respectively. Therefore, the exact 95% CI for the

average CTC count of 22 would be:

Lower limit = 22(0.6267) = 13.8
Upper limit = 22(1.5140) = 33.3
Thus, for the average % recovery of 122% (22 / 18 CTC)
Lower limit = (14 / 18) * 100% = 77.7%
Upper limit = (33 /18) * 100% = 183.3%
95% C.I. for average of 122% recovery = 78% to 183%

The formula for the calculation of an approximate 95% CI for a Poisson distribution

with more than 100 counts w is:

Approximate C.I. = u + za\/;
Where: z, =1.645 for a 90% CI, 1.96 for a 95% CI, or 2.58 for a 99% CI

Lastly, similar considerations apply to the issue of estimating the range of CTC
numbers when a given number is measured by the assay. Recall that for a Poisson

distribution the variance o’ is equal to the mean u, which would make the standard



deviation equal to the square root of the mean o = \/; For a sample size of n=1, o is
indeterminate, as we have no knowledge of o from a single determination (xq).
Although o is unknown, it is possible to determine the true mean value u within a
certain confidence interval [z, ,]. For n— «, a Poisson distribution with a mean u

and standard deviation o is known. If we take one sample from this distribution (n=1),

this sample will contain x, number of CTCs. If we assume that this sample falls within a
given confidence interval (z, ), the true average falls within [z, 1z, | with the same given
confidence, if x4 and u, are defined as follows:

Xp = py = Z\ g &N X = p + 7,4 1y

when you solve the above equation for g and u,, you get

\/(22a +2x,)2 - 4x°
2

lul = (Xl+za)_

\/(22a +2x,)2 - 4x,°
2

/LIZ = (Xl+za)+

Figure 1 shows x4 and u, for a 95% CI (z, = 1.96, solid line), the 68% CI (z, =
1.00, short dashed line), and the 38% CI (z, = 0.50, long dashed line) for x; values of O
to 25 CTC. The range of the true average, u, based on a single blood draw resulting in
X, number of CTC, can be read from Figure 1 with 38%, 68%, and 95% confidence.

For example when 5 CTC are detected (x;=5), you can be 95% confident that the true

average lies between the 2 and 12 CTC, 68% confident that the true average lies
between 3 and 9 CTC, and 38% confident that the true average lies between 3 and 8
CTC.
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Table 1. Method accuracy measured by recovery of SKBR-3 tumor cells spiked
into 7.5 mL blood of 5 healthy donors

Expected Observed CTC Count % Recovery %CV
CTC Count §| Average | StDev | 95% C.I. § Average | 95% C.I.
4 4 2 1- 11 110 25 - 275 47
18 22 5 14 - 33 122 78 - 183 22
71 70 8 55 - 88 99 77 - 1244 11
286 247 5 216 - 277 86 76 - 97 2
1142 971 46 910 - 1032 85 80 - 90 5




Table 2. 95% Confidence Interval Factors for Poisson-Distributed Events

number of | 95% CI, Lower 95% CI, Upper number of | 95% CI, Lower | 95% CI, Upper
events Limit Factor Limit Factor events Limit Factor Limit Factor
o | oo00OO | 37000 | | 51 | 07446 | 13148
1 | 0023 | 55716 | | 52 | 07468 | 13114
2 | o121z | 36123 | | 53 | 07491 |  1.3080
. 3 | o202 | 29224 | | 54 | 07512 | 13048
. 4 | o275 | 2504 | | 55 | 0753 | 13016
5 | 03247 | 2337 | | 5 | 07554 | 12986
. 6 | 03670 | 21766 | | 57 | 07574 | 12956
7 | 04021 | 20604 | | 58 | 07593 |  1.2927
. 8 | 04317 | 19704 | | 59 | 07612 |  1.2899
9 | 0473 | 18983 | | 60 | 07631 | 12872
. 10 | 04795 | 1890 | | 61 | 07649 | 12845
11 | 04992 | 17893 | | 62 | 07667 | 12820
. 12 | os5167 | 17468 | | 63 | 07684 |  1.2794
13 | 05325 | 17100 | | 64 | 07701 |  1.2770
14 | o5467 | 16778 | | 65 | 07718 |  1.2746
. 15 | 05597 | 16493 | | 66 | 07734 | 12722
. 16 | o576 | 16239 | | 67 | 07750 | 12700
. 17 | o585 | 16011 | | 68 | 07765 | 12677
18 | 05927 | 15804 | | 69 | 07781 |  1.2656
19 | o602l | 15616 | | 70 | 07795 |  1.2634
. 20 | 06108 | 15444 | | 71 | 07810 |  1.2614
21 | o690 | 15286 | | 72 | 07824 | 12593
. 22 | o627 | 15140 | | 73 | 07838 | 12573
. 23 | 06339 | 1505 | | 74 | 0782 | 12554
24 | o647 | 14879 | | 75 | 07866 |  1.2535
25 | o647t | 14762 | | 76 | 07879 |  1.2516
. 26 | 06532 | 14652 | | 77 | 07892 |  1.2498
27 | o0es9%0 | 14549 | | 78 | 07905 | 12480
. 28 | o0ee45s | 14453 | | 79 | 07917 | 12463
. 29 | 06697 | 1432 | | 80 | 07929 | 12446
. 30 | o6747 | 14276 | | 8L | 07941 |  1.2429
31 | 06795 | 14194 | | 8 | 07953 |  1.2413
. 32 | o0es40 | 14117 | | 83 | 0795 | 12397
. 33 | 06884 | 14044 | | 84 | 07976 | 12381




Table 2 (con’t). 95% Confidence Interval Factors for Poisson-Distributed Events

number of | 95% CI, Lower 95% CI, Upper number of | 95% CI, Lower | 95% CI, Upper
events Limit Factor Limit Factor events Limit Factor Limit Factor

. 3 | 06925 | 13974 | | 8 | 07988 | 12365

. 3 | 06965 | 13908 | | 8 | 0799 |  1.2350

. 3% | 07004 | 13844 | | 87 | 08010 | 12335

. 37 | o704 | 13784 | | 8 | 08020 | 12320

. 3 | o777 | 13726 | | 89 | 08031 | 12306

. 3 | o711 | 13670 | | 9 | 08041 | 12292

. 40 | 07144 | 13617 | | 91 | 08051 |  1.2278
41 | o776 | 1356 | | 92 | 08061 |  1.2264

. 42 | o707 | 13517 | | 9 | 08071 | 12251

. 43 | 07237 | 13470 | | 94 | 08081 | 12237

. 4 | o726 | 13425 | | 95 | 08091 | 12224

. 45 | 07294 | 13381 | | 9% | 08100 | 12212

. 46 | 07321 | 1339 | | 97 | 08109 | 12199
47 | 07348 | 13298 | | 9 | o0s8118 | 12187
48 | 07373 | 13259 | | 99 | 08128 | 12175

. 49 | 0738 | 13221 | | 100 | 08136 | 12163

. 50 | 07422 | 13184 | | | |




Appendix Figure 1

Expected true average #CTC (u)
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