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Abstract. In 1900, Pringsheim gave a definition of the convergence of double sequences.
In this paper, that notion is extended by presenting definitions for the limit inferior and
limit superior of double sequences. Also the core of a double sequence is defined. By using
these definitions and the notion of regularity for 4-dimensional matrices, extensions, and
variations of the Knopp Core theorem are proved.
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1. Introduction. The notion of convergence for double sequences was presented by
Pringsheim. Also, in [2, 3, 4, 5, 10] the 4-dimensional matrix transformation (Ax)m,n =∑∞,∞
k,l=0,0am,n,k,l xk,l was studied extensively by Robison and Hamilton. In their work

and throughout this paper, the 4-dimensional matrices and double sequences have
complex-valued entries unless specified otherwise. In this paper, we extend the notion
of convergence by defining new double sequence spaces and consider the behavior of
4-dimensional matrix transformations on our new spaces. We also present definitions
for limit inferior/limit superior of a double sequence, regularity of a 4-dimensional
matrix, and the core of a double sequence. Using these definitions and the notion of
regularity for a 4-dimensional matrix, we present multidimensional analogues to the
Knopp Core theorem. We also present extensions and variations of this theorem.

2. Definitions and preliminary results

Definition 2.1 [Pringsheim, 1900]. A double sequence [x] has Pringsheim limit L
(denoted by P-lim[x]= L) provided that given ε > 0 there existsN ∈N such that |xk,l−
L|< ε whenever k,l > N . We shall describe such an [x]more briefly as “P-convergent.”

A double sequence [x] is bounded if and only if there exists a positive number
M such that |xk,l| < M for all k and l (which shall be denoted by [|x|] < M). Note
that a convergent double sequence need not be bounded. In 1900, Pringsheim gave
the following definition: a double sequence [x] is called definite divergent if for every
(arbitrarily large)G > 0 there exist two natural numbersn1 andn2 such that |xn,k|>G
for n≥n1,k≥n2. This definition is clearly equivalent to P-lim [|x|]=∞.

Definition 2.2. The sequence [y] is a subsequence of the double sequence [x]
provided that there exist two increasing double index sequences {nij} and {kij} such
that n1

0 = k10 =n0
−1 = k0−1 = 0 and
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ni1 & k
i
1 are both chosen such that max{ni−12i−3,k

i−1
2i−3}<ni1 & ki1,

ni2 & k
i
2 are both chosen such that max{ni1,ki1}<ni2 & ki2,

ni3 & k
i
3 are both chosen such that max{ni2,ki2}<ni3 & ki3,

...
ni2i−1 & k

i
2i−1 are both chosen such that max{ni2(i−1),ki2(i−1)}<ni2i−1 & ki2i−1,

with

y1,i = xni1,ki1 ,
y2,i = xni2,ki2 ,
y3,i = xni3,ki3 ,
...

yi,i = xnii,kii ,
yi,i+1 = xnii+1,kii+1 ,

...

yi,2i−1 = xni2i−1,ki2i−1

(2.1)

for i= 1,2,3, . . . .

Example 2.1. The double sequences whose n, k-terms are yn,k = 1 and zn,k = −1
for each n and k are both subsequences of the double sequence whose n, kth term
is xn,k = (−1)n+k. Indeed, every double sequence of 1’s and −1’s is a subsequence of
this [x].

A two dimensional matrix transformation is said to be regular if it maps every
convergent sequence into a convergent sequence with the same limit. In 1926, Robison
presented a 4-dimensional analogue of regularity for double sequences in which he
added an additional assumption of boundedness: a 4-dimensional matrix A is said to
be RH-regular if it maps every bounded P-convergent sequence into a P-convergent
sequence with the same P-limit.
The following is a 4-dimensional analogue of the well-known Silverman-Toeplitz

theorem [6].

Theorem 2.1 (Hamilton [2], Robison [10]). The 4-dimensional matrix A is RH-reg-
ular if and only if
(RH1) P- limm,nam,n,k,l = 0 for each k and l;
(RH2) P- limm,n

∑∞,∞
k,l=0,0am,n,k,l = 1;

(RH3) P- limm,n
∑∞
k=0 |am,n,k,l| = 0 for each l;

(RH4) P- limm,n
∑∞
l=0 |am,n,k,l| = 0 for each k;

(RH5)
∑∞,∞
k,l=0,0 |am,n,k,l| is P-convergent; and

(RH6) there exist positive numbers A and B such that
∑
k,l>B |am,n,k,l|<A.

Definition 2.3. A number β is called a Pringsheim limit point of the double se-
quence [x] provided that there exists a subsequence [y] of [x] that has Pringsheim
limit β: P- lim[y]= β.
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Remark 2.1. The definition of a Pringsheim limit point is equivalent to the follow-
ing statement: β is a Pringsheim limit point of [x] if and only if there exist two increas-
ing index sequences {ni} and {ki} such that limi xni,ki = β. A double sequence [x] is
divergent in the Pringsheim sense (P-divergent) provided that [x] is not P-convergent.
This is equivalent to the following: a double sequence [x] is P-divergent if and only if
either [x] contains two subsequences with distinct finite limit points or [x] contains
an unbounded subsequence. Also note that, if [x] contains an unbounded subse-
quence then [x] also contains a definite divergent subsequence.
In [7] Knopp introduced the concept of the core a complex number sequence. We

follow that idea in defining the core of a double sequence.

Definition 2.4. Let P-Cn{x} be the least closed convex set that includes all points
xk,l for k,l > n; then the Pringsheim core of the double sequence [x] is the set
P-C{x} =⋂∞n=1[P-Cn{x}].

Theorem 2.2 [Knopp, 1930]. If A is a nonnegative regular matrix then the core of
[Ax] is contained in core of [x], provided that [Ax] exists.

3. Main results. In a manner similar to the classical definitions of the limit supe-
rior and the limit inferior of a sequence, we present definitions for the limit superior
and the limit inferior of a double sequence. Using these definitions one can charac-
terize the Pringsheim core of a real-valued double sequence as the closed interval
[P-liminfx,P-limsupx].

Definition 3.1. Let [x] = {xk,l} be a double sequence of real numbers and for
each n, let αn = supn{xk,l : k,l ≥ n}. The Pringsheim limit superior of [x] is defined
as follows:
(1) if α=+∞ for each n, then P-limsup[x] :=+∞;
(2) if α<∞ for some n, then P-limsup[x] := infn{αn}.

Similarly, let βn = infn{xk,l : k,l ≥ n} then the Pringsheim limit inferior of [x] is
defined as follows:
(1) if βn =−∞ for each n, then P-liminf[x] :=−∞;
(2) if βn >−∞ for some n, then P-liminf[x] := supn{βn}.
Example 3.1. The following is an example of an [x] which is neither bounded

above nor bounded below; however, the Pringsheim limit superior and inferior are
both finite numbers

xk,l :=




k, if l= 0,

−l, if k= 0,

(−1)k, if l= k > 0,

0, otherwise;

(3.1)

thus P-liminf[x]=−1 and P-limsup[x]= 1.

The proof of the following proposition is the same as the proof for single dimen-
sional sequences and is therefore left to the reader.

Proposition 3.1. If [x] is a real-valued double sequence then
(1) P- liminf[x]≤ P- limsup[x];
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(2) P- lim[x]= L if and only if P- limsup[x]= P- liminf[x]= L;
(3) P- limsup[−x]=−(P- liminf[x]);
(4) P- limsup([x]+[y])≤ (P- limsup[x])+(P- limsup[y]);
(5) P- liminf([x]+[y])≥ (P- liminf[x])+(P- liminf[y]);
(6) if [y] is a subsequence of the double sequence [x] then

P- liminf[x]≤ P- liminf[y]≤ P- limsup[y]≤ P- limsup[x]. (3.2)

Theorem 3.1. If A is a nonnegative RH-regular summability matrix, then P-C{Ax}
⊆ P-C{x} for any bounded sequence [x] for which [Ax] exists.

Proof. Note that if P-C{x} is the complex plane then the result is trivial. We shall
establish our theorem by considering separately the cases where [x] is bounded or
unbounded. In both cases the result will be established by proving the following:
if there exists a q such that for ω �∈ P-Cq{x}, then there exists a p such that ω �∈
P-Cp{Ax}. When [x] is bounded, P-C{x} is not the complex plane, thus there exists
an ω �∈ P-C{x}. This implies that there exists a q for which ω �∈ P-Cn{x}. Since ω
is finite, we may assume that ω = 0 by the linearity of A. Since we are also given
that P-Cq{x} is a convex set, we can rotate P-Cq{x} so that the distance from zero to
P-Cq{x} is the minimum of {|y| : y ∈ P-Cq{x}} and is on the positive real axis; say
that this minimum is 3d. Since P-Cq{x} is convex, all points of P-Cq{x} have a real
part which is at least 3d. LetM =max{|xk,l|}. By the regularity conditions (RH1)–(RH4)
and the assumption am,n,k,l ≥ 0, there exists anN such that form,n>N the following
holds:

∑
k,l∈I1

am,n,k,l <
d
3M

,
∑

k,l∈I2
am,n,k,l <

d
3M

,

∑
k,l∈I3

am,n,k,l <
d
3M

,
∑

k,l∈I4
am,n,k,l >

2
3
,

(3.3)

where

I1 =
{
(k,l) : 0≤ k≤ k0 & 0≤ l≤ l0

}
,

I2 =
{
(k,l) : k0 < k<∞ & 0≤ l < l0

}
,

I3 =
{
(k,l) : 0< k≤ k0 & l0 < l <∞},

I4 =
{
(k,l) : k0 < k<∞ & l0 < l <∞

}
.

(3.4)

Therefore form,n>N

�



∞,∞∑
k,l=0,0

am,n,k,l xk,l


=�



∑

k,l∈I1
am,n,k,l xk,l


+�



∑

k,l∈I2
am,n,k,l xk,l




+�


∑

k,l∈I3
am,n,k,l xk,l


+�



∑

k,l∈I4
am,n,k,lxk,l




>−M
∑

k,l∈I1
am,n,k,l−M

∑
k,l∈I2

am,n,k,l

−M
∑

k,l∈I3
am,n,k,l+3d

∑
k,l∈I4

am,n,k,l >−M 3d
3M

+3d2
3
= d.

(3.5)



DOUBLE SEQUENCE CORE THEOREMS 789

Therefore, �{Ax} > d which implies that there exists a p for which ω = 0 is also
outside of P-Cp{Ax}. Now suppose that [x] is unbounded; theωmay be the point at
infinity or not. If ω is not the point at infinity then choose N such that form,n > N
the following holds: ∑

k,l∈I1
am,n,k,l <

d
3M

,
∑

k,l∈I2∪I3∪I4
am,n,k,l >

2
3
. (3.6)

In a manner similar to the first part we obtain �{Ax}>d. In the case whenω is the
point at infinity, P-Cq{x} is bounded for all q, which implies that xk,l is bounded for
k,l > q. We may assume that [|x|] < B for some positive number B without loss of
generality. Thus form and n large we obtain the following:∣∣∣∣∣

∞,∞∑
k,l=0,0

am,n,k,l xk,l

∣∣∣∣∣≤
∞,∞∑

k,l=0,0
am,n,k,l |xk,l| ≤ B

∞,∞∑
k,l=0,0

am,n,k,l <∞. (3.7)

Hence, there exists a p such that the point at infinity is outside of P-Cp{Ax}. This
completes the proof of our theorem.

The following lemma is a multidimensional analogue of a lemma of Agnew in [1].
We use this lemma to prove Theorem 3.2, below.

Lemma 3.1. If {am,n,k,l}∞,∞k,l=0,0 is a real or complex-valued 4-dimensional matrix such
that (RH1), (RH3), (RH4), and P- limsupm,n

∑∞,∞
k,l=0,0 |am,n,k,l| = M hold, then for any

bounded double sequence [x] we obtain the following:

P- limsup[|y|]≤M(P- limsup[|x|]), (3.8)

where

ym,n =
∞,∞∑

k,l=0,0
am,n,k,l xk,l. (3.9)

In addition, there exists a real-valued double sequence [x] such that if am,n,k,l is real
with 0< P- limsup[|x|] <∞ then

P- limsup[|y|]=M(P- limsup[|x|]). (3.10)

Proof. Let [x] be bounded and define

B := P-limsup[|x|] <∞. (3.11)

Given ε > 0 we can choose an N such that |xk,l| < (B+ε)/3 for each k, and/or l > N .
Thus,

|ym,n| ≤
N,N∑

k,l=0,0
|am,n,k,l||xk,l|+

∑
0≤l≤N,
N<k<∞

|am,n,k,l||xk,l|

+
∑

N<l≤∞,
0≤k≤N

|am,n,k,l||xk,l|+
∞,∞∑

k,l=N+1,N+1
|am,n,k,l||xk,l|

≤
N,N∑

k,l=0,0
|am,n,k,l||xk,l|+

∑
0≤l≤N,
N<k<∞

|am,n,k,l|
(
B+ε
3

)

+
∑

N<l≤∞,
0≤k≤N

|am,n,k,l|
(
B+ε
3

)
+

∞,∞∑
k,l=N+1,N+1

|am,n,k,l|
(
B+ε
3

)
,

(3.12)
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which yields

P-limsup[|y|]≤M(B+ε). (3.13)

Therefore the following holds:

P- limsup[|y|]≤M(P-limsup[|x|]). (3.14)

Since
P-limsup

m,n

∞,∞∑
k,l=0,0

|am,n,k,l| =M, (3.15)

we may assume that M > 0 without loss of generality. Using the RH-regularity condi-
tions we choosem0,n0, l0, and k0, so large that

∞,∞∑
k,l=0,0

|am0,n0,k,l|>M−
1
4
,

∑
0<l<l0,
k0≤k≤∞

|am0,n0,k,l| ≤
1
4
,

∑
l0≤l≤∞,
0<k<k0

|am0,n0,k,l| ≤
1
4
,

∞,∞∑
k,l=l0,k0

|am0,n0,k,l| ≤
1
4
.

(3.16)

Let [mp−1],[nq−1],[kp−1], and [lq−1] be four chosen strictly increasing index se-
quences with p,q = 1···i−1,j−1 with k0 = l0 > 0. Using the RH-regularity conditions
we now choosemi >mi−1 and nj > nj−1 such that

∑
0≤k≤ki−1,
0≤l≤∞

∣∣ami,nj ,k,l
∣∣< 1

2i+j
,

∑
0≤l≤lj−1,
ki−1<k≤∞

∣∣ami,nj ,k,l
∣∣< 1

2i+j
,

∞,∞∑
k,l=0,0

|ami,nj ,k,l|>M−
1

2i+j
.

(3.17)

In addition, we also choose ki > ki−1 and lj > lj−1 such that

∑
ki−1<k<ki,
lj≤l≤∞

∣∣ami,nj ,k,l
∣∣< 1

2i+j
and

∑
lj−1<l<∞,
ki≤k≤∞

∣∣ami,nj ,k,l
∣∣< 1

2i+j
. (3.18)

Let us define [x] as follows:

xk,l :=




āmi,nj ,k,l∣∣ami,nj ,k,l
∣∣ , if ki−1 < k< ki, lj−1 < l < lj, and ami,nj ,k,l ≠ 0;

0, otherwise .
(3.19)

Consider the following:

∣∣∣ymi,nj

∣∣∣=
∣∣∣∣∣

∞,∞∑
k,l=0,0

ami,nj ,k,l xk,l

∣∣∣∣∣≥−
∑

0≤k≤ki−1,
0≤l≤∞

∣∣ami,nj ,k,l
∣∣

−
∑

0≤l≤lj−1,
ki−1<k≤∞

∣∣ami,nj ,k,l
∣∣− ∑

ki−1<k<ki,
lj≤l≤∞

∣∣ami,nj ,k,l
∣∣

−
∑

lj−1<l<∞,
ki≤k≤∞

∣∣ami,nj ,k,l
∣∣+ ∑

lj−1<l<lj ,
ki−1<k<ki

ami,nj ,k,l sgn
(
ami,nj ,k,l

)
(3.20)
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≥− 1
2i+j

− 1
2i+j

− 1
2i+j

− 1
2i+j

+M−5
(

1
2i+j

)

=M−9 1
2i+j

.

This implies that

P- limsup[|y|]≥M =M(P-limsup[|x|]). (3.21)

Thus, if A is real-valued then so is [x] with 0< limsup[x] <∞
P-limsup[|y|]=M(P-limsup[|x|]). (3.22)

Theorem 3.2. If A is a 4-dimensional matrix, then the following are equivalent
(1) For all real-valued double sequences [x]

P- limsup[Ax]≤ P- limsup[x]; (3.23)

(2) A is an RH-regular summability matrix with

P- lim
m,n

∞,∞∑
k,l=0,0

|am,n,k,l| = 1. (3.24)

Proof. To show that (1) implies (2), let [x] be a bounded P-convergent double
sequence, thus

P-liminf[x]= P-limsup[x]= P-lim[x], (3.25)

and also

P-limsup
[
A(−x)]≤−(P-liminf[x]

)
. (3.26)

These imply that P- liminf[x]≤ P-liminf[Ax]; thus

P-liminf[x]≤ P-liminf[Ax]≤ P-limsup[Ax]≤ P-limsup[x]. (3.27)

Hence [Ax] is P-convergent and P-lim[Ax]= P-lim[x]. Therefore A is an RH-regular
summability matrix.
By Lemma 3.1 and its proof, there exists a bounded double sequence [x] such that

limsup[|x|]= 1 and P-limsup[y]=A, where A is defined by (RH6). This implies that

1≤ P-liminf
m,n

∞,∞∑
k,l=0,0

|am,n,k,l| ≤ P-limsup
m,n

∞,∞∑
k,l,=0,0

|am,n,k,l| ≤ 1, (3.28)

whence

P-lim
m,n

∞,∞∑
k,l=0,0

|am,n,k,l| = 1. (3.29)

To prove that (2) implies (1) we show that if [x] is a bounded P-convergent sequence
and A is an RH-regular matrix with

P-lim
m,n

∞,∞∑
k,l=0,0

|am,n,k,l| = 1, (3.30)
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then

P-limsup[Ax]≤ P-limsup[x]. (3.31)

For p,q > 1 we obtain the following:

∣∣∣∣∣
∞,∞∑

k,l=0,0
am,n,k,l xk,l

∣∣∣∣∣

=
∣∣∣∣∣

∞,∞∑
k,l=0,0

|am,n,k,l xk,l|−am,n,k,l xk,l
2

+
∞,∞∑

k,l=0,0

|am,n,k,l xk,l|+am,n,k,lxk,l
2

∣∣∣∣∣

≤
∞,∞∑

k,l=0,0
|am,n,k,l||xk,l|+

∞,∞∑
k,l=0,0

(|am,n,k,l|−am,n,k,l
)|xk,l|

≤ ‖x‖
p,q∑

k,l=0,0
|am,n,k,l|+‖x‖

∑
p<k<∞,
0≤l≤q

|am,n,k,l|

+‖x‖
∑

0≤k<p,
q<l<∞

|am,n,k,l|+ sup
k,l>p,q

|x|
∑

k,l>p,q
|am,n,k,l|+‖x‖

∞,∞∑
k,l=0,0

(|am,n,k,l|−am,n,k,l
)
.

(3.32)

Using (RH1)–(RH4) and

P-lim
m,n

∞,∞∑
k,l=0,0

|am,n,k,l| = 1, (3.33)

we take Pringsheim limits and get the desired result.
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