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ABSTRACT. Inequalities between certain functionals on the space of bounded
real sequences are considered. Such inequalities being analogues of the
classical theorem of Knopp on the core of a sequence. Also, a result is given

on infinite matrices of bounded linear operators acting on bounded sequences in

a Banach space.
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1. INTRODUCTION.

For a real sequence x = (xk) we write

2(x) = lim inf X L(x) = lim sup X s
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X, + X, + ... ¢+
y(x) = lim inf L L i s
k
X, + X, 4+ ... 0+
Y(x) = lim sup 2 " .
k
w(x) = inf {L(x + z) : z € bs},
S(x) = sup x, [lx]| = sup lxkl’
p(x) = lim sup |xk|, q(x) = lim inf kal.

In the definition of w we use bs to denote the space of all 'bounded

series', more precisely:
n
bs = {z : sup_ Ik§1 zkl < =},
If A = (ank) is an infinite matrix of real, or complex, numbers, we write

Ax = (zankxk)’

where all sums are from k = 1 to k = », unless otherwise indicated.

Let X be a Banach space with norm ||x|| and let B(X) be the Banach space
of bounded linear operators on X into X with the usual operator norm. The space
of bounded X-valued sequences is denoted by £ _(X), with [x]] = supnllxnll, for
each x € lm(X). By c(X) we denote the space of convergent X-valued sequences.

If G and H are real functionals on 2 _(X), and M > O is a real n;mber, then
G < MH means that G(x) < MH(x) for all x e 2m(x).

In connection with a real matrix A, we shall write, for example, LA < L
to mean that Ax exists for all x e 2_(R) and that L(Ax) < L(x) for all
X € EQ(R).

Devi [1] refers to the result that: "LA < L if and only if A is regular
and almost positive'", as Knopp's core theorem, and refers to Cooke [2] for

the proof. Strictly speaking the result as stated does not seem to be given
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by Cooke, though the ingredients for a proof are there. In Section 2 below we
indicate, for completeness, a brief proof of the result.

Using Knopp's core theorem, Devi [1] proves that LA < w if and only if A
is strongly regular and almost positive. To say that A is strongly regular

is to say that A is regular and

Elam(—an’k+1| >0 (n » x).

In Section 2 we prove that LA < y is impossible, and that LA < % is
impossible. Also, necessary and sufficient conditions are given for pA < q.
In Section 3 we give a theorem involving pA for bounded sequences from

X, and infinite matrices (Ank) from B(X).

2. REAL BOUNDED SEQUENCES.

We first give exact conditions for LA < L, as mentioned in Section 1.

THEOREM 1. LA < L if and only if A is regular and

‘Zlank] > 1 (n+ ). 2.1)

PROOF. For the necessity, let x € c¢(R). Then 2(x) = L(x) = lim x and

L(A(-x)) < L(-x), whence
lim x < 2(Ax) < L(Ax) < L(x) = lim X s

and so Ax € c(R) with lim (Ax) = lim x , which implies A is regular. By the
n n

Silverman-Toeplitz theorem, see e.g. Maddox [3], p.165, it follows that
H = 1lim sup Zlankl < o, (2.2)

Zank+1 (n > ®), (2.3)
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a 0 (n > », each fixed k). (2.4)

From (2.2), (2.4), e.g. Agnew [4], there exists y € &_(R) such that

|lyl] =1 and L(Ay) = H. Hence, by (2.3),
1 < lim infn Zlankl < lim sup Z[ank| <L) < |lyll =1,

which implies (2.1).
For the sufficiency, let x € &_(R), A be regular and let (2.1) hold. If
m > 1 then
Zankxk < ||x|| z ]ankl + (sup xk) Z]ankl + ||x|l2(|ank|-ank).
k<m k2m
Applying the operator limm lim sup ~we obtain L(Ax) < L(x), which completes

the proof.

THEOREM 2. We have, on lm(R),
t<sysYs<ws<L<ss|].]].

PROOF. By Theorem 1, letting A be the (C,1) matrix, we have & < 24,
i.e. 2 <y. It is trivial that y < Y.

Now take x € lm(R) and z € bs. Then

k

.i (xi + zi) + €1 (2.5)
where lim & = 0. Taking lim supy in (2.5), and applying Theorem 1 with
A = (C,1), we get Y(x) < L(x + z), whence Y < w by the definition of w.

Since 6 = (0,0,0,...) € bs it is immediate that w < L, and the remaining

inequalities are trivial.
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The facts that LA < y, and LA < ¢ are impossible are special cases of

the following result.

THEOREM 3. Let B be any regular almost positive matrix. Then there is

no matrix A such that LA < £B.

PROOF. Suppose, if possible, there exists such an A. Theorem 1 implies
LB < L, and so LA < ¢B < LB < L, whence A is regular.

By the theorem of Steinhaus, see e.g. Cooke [2], p.75, there exists
zZ € Rw(R) such that 2(Az) < L(Az). Since LA < LB we have 2(Bz) < 2(Az), and

so
£(Bz) < L(Az) < 2(Bz),

a contradiction. This proves the theorem.
The statement prior to Theorem 3 follows on taking B to be either the

(C,1) matrix, or the unit matrix.

THEOREM 4. The following are equivalent:

PA < q, (2.6)
A maps bounded sequences into null sequences, 2.7
Zlank| +0 (n > ). (2.8)

PROOF. The equivalence of (2.7) and (2.8) is well-known, see e.g.
Maddox [3], p.169. We shall prove that (2.6) is equivalent to (2.8).

If (2.8) holds then, for all x ¢ ¢_(R),

lim sup lEankxkl =0,
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which implies (2.6). Conversely, let (2.6) hold. Then ):ankxk is bounded on
the Banach space £ _(R) whence supnzlankl < o by the Banach-Steinhaus theorem.
Also, choosing x = 1, X = O otherwise, we must have (2.4).

Suppose, if possible, that lim sup E]ankl =d > 0. Choose m(1) > 1

such that |am(1)1| < d/10 and

lZ]a

m(l)kl - d| < d/10.

Define k(1) = 1 and choose k(2) > 2 + k(1) such that

k§2) lam(l)kl < d/10.

Next choose m(2) > m(l) such that

k(2)

T Ja | <d/10, Iz]a, d| < d/10,
1

m(2)k (2)kl -

and choose k(3) > 2 + k(2) such that

k§3) lam(Z)kl < d/10.

Proceeding inductively we now define a sequence x by

X = sgn am(r)k for k(r) < k < k(r+l), r > 1,
x = 0 for k = k(r+l), r 2 0.
Then ||x|| < 1 and lim inf ]xkl =0, so (2.6) implies
p(Ax) = 0. (2.9)

But for m = m(r), with r > 1, we have
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|Zamkxk| > leamkl - d/5,
where 21 denotes a sum over k(r) < k < k(r+l). Also, we have
lzyla | = d] < 3d/10,
and so
|za x| > d - 3d/10 - d/5 = d/2. (2.10)
Since (2.10) holds for infinitely many m it follows that

p(Ax) = d/2. (2.11)

But (2.11) contradicts (2.9), so d = 0, and the proof is complete.

3. BOUNDED SEQUENCES IN A BANACH SPACE.

Define, for each x = (xk) e 2 (X),

G(X)

lim sup I]xk||,

H(x)

inf {G(x+z) : z € bs(X)},

where

n
bs(X) = {z : supn‘l Iz < o},

l|
k=1 ¥

Thus G and H many be regarded as the Banach space analogues of p and w which
appeared earlier.

By GA < MH we mean that G(Ax) < MH(x) for all x ¢ zm(x), where

Ax = (ZA %),

with Ank e B(X).
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It is clear that bs(X) c lm(x), and that 0 < H(x) < G(x) < « for all
X € lm(x)-

Also, since -x ¢ bs(X) whenever x ¢ bs(X) we have that

H(x) = 0 on bs(X).
In the following theorem we need the ideas of the group norm of a

sequence (Bk) from B(X), see e.g. Lorentz and Macphail [51]:

n
@] = supl|] 2 Bx|]
k oy Kk

where the supremum is over n > 1 and X in the closed unit sphere of X.

We write

an = (Anm’ An,m+1’

o)

for the mth tail of the nth row of A = (Ank)' Also, we define

AAnk = Ank-An,k+1’ and
Aan = (AAn,m’ AAn,m+1"")'

We now prove

THEOREM 5. Let M > 0. Then GA <MH if and only if

A, ~0 (n > = each k), (2.12)
||Rnﬂ| <« and ![anll +0 (m + =, each n), (2.13)
lim lim sup | |an|| <M, (2.14)

lim 1lim sup [[aR [[ =0 (2.15)

PROOF. We remark that, in (2.12), the convergence refers to the topology
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of pointwise convergence.
For the sufficiency, let x € zm(x), and z € bs(X). By Maddox 6, THEOREM 1]

the conditions (2.12), (2.13), (2.14) imply GA < MG, whence GA(x+z) < MG(x+z),

and so
G(Ax) < MG(x+z) + G(Az). (2.16)
Now
r r-1
kil Ankzk = Anrsr + kil AAnkSk’ (2.17)
where S TE tzyg etz Since IIAanrll < llAanI ]Isrll, and since

s € & (X), it follows from (2.13) and (2.17) that, for each n,

ZAnkzk = ZAAnksk. (2.18)

By Maddox [6, COROLLARY to THEOREM 1], the conditions (2.12) - (2.15)
imply that AA : 2 (X) > co(X), where cO(X) denotes the null X-valued sequences.
Hence from (2.18) we have G(Az) = O, whence (2.16) yields G(Ax) < MG(x+z). It
follows that G(Ax) < MH(x), which proves the sufficiency.

For the necessity, if GA < MH then GA < MG so that (2.12) - (2.14) hold

by Maddox [6, THEOREM 1].

Now take any y e 2_(X) and define X] = ¥ps Xy = Y,7Yys cees SO that
x, + X, + ...+ %X =y .

1

Thus x € bs(X) and

PAnNe = TAAL ke
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Hence G(AAy) = G(Ax) < MH(x) = 0, since H(x) = O on lm(X). Consequently,

G(AAy) = 0 on 2 _(X), which implies AA : lw(X) > co(X), whence (2.15) holds by

[6, COROLLARY TO THEOREM 1]. This proves the theorem.
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