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Depending on the quality of the input substrates, process parameters, and postfermentation treatments, digestates may contain a
broad spectrum of potentially toxic elements. We suspected that these contents may vary on a broad scale even under seemingly
stable process conditions at the biogas plant. Digestates from four biogas plants were therefore continuously analyzed for their
contents of phosphorus, nitrogen, cadmium, copper, lead, and zinc over a period of six years. &e input substrates varied between
the plants (e.g., cattle and pig slurry and rye and maize silage), but were the same for each plant over the whole period. &e N : P
ratio of the digestates ranged from 2 to 24, with the digestate coming from cofermentation of pig slurry and energy crops (“DG
Pig”) having the widest range of N : P ratio over the years. Heavy metal loads of all digestates and during all evaluations did not
exceed the limits set by European or German legislation, but as previously expected, showed a large variability especially if cattle or
pig manure were used as substrates. Copper content of Cattle slurry before digestion was 897.7mg kg−1 DM in one case, and zinc
content of DG Pig reached 590.2mg kg−1 DM also once during the investigation. As a result, we strongly recommend to monitor
especially phosphorus, copper, and zinc contents in digestates very closely and in short intervals.

1. Introduction

In regions with intensive livestock production, there is often
a surplus of plant nutrients when organic fertilizers exceed
the nutrient requirements of the crops, leading to a discharge
or to emission to the environment [1].&e focus often lies on
the amount of nitrogen applied with liquid or solid manure
[2], but the problem includes other nutrients as well.
Phosphorus is of special importance because of the envi-
ronmental problems it can cause, e.g., eutrophication of
water bodies and algae bloom [2, 3]. &e relative content of
phosphorus in organic fertilizers is often much higher than
the crops need [4]. In swine manure, for example, the N : P
ratio ranges from 1 :1 to 2 :1, while the required N : P ratio of

most crops is between 3 :1 and 15 :1. If these fertilizers are
applied in an amount that satisfies the nitrogen demand of
the crop, P is usually applied in excess [5, 6]. &e majority of
this phosphorus is rapidly adsorbed and then absorbed by
soil particles [7]. Plant availability of P is, for example,
reduced by complexation with iron and aluminum hy-
droxides in acidic soils or calcium in alkaline soils or by
adsorption on external and internal surfaces of soil particles,
especially clay [7, 8]. However, it is known that some organic
fertilizers such as dairy manure improve plant availability of
phosphorus through enhanced enzyme and soil microbial
activities [9]. Since digestates usually also lead to an increase
in soil microbial activity [10], they may likewise lead to an
increase in phosphorus plant availability. And even if most
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of the phosphorus is not dissolved in the aqueous phase in
the soil, erosion and run off of phosphorus bound to soil
particles can still cause severe losses of phosphorus and thus
negatively impact the surrounding environment [2]. &is
problem is not solved by anaerobic digestion in biogas
plants: P may be lost during digestion due to leaching or
retention via crystal deposition lignin, the reactor [11, 12],
but on the other hand, P concentrations rise as carbon is lost
from the substrate via methane production. Overall losses
are reported to be somewhere between 10 and 36%, but are
usually on the lower end of this range [5, 11, 13]. Digestates
therefore contain, in most cases, almost as much P as the
original substrate. While the ratio of organic to inorganic P
does not change significantly during digestion, the fraction
of dissolved P is mineralized and often becomes associated
with suspended solids [14]. Water-extractable P is usually
decreased as P crystallizes as struvite or as poorly soluble
hydroxylapatite, but several studies have shown that the
plant availability of the P in total is either not affected by the
digestion process [15] or even increases after digestion
[13, 16, 17]. Bachmann et al. [18], for example, reported that
the proportion of readily soluble P fractions (H2O-P,
NaHCO3-P) to total P was higher than 70% in digestates
from two different biogas plants before and after solid-liquid
separation. Other studies showed that plant availability of
phosphorus in digested swine manure [19] and slurry
[15, 20] is similar to that of their respective raw counterparts.
&is, however, reduces the risk of phosphorus losses only
slightly if adequate fertilization practices are not performed
(e.g., match application date and plant requirements,
weather during application, and combination with inorganic
fertilizers). Most digestates from agricultural biogas plants
are applied in close proximity to the plant because of the
high costs of transport of the hydrated material. &is leads to
a concentration of potentially problematic amounts of nu-
trients in the area around such plants because input sub-
strates are often gathered from considerable distances [21].

Within the EU, there are increasing concerns about
inevitably high phosphorus loads being applied to arable
land with nitrogen-based organic fertilization and the en-
vironmental risks related to this [3, 22, 23]. Some countries
such as Germany have recently adopted national laws setting
limits for both nitrogen and phosphorus. According to these
laws, fertilizer application is capped by whichever of these
two nutrients reaches first the respective limit [24]. Re-
garding this idea of defining limits for several critical ele-
ments in organic fertilizers, the authors want to present
phosphorus contents and N : P ratios of digestates from a
range of biogas plants with different manure and/or plant-
based substrates and with subsequent separation of
digestates.

Apart from the nutrient contents, there are often also
concerns about potentially toxic elements in digestates [25].
&e contents of those differ significantly depending on the
substrates. Especially biowastes can be contaminated with
Cd, Co, Cr, Cu, Ni, Pb, and Zn [26], but digestates from
purely agricultural substrates may also be the source of heavy
metals [27, 28], especially if they contain great amounts of
livestock manure [29, 30]. While some of these elements

such as Ni, Cu, and Zn are needed for biological processes in
plants and animals including humans, they still hold the
toxic potential to disrupt critical physiological processes
when they occur in excess [31]. Many plants are able to
exclude bioavailable elements either from uptake into the
roots or from further transport in other plant tissues.
However, some plants accumulate potentially toxic elements
in organs that are later harvested and used as a human food
source or as fodder. Heavy metals and other toxic elements
can thus enter the food web [31, 32]. Reaching humans, they
can cause a wide variety of health problems, including
gastrointestinal distress and diarrhea (Zn), kidney damage
(Cd), headaches and neurological disorders (Pb, Cu), and
carcinogenic effects (Cu) [33, 34]. &e risk is highest if pig
manure is used as substrate [35], whereas cattle manure is
usually not thus contaminated [36].

&e digestates in this study were analyzed twice a year
over a period of six (in one case five) years and are also
compared to the liquid cattle manure that serves as a
substrate in one of the plants. Substrate composition was
stable over the years for each plant, leading to a unique data
set, since most comparable investigations analyze a high
number of digestates, but this should be done only once (e.g.,
[14, 18, 37]). Based on previous experiences and reports
from farmers, we assumed that the contents of phosphorus
and certain potentially toxic elements would vary signifi-
cantly not only between the different products but also for
the same product between different sampling dates.

2. Material and Methods

Digestates from four biogas plants were analyzed twice a
year (in late spring and early autumn) for N, P, Cd, Cu, Pb,
and Zn contents over a period of five to six years. Average
inputs and operating parameters of the biogas plants are
given in Table 1.

Plant D uses liquid/solid separation of the digestate as
subsequent treatment. &erefore, five products were ob-
tained from these four plants. &e cattle slurry that serves as
substrate in plant A was analyzed over the same period of
time and used as reference.

For each sampling, 1m3 of the respective digestate was
drained from the plant. From this cubic meter, several
random samples were taken with a dipper after thorough
stirring and poured together to a mixed sample of ap-
proximately 1 l volume. For the solid digestate from plant D,
1-2m3 were put together by taking material from different
points of the stack. From this material, a mixed sample was
taken for the laboratory. Inductively coupled plasma optical
emission spectrometry (ICP-OES, &ermo Scientific, USA)
was used to analyze phosphorus and heavy metals in the
digestates. Nitrogen was measured with the Kjeldahl
method. All analyzes were performed from fresh material
with two repetitions. All values presented are a mean of these
two analysis. Contents in dry matter are calculated from the
fresh matter results and the determined content of dry
matter.

&e results were analyzed for significant differences
using SPSS Statistics Desktop 20.0 for Windows (one-way
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ANOVA after Levene’s test for variance homogeneity fol-
lowed by Scheffé’s test (due to unequal sample sizes)),
p≤ 0.05.

3. Results and Discussion

Total nitrogen content in the fresh matter ranged over all
years and all products between 0.2 and 0.6%. DG Pig and
Cattle slurry had on average the lowest N contents in the
fresh matter and DG Mix solid and DG Renew had the
highest (Table 2). &e nitrogen content in the dry matter
ranged on a much wider scale from 1.9 to 11.3%. &e
digestate from pig slurry substrate and the liquid fraction of
the separated digestate showed both the absolute highest
nitrogen contents in the dry matter and the widest range of
measured nitrogen contents.

&e P content in the fresh matter was on average the
highest in the solid fraction of the separated digestate,
whereas the P content in the dry matter was the highest in
DG Pig. In the separated digestates, phosphorus was mostly
found in the fresh matter of the solid fraction, with contents
up to 3.6 times higher than that in the liquid phase. Nitrogen
on average was also higher in the solid phase, but with far
lesser and, in some years, no difference between the sepa-
rated fractions. &is is in accordance with the experiences of
other authors who also found that phosphorus mainly ac-
cumulates in the solid fraction where it is bound to ions and
precipitates in salt form [38], while nitrogen is usually
partitioned equally between solid and liquid [39, 40].

&e pH values of the digestates were higher than 7 in all
cases and in DG Mix solid even higher than 9 (Table 2).
&ere was a significant difference between pH values of the
separated fractions with the solid fraction having higher pH
at all analyzing dates. &is confirms the finding of other
studies, in which separation also lead to solid fractions with
higher pH than the liquid fraction [4, 9]. Digestion also leads
to a significant raise of pH from the Cattle slurry to the
related digestate DG Cattle on all dates. It is known that a
raise in pH promotes the formation of dissociated phosphate
ions, which then precipitate as insoluble Ca and Mg
phosphates [5, 13]. &e same mechanism is used to recover
phosphorus and nitrogen from wastewater and liquid
digestates via enforced struvite (MgNH4PO4

∗6H2O) for-
mation [41–43]. &e high pH of the digestates also increases
the risk for NH3 volatilisation after digestion either during
storage or after field application [44]. A higher soil pH also

reduces plant availability of the four potentially toxic ele-
ments included in this study (Cd, Pb, Cu, and Zn) [45–48]. It
is, however, debatable whether the application of digestates
could influence the soil pH significantly, since the applicable
amounts are usually restricted by nitrogen content.

&e N : P ratio of the digestates was on average between
4.9 :1 and 7.5 :1 (Figure 1).&e means of the N : P ratio

Table 1: Input material and operating parameters of the four biogas plants included in the study and given designations of the resulting
digestates (“DG”).

Plant A B C D

Input

53% cattle slurry 38% pig slurry 50% maize silage 25% Cattle slurry
37% maize silage 38% maize silage 50% grass silage 25% Grass silage
5% grass silage 14% millet silage 19% Maize silage

5% other remains 10% grass silage 16% Cattle manure
15% Rye and rye silage

Operating temperature Mesophile Mesophile &ermophile Mesophile
Retention time 70 days 60 days 50 days 80 days
Related products “DG cattle” and “Cattle slurry” “DG pig” “DG renew” “DG Mix liquid” and “DG Mix solid”

Table 2: Range of total N and P contents and pH of five digestates
and cattle slurry (analyzed twice a year over six years; therefore,
n� 12 (DGMix liquid five years, n� 10), and different letters within
columns mark significant differences betweenmeans (Scheffé’s test,
p≤ 0.05)).

N (%
FM)

N (%
DM) P (% FM) P (%

DM) pH

DG Pig 0.2–0.5a 4.7–11.3c 0.01–0.15a 0.5–2.1b 7.4–8.2b

DG
Cattle 0.4–0.5b 5.5–8.2c 0.04–0.09a 0.6–1.3ab 7.6–8.3bc

DG
Renew 0.4–0.6c 4.6–9.5c 0.05–0.18a 0.6–1.6ab 7.8–8.4c

DG Mix
solid 0.5–0.6c 1.9–2.9a 0.11–0.26b 0.5–1.1a 8.5–9.3d

DG Mix
liquid 0.3–0.6b 6.1–11.3c 0.03–0.08a 0.6–1.2ab 7.3–8.4bc

Cattle
slurry 0.3–0.4a 3.7–4.8b 0.03–0.09a 0.4–1.1ab 6.4–7.4a

DG pig DG cattle DG renew DG mix
solid

DG mix
liquid

Cattle slurry

a a a a a a
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Figure 1: Range of N : P ratio of five digestates and cattle slurry
(analyzed twice a year over six years; therefore, n� 12 (DG Mix
liquid five years, n� 10), and different letters above bars mark
significant differences between means (Scheffé’s test, p≤ 0.05)).
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showed no significant differences between the analyzed
products (Scheffés test, p≤ 0.05), but the range of the ratio
was especially large for DG Pig. &e minimal N : P ratio of
this digestate was 2.4 :1 and the maximum ratio was 24, 1 :1.
&e minimal N : P ratio of the DG Mix solid was even lower
with 2.2 :1.

While the other digestates and also the Cattle slurry meet
the abovementioned crop requirements (between 3 :1 and
15 :1) in most cases, the solid fraction after separation and
the digestate obtained from pig slurry apparently need
special attention with regard to the nitrogen-phosphorus
relation. If products like these are applied on a nitrogen-
based calculation, phosphorus will either be applied in far
too high or too low amounts. Mean values do also not serve
as a calculation basis, as can be seen from the wide range of
N : P ratios over the years. Instead, continuous measure-
ments are required, which precede each application. Con-
tents of cadmium, lead, zinc, and copper in the digestates are
given in Figure 2. &e European Union has adopted new
regulations for fertilizers produced from phosphate minerals
and from organic materials in 2019. According to these,
organic fertilizers may not contain more than 1.5mg kg−1

DM cadmium and 120mg kg−1 DM lead [49]. &ese limits
were not exceeded by any of the digestates or the Cattle
slurry on any date. For zinc and copper, there are currently
no limits set by the European Union with regard to organic
fertilizers from agricultural background. Limits on EU level

exist only for sewage sludge and are set to
1000–1750mg kg−1 DM for Cu and to 2500–4000mg kg−1

DM for Zn [50]. &ese limits were not exceeded by either
element. German legislation requires that contents of Zn and
Cu must be declared if they exceed 0.1% and 0.05%, re-
spectively [51]. Zn remained under this threshold on all
dates, but Cu contents exceeded these limits in some cases.
However, contrary to the expectations derived from liter-
ature, maximum Cu contents were observed in the Cattle
slurry, with the maximum content of Cu in DG Pig being
only half as high. While the lower content in the DG Pig can
be explained by the cofermentation of the pig slurry with
plant material, which leads to a dilution, the origin of the
high contents of copper and lead in the Cattle slurry on some
dates remain so far unexplained and need further
investigation.

When applying digestates, a certain attention should also
be given to possible interactions between the different
components. An increasing content of soluble P may, for
example, decrease the plant availability of Zn due to the
formation of only slightly soluble zinc phosphates [52]. Zn in
lower doses is a plant nutrient, but becomes toxic in higher
doses. Borkert et al. [53], for example, determined critical
toxicity levels of Zn in soils for 4 crop species: 36mg dm−3

for peanut, 70mg dm−3 for soybean, between 160 and
320mg dm−3 for rice, and >300mg dm−3 for corn. In case of
high Zn loads, high amounts of soluble P may reduce the
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Figure 2: Range of contents of cadmium, copper, lead, and zinc in five digestates and cattle slurry (analyzed twice a year over six years;
therefore, n� 12 (DG Mix liquid five years, n� 10). Different letters above bars mark significant differences between means (Scheffé’s test,
p≤ 0.05)). Yellow boxes mark the mean values.
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accumulation in plants and in doing so reduce the risk of
damaging the plants or causing health issues along the food
chain. On the other hand, since Zn is also a plant nutrient, a
reduced uptake may negatively impact the plant nutrition.
Similar interactions are known for other potentially toxic
elements as well. Large amounts of plant-available lead can
promote the absorption of cadmium [54], while according to
some authors, zinc can reduce the uptake of cadmium if it
equals or exceeds its concentration [55]. Other studies report
of contrasting results and showed that Cd and Zn [56] and
Cd and Pb [57] may have synergetic effects. Increasing Cd
and Zn or Cd and Pb contents in soils could thus increase the
accumulations of both of the combined elements in crops.

4. Conclusions

&e N : P ratio of digestates meets on average the require-
ments for most of the crops. Nevertheless, up-to-date an-
alyzes are mandatory since the range of the N : P ratio is
wide, even though the substrate composition of the diges-
tates did not differ to a great extent. In this study, the N : P
ratio was in some cases between 2 :1 and 3 :1, and the P
content of these digestate was therefore far higher than the
need of most crops. Digestates from pig slurry and solid
fractions after digestate separation are especially prone to
excessive P application if fertilization is based on N contents.
Separation of digestates can be used to drain the liquid
fraction of high phosphorus loads, but nitrogen is more or
less equally distributed between solid and liquid. More ef-
ficient treatment methods are required in order to separate
the nutrients from each other and to further reduce water
content and volume. In cases where further treatment is
impossible or uneconomic, a combination with mineral
fertilizers may be useful to balance inadequate nutrient
ratios.

Heavy metal loads of digestates did not exceed the limits
set by European legislation. Copper and zinc, however,
should be monitored, especially if animal manure is used as
substrate.

Further research into interactions between potentially
toxic elements regarding plant uptake is necessary. A wide
variety of factors (soil parameters, plant species, source of
the elements, and content of organic matter in the fertilizer
and soil) appears to influence the existence and extent of
such effects. It is, however, of vital importance to understand
these interactions because they may necessitate legal limits
for combinations of potentially toxic elements in addition to
existing limits for single elements.
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