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Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with hyaluronic acid (HA) functional groups have
potential applications as cell targeting materials. However, SPIONs incubated with high-molecular weight HA can result
in severe agglomeration. In this work, we found that when modified with degraded HA (hyaluronan oligosaccharides
(oHAs)), the nanoparticles were uniformly dispersed with small hydrodynamic sizes, and the oHA-modified SPIONs
exerted minimal cytotoxicity. With the same functional groups as HA, the oHA-modified SPIONs may have various
biomedical applications.

1. Introduction

Superparamagnetic iron oxide nanoparticles (SPIONs) have
many uses in biomedical research, such as for drug delivery
[1], magnetic resonance imaging [2], cancer cell targeting
[3], size-related uses [4], magnetism [5], and optical perfor-
mance [6]. Several SPIONs have been approved by U.S.
Food and Drug Administration (FDA) to be the potential
treatment of diagnosis and treatment [7]. Surface coating
affects the application potential of the SPIONs, and the
molecular structure, modification methods, and modifica-
tion agent proportions lead to significantly different proper-
ties [8, 9]. Hydrophilic polymer coating can guarantee the
colloidal stability of nanoparticles with electrostatic or steric
repulsion, reduce the uptake regulation effect of reticuloen-
dothelial cells, and extend the duration of action of nano-
particles in vitro. As modification of polyethylene glycol
(PEG) helps nanoparticles to escape the uptake of the sys-
tem and then to reach cells and start drug release [10], glu-
tathione (GSH) can lower cytotoxicity and enhance T1 MRI
characteristics [11, 12].

Hyaluronic acid (HA) plays an important role in cell pro-
liferation, embryonic development, tumor cell migration,
and wound repair [13, 14]. Currently known cell surface
HA receptors include CD44 [15], receptor for hyaluronan-
mediated motility (RHAMM) [16], lymphatic vessel endo-
thelial HA receptor (LYVE-1) [17], layilin [18], and hyaluro-
nan receptor for endocytosis (HARE) [19]. Special RHAMM
receptors are distributed on the cell surface, cytoskeleton, and
mitochondria. When the cells are stimulated accordingly, the
RHAMM receptors stored in the cells are transported to the
cell membrane [19]. Therefore, HA-modified SPIONs are
expected to have great potential in cell targeting applications;
little research work about the modification of HA on SPIONs
was reported.

In this work, we found that HA-modified nanoparticles
became heavily aggregated; however, degrading high-
molecularweightHAvia chemicalmethods [20–22] produced
hyaluronan oligosaccharides (oHAs), and the oHA-modified
SPIONs were uniformly dispersed with small hydrodynamic
sizes. oHA is reported to increase the flexibility of the extra-
cellular matrix and increase cell growth and mobility during
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division and differentiation [23, 24]. Therefore, oHA-
SPIONs with low toxicity may have applications in various
biomedical fields.

2. Experiment

2.1. SPION Preparation and Characterization. The raw mate-
rials used and their synthesis were reported in our previously
published work [25]. In brief, SPIONs were synthesized by
decomposing 0.7 g of Fe(acac)3 (Tokyo Chemical Industry,
Japan) in 15.0 g of polyethylene glycol (PEG; Aladdin, China)
mixed with 0.3 g of polyetherimide (PEI; Aladdin) at 260°C
for 1 h in an argon atmosphere. The reactants were cooled
to 60°C, then washed three times successively with toluene
and acetone. The SPIONs were then collected using a magnet
placed under the container.

2.2. HA Degradation. HA (80mg) was dissolved in 10mL of
water, then fully dissolved at 4°C overnight. Next, 1mL of
16% sodium hypochlorite was added every 6 hours for the
next 24 hours; then, the pH was adjusted to approximately
7.0 using 0.1M HCl.

2.3. Modification of HA and oHA on the SPIONs.HA (20mg,
undegraded) and 10, 20, and 40mg oHA (hereafter referred
to as “m(SPIONs) :m(oHA)”) at ratios of 2 : 1, 1 : 1, and 1 : 2
were mixed with 20mL of 1mg/mL of the SPION aqueous
dispersions (Scheme 1). The reaction was carried out for 5 h
in a shaker at 60 rpm and 4°C. After incubating overnight
at 4°C in a refrigerator, the mixture was dialyzed against
deionized water for 120 h (MWCO 100,000 dialysis bag,

SpectrumLabs, USA). Samples were kept in a refrigerator at
4°C for later use.

2.4. Material Characterization. The samples were character-
ized using a Zetasizer Nano ZS90 (Malvern Instruments), a
Quantum Design MPMS XL-7 superconducting quantum
interference device, a PL-GPC 50 gel permeation chromato-
graph, a JEM-2100F transmission electron microscope
(TEM), X-ray photoelectron spectroscopy (XPS), and a ther-
mal gravimetric analyzer. The crystal structure of the nano-
particles was confirmed using a PANalytical X’Pert PRO
powder X-ray diffractometer (XRD) with CuKα radiation
(λ = 0:15406 nm) with a scanning step of 0.017° in the 2θ
range of 20-60° at room temperature.

The X-ray photoelectron spectroscopy (XPS) of the dried
sample was performed in vacuum on Thermo ESCALAB 250
to further characterize the coating materials. XPS is a tech-
nique which detects the organic surface elements of particles
up to a 10nm thickness or inorganic surface elements of par-
ticles up to 3nm.

2.5. Cytotoxicity Assay. The PC-12 cell line, derived from a
transplantable male rat adrenal pheochromocytoma, was
purchased from the Chinese Academy of Sciences Stem
Cell Bank (Shanghai, China). The cytotoxicities of the
SPIONs and oHA-SPIONs on the PC-12 cell lines were
evaluated via CCK-8 assay after incubation with different
concentrations (0, 5, 10, 25, 50, 80, 100, and 200 [Fe]
μg/mL). PC-12 cells were seeded into 96-well culture
plates at a density of 8000 cells per well and incubated
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Scheme 1: The synthesis and probable coating of the SPIONs.
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at 37°C in 5% CO2 for 24 h. Next, 0–200 [Fe] μg/mL of
SPIONs and oHA-SPIONs in complete RPMI (Roswell
Park Memorial Institute) medium 1640 were added and
incubated for another 24 h. The cells were then washed
three times with 0.01M phosphate-buffered saline; then,
complete culture medium containing 10% CCK-8 was
added. After incubating for 3 hours, the absorbance was
measured at 450nm using a microplate reader, and cell
viability was calculated by absorbance to evaluate the cyto-
toxicity of the SPIONs.

3. Results and Discussion

3.1. Molecular Weight Measurement. Figure 1 shows the
molecular structure of hyaluronic acid. After degrading
high-molecular weight HA in sodium hypochlorite, the
molecular weight change of the HA was tested under the
aqueous environment of PL-GPC 50 (Figure 2). The molecu-
lar weight of HA before degradation was between 200 kDa
and 2.5MDa, the distribution was uneven, and the viscosity

was thick. The molecular weight of oHA after HA degrada-
tion was concentrated around 26 kDa, and the viscosity was
low with good fluidity.

3.2. Morphological Characterization, Colloidal Stability,
and Crystalline Structure of the Nanoparticles. Figure 3
shows TEM photographs and particle size distributions of
the SPIONs, HA-SPIONs, and oHA-SPIONs. The HA-
modified nanoparticles showed significant agglomeration
(Figure 3(b)), while the unmodified and oHA-modified
nanoparticles (Figures 3(a) and 3(c)–3(e)) had good dispersi-
bility and a uniform particle size distribution. The iron oxide
core sizes of the particles were calculated using ImageJ soft-
ware to measure 200 nanoparticles. The average particle sizes
of the SPIONs, oHA-SPIONs-2 : 1, oHA-SPIONs-1 : 1, and
oHA-SPIONs-1 : 2 were 7:93 ± 2:52, 9:47 ± 2:18, 10:19 ±
2:34, and 11:09 ± 2:48 nm, respectively (Figures 3(a) and
3(c)–3(e)). A little aggregation might take place after the
modification of oHA.

3.3. Hydrodynamic Size Distribution Profiles and Zeta
Potentials. Figure 4 shows the hydrodynamic sizes of the
SPIONs, HA-SPIONs, and oHA-SPIONs. The high-
molecular weight HA-modified nanoparticles showed severe
agglomeration (Figure 4(a)), and the hydrodynamic size
profile showed double peaks of approximately 128.2 nm
and 5569.4 nm. These data were measured after filtering
the HA-SPION aqueous dispersion through a 0.22μm fil-
ter, suggesting that the nanoparticles or HA molecular
agglomerated even after being uniformly dispersed under
force. The average hydrodynamic sizes of the SPIONs,
oHA-SPIONs-2 : 1, oHA-SPIONs-1 : 1, and oHA-SPIONs-
1 : 2 were 24.2, 26.7, 32.1, and 69.1 nm, and their zeta
potential values were +24.3, -12.1, -17.6, and -23.4mV,
respectively. The increment of hydrodynamic sizes and
the decrease of zeta potentials show the modification of
oHA on the SPION surface [26, 27]; the negative zeta
potentials are caused by ionized –COOH groups stemmed
from oHA [28].

3.4. Surface Characterization of the Nanoparticles. To con-
firm that the oHA was grafted onto the SPIONs, samples
of freeze-dried oHA-SPIONs were collected and tested via
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Figure 1: Molecular structure of hyaluronic acid.
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XPS. The spectrum decomposition was performed using the
XPSPEAK41 program with Gaussian functions after sub-
traction of a Shirley background; the ratio between the Lor-
entzian and Gaussian functions is 60%. Figure 5(a) shows
the XPS spectra of the oHA-SPIONs-2 : 1, oHA-SPIONs-
1 : 1, and oHA-SPIONs-1 : 2, showing peaks at 711.0 eV,
530.0 eV, 400.0 eV, and 286.0 eV, corresponding to Fe 2p,
O 1s, N 1s, and C 1s [29], respectively. Figure 5(b) shows

the fitted peaks of N 1s for the oHA-SPIONs-2 : 1, oHA-
SPIONs-1 : 1, and oHA-SPIONs-1 : 2. The peaks at
399.2 eV, 400.69 eV, and 401.1 eV correspond to the C-N,
C=O-N, and C-NH3 groups, respectively. The XPS results
showed that the binding energies of oHA were the same as
those of HA, indicating that their structures were not obvi-
ously changed after degradation. The C=O-N group indi-
cated that the SPION surface was modified with oHA
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Figure 3: TEM images, size distributions, and XRD spectra of the SPIONs (a), HA-SPIONs (b), oHA-SPIONs-2 : 1 (c), oHA-SPIONs-1 : 1
(d), and oHA-SPIONs-1 : 2 (e).
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[30, 31]. As the weight proportion of the oHA increased
during modification, the C-N bond proportion decreased
(Figure 5(b)), and the C=O-N and C-NH3 group propor-
tions increased accordingly.

3.5. Magnetic Properties and Thermogravimetric Analysis of
the Nanoparticles. Figure 6 shows the magnetic properties
and thermogravimetric analysis of the SPIONs and oHA-
SPIONs [32]. Assuming that the weight of oHA on the
oHA-SPIONs equals A, the SPIONs weight is B, and the
oHA-SPIONs weight is C, the formulas, ðA + BÞ/C =W1
and B/ðC − AÞ =W2, become A/C = ðW1 −W2Þ/ð1 −W2Þ.
This formula can be used to determine the amounts of
oHA modified on the SPIONs as 20.2%, 32.3%, and 38.6%
for the oHA-SPIONs-2 : 1, oHA-SPIONs-1 : 1, and oHA-
SPIONs-1 : 2, respectively.

The saturation magnetizations of the SPIONs and the
oHA-SPIONs-2 : 1, oHA-SPIONs-1 : 1, and oHA-SPIONs-
1 : 2 were 55.0, 52.34, 42.5, and 33.68 emu/g, respectively.
From the thermogravimetric analyses (Figure 6(a)), it
can be calculated that there are approximately 85.10%,
75.15%, 63.18%, and 56.76% of pure iron oxide in

SPIONs, oHA-SPIONs-2 : 1, oHA-SPIONs-1 : 1, and oHA-
SPIONs-1 : 2, respectively, so the saturation magnetiza-
tions of pure iron oxide nanoparticles can be recalculated
as 65, 69, 67, and 60 emu/g, respectively. The four nano-
particles had a small coercivity (<25Oe) at 300K
(Figure 6, b-1); thus, all nanoparticles showed excellent
superparamagnetic properties [33]. As the organic layer
on the nanoparticle surface increased, the saturation mag-
netization decreased.

3.6. Cytotoxicity of SPIONs and oHA-SPIONs In Vitro.
In vitro cytotoxicities of the SPIONs and oHA-SPIONs-1 : 2
were measured via CCK-8. The cell viabilities of the SPIONs
and oHA-SPIONs-1 : 2 were greater than 85%, so SPIONs
and oHA-SPIONs-1 : 2 had low cytotoxicity (Figure 7).

4. Conclusion

We synthesized superparamagnetic iron oxide nanoparticles
conjugated with HA and oHA. Modifying high-molecular
weight HA on the nanoparticle surface caused severe
agglomeration, but the degraded HA did not affect the
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dispersibility of the nanoparticles. The nanoparticles were
uniformly dispersed with high modification and low cyto-
toxicity, which satisfies the requirements for surface mod-
ification of the nanomaterials. This work provides a
reference for modifying nanoparticles with functional groups
of highly viscous materials, such as HA, while maintaining
a small hydrodynamic size.
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