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The popularity of the JavaScript programming language for server-side programming has increased tremendously over the past
decade. The Node.js framework is a popular JavaScript server-side framework with an efficient runtime for cloud-based event-
driven architectures. One of its strengths is the presence of thousands of third-party libraries which allow developers to quickly
build and deploy applications. These very libraries are a source of security threats as a vulnerability in one library can (and in
some cases did) compromise an entire server. In order to support the secure integration of libraries, we developed NODESENTRY,
the first security architecture for server-side JavaScript. Our policy enforcement infrastructure supports an easy deployment of web
hardening techniques and access control policies on interactions between libraries and their environment, including any dependent
library. We discuss the design and implementation of NODESENTRY and present its performance and security evaluation.

1. Introduction

Over the past decade, JavaScript has become one of the most
widely used programming languages. It has been the number
one scripting language for client-side web-scripts for a long
time. However, since the mid-2000s, there has also been
a growing interest in server-side JavaScript. An important
driver is the enormous engineering efforts invested both in
JavaScript as a programming language and in the underly-
ing virtual machines and JIT compilers. The huge competi-
tion between the main browser vendors to build the fastest
browser has produced JavaScript engines that run signifi-
cantly faster than their predecessors. Another driver is the
fact that many web developers are already familiar with
client-side JavaScript, as part of writing front-ends of web
applications. The step to server-side JavaScript can potentially
allow an organization to take better advantage of the available
talent pool.

The Stack Overflow web site, one of the most popular
platforms for users to ask and answer questions on software
development matters, organizes a yearly survey amongst its
visitors. The 2016 survey [1] had 56,033 participants and

shows that those developers use JavaScript more often than
any other programming language. Even back-end developers
are more likely to use it than any other language.

JavaScript has many advantages for web development
[2]. In particular it allows the easy combination or mash-
up of content and libraries from disparate third parties. This
flexibility comes however at the price of significant security
threats [3, 4], and researchers have proposed a number
of client-side solutions to contain them—we discuss these
approaches in more detail in Section 9.

These security threats are at least as significant at the
server side: applications run without sandboxing, often in
the same shared-memory address space, and serve a large
number of clients simultaneously; server processes must han-
dle load without interruptions for extended periods of time.
Any corruption of the global state, whether unintentional
or induced by an attacker, can be disastrous. Section 2.2
gives an overview of attack vectors for server-side JavaScript
applications.

One particular security issue with server-side JavaScript
is the fact that JavaScript makes it very easy to include
third-party libraries into your application. Vulnerabilities
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mime =
path =

var
var
var fs;

try { fs =
catch (e) { fs =

Uk W

require ("mime")
require ("path")

require ("graceful -fs") }

require("fs") %}

L1sTING 1: The module loading system in Node.js.

in such included libraries undermine the security of any
application that includes them. As a solution to this prob-
lem, some of the authors of this paper designed and pub-
lished the NODESENTRY security framework [5, 6], a server-
side JavaScript security framework for confining third-party
libraries. NODESENTRY is implemented as an extension of
Node.js, the most popular server-side JavaScript implemen-
tation.

This journal version of the NODESENTRY conference
paper extends the conference publication with a more de-
tailed description of the framework, additional and updated
benchmarks, an extensive security evaluation, and a more
extensive discussion and comparison with related work.

Contributions. In summary, this paper proposes and evaluates
a solution to the problem of secure integration of JavaScript
libraries with the following contributions:

(1) NODESENTRY, a novel server-side JavaScript security
architecture;

(2) policy infrastructure that allows one to subsume
and combine common web hardening techniques
and measures, common and custom access control
policies on interactions between libraries and their
environment, including any dependent library;

(3) description of the key features of the implementa-
tion of NodeSentry and its policy infrastructure in
Node.js;

(4) practical performance evaluation of an implementa-
tion of NODESENTRY;

(5) an extensive, systematic security evaluation, with a
focus on secure deployment and integration within
existing code bases.

The rest of this paper is structured as follows. First we
briefly describe Node.js and some of its security issues in a
background section. Then we define the problem we address
in this paper in Section 3. We describe the design, usage
model, and implementation of our solution in Sections 4,
5, and 6, respectively. In Section 7 we evaluate our solution
in terms of performance and security. The paper ends with
a discussion (Section 8), a comparison with related work
(Section 9), and a conclusion (Section 10).

2. Background

2.1. Node.js and Its Ecosystem of Third-Party Libraries. Node
js is an open-source, cross-platform runtime environment

for developing server-side web applications, developed by
Ryan Dahl in 2009.

The runtime environment that drives Node.js is built
upon Google’s V8 engine and runs on most operating systems
including OS X, Linux, and Microsoft Windows. Most of the
basic modules, e.g., for file system access and networking, are
written in JavaScript.

Node.js is based on an event-driven architecture with
asynchronous I/O in mind and is meant to optimize through-
put and scalability in I/O bound and/or real-time web
applications.

Node.js’s architecture is designed to bring event-driven
programming to web server development. It makes it easy for
developers to create high performance, highly scalable server
software, without having to struggle with threading. Using a
simplified model of event-driven programming, one that uses
callbacks, prevents having to work with concurrency, as is
often the case with other server-side programming languages.

The standard library of Node.js is quite extensive: it
supports functions including system I/O, all types of net-
working (ranging from raw UDP or TCP to HTTP and TLS),
cryptography, data streams, and handling binary data. In
2010, the npm package manager for Node.js was introduced
to make it easier to publish and share Node.js libraries. The
npm tool can be used to access the online npm registry
(https://npmjs.com), to organize the installation, and to man-
age third-party Node.js libraries. After installing a Node.js
library, it can be loaded anywhere in the application by calling
the require function, available in every Node.js context. At
the time of writing, the official npm registry hosts over half a
million libraries.

Loading works by reading the JavaScript code (from
memory or from disk), executing that code in its own name
space, and returning an exports object, which acts as the
public interface for external code.

The Node.js module loading system is very easy to use
in practice. In Listing 1, on line 2, the variable path will be
an object with properties including path. sep that represents
the separator character and the function path.dirname that
returns the directory name of a given file path.

Libraries can also be dynamically loaded at any place in a
program. For example on line 4, the program first tries to load
the graceful-fs library. If this load fails, e.g., because it is
not installed, the program falls back into loading the original
system library £s (line 5). In this example constant strings are
provided to the require function but this is not necessary. A
developer can define a variable var 1ib="fs’ and later on
just call require (1ib) where 1ib is dynamically evaluated.
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1 var http = require("http");

2

3 let server = http.createServer ((request, response) => {

4 if (request.method === "POST") {

5 let data = "";

6 let appendChunk = (chunk) => { data += chunk; }
7 let fetchStockInfo = () => {

8 let stockQuery = eval("(" + data + ")");
9 // do something with the parsed data

10 getStockPrice (stockQuery.symbol);

11 .

12 T

o e
oo W

}

-
o

DN

18 server.listen (1337,

[
Q

request.addListener ("data",
request.addListener(”end",

"127.0.0.1");

appendChunk) ;
fetchStockInfo);

FIGURE 1: Example code of a Node.js application vulnerable to an injection attack. Just as in a client-side context, the call to eval, on line 8,
must be considered dangerous [7] and makes the example vulnerable to an injection attack.

The resulting ecosystem is such that almost all applica-
tions are composed of a large number of libraries which recur-
sively call other libraries. The most popular packages can
include hundreds of libraries: jade, grunt, and mongoose
make up for more than 200 included libraries each (directly
or recursively); express, a popular web package includes 138,
whereas socket . io can be unrolled to 160 libraries.

As a concrete example of how this can impact security,
consider the npm-www JavaScript package maintainer
application. This application uses around 100 libraries. One
of these is the library st which is developed specifically
to manage static file hosting for the back-end of the web
site. The st library itself relies on access to around 10 other
libraries, such as the http and url package, to process URLs,
and the fs package to access the file system. Unfortunately,
the st library turned out to be vulnerable to a directory
traversal bug (https://www.npmjs.com/advisories/36 &
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-
3744) which allowed it to serve essentially all files on the
server, thus leading to a potential massive compromise of all
activities  (http://blog.npmjs.org/post/80277229932/newly-
paranoid-maintainers).

2.2. Server-Side JavaScript Security. The Node.js community
always has a strong focus on the scalability of the platform,
and security had a rather low priority—see, for example,
the Node Security Project in Section 7.2 and the fact that
a server-side JavaScript application by default does not
run in a shielded environment. However, script injection
vulnerabilities are just as easily introduced in a server-side
application as in a client-side application. The impact of a
successful injection attack can also be far more critical and
damaging.

Ojamaa and Duuna [8] discuss several potential security
weaknesses or pitfalls of the Node.js platform. They base
their findings on their own experience with Node.js and
on general web application security knowledge, like, for
example, OWASP. They highlight issues including the fragility
of Node.js applications, as any programming mistake in

the single-threaded event loop might terminate the whole
application, or the fact that there might be malicious instal-
lation scripts in an external Node.js package. Many of the
issues have to do with the fact that server-side JavaScript is
still JavaScript. Just like on the client-side, it is possible to
(unwillingly) introduce bugs into JavaScript programs that
might lead to, for example, an injection vulnerability. Figure 1
shows example code of a HTTP server implementation that
uses the eval function to dynamically evaluate user provided
JSON data.

Exploitation of server-side JavaScript looks more like
triggering a SQL injection than like performing a cross-site
scripting attack. There is no need for an attacker to set up
a victim, for example, via a social engineering e-mail, like
what is normally done for a reflected or DOM-based cross-
site scripting attack.

By simply sending carefully, arbitrarily crafted (in our
example case HTTP) requests, the attacker can manipulate
the global state of the server process.

The defenses against server-side injection attacks have
therefore a lot in common with typical SQL injection protec-
tion. Validation of user input is the most obvious and by far
the simplest but most effective defense. Avoiding the eval
function at all costs, is also something very well known and
recommended by security experts [9]. In our example case,
shown in Figure 1, JSON parsing should have been done via
a safer alternative such as JSON. parse.

The security researcher Bryan Sullivan has presented an
overview of the most relevant types of attacks for server-side
JavaScript injection attacks [10]. We highlight three of them
to give the reader a flavor of what types of attacks might be
expected from an attacker and the amount of skill that is
required for a successful attack.

Denial-of-Service. Due to the single-threaded event loop
architecture of Node.js, any time consuming operation will
block the main thread. No new network connections will be
accepted as long as the main thread is busy. As many use
cases for server-side applications are I/O bound, Node.js has
adopted the concept of nonblocking I/O by the extensive



use of callbacks. A denial-of-service attack for our example
could be easily triggered by sending, for example, code for an
infinite loop while (1) or by exiting the current process via
process.exit (). The end result is a server process that gets
stuck, uses 100% of its processor time, or is otherwise unable
to accept, process, or respond to any other incoming request.

This attack is much more effective than a regular dis-
tributed denial-of-service attack. Instead of flooding the
target with millions of requests, only a single HT'TP request
is sufficient to completely disable the target victim server.

File System Access. One of the built-in functionalities of
Node.js is its API for file system access. Via this API it is
possible to read, write, and append to potentially any file on
the file system and to list the contents of directories. As an
example, an attacker could dynamically load the fs library
via the appropriate attack payload and write arbitrary binary
executables to the target server, by sending the command re-
quire(’fs’) .writeFileSync(’/usr/local/bin/foo’,
’data in base64 encoding’, ’base64’) ;.

Execution of Arbitrary Code/Binaries. After dropping a binary
executable on the target server, the only thing that is left to
do for a successful attack is executing the binary. Node.js
includes a child process module that provides the ability
to spawn arbitrary child processes. Via the attack pay-
load require(’child process’) .spawn(filename) ; it
would be possible to execute the previously written exe-
cutable on the target server. At this point, any further
exploitation is only limited by the attacker’s imagination.

Defenses. How can an application developer that includes
third-party libraries check those libraries for potential vul-
nerabilities? This is unfortunately a hard problem. Static
analysis of JavaScript code is known to be hard because of
the complexity of the language [11, 12]. Furthermore, the
large quantity of libraries to be considered and modeled is
another major hurdle. For example, JAM requires modeling
such dependencies in Prolog [13].

Hence, this paper pursues an approach based on runtime
monitoring. Our objective is to build a practical mechanism
that an application developer can use to confine third-party
libraries included in his application.

3. Problem Statement

The problem we address in this paper is the confinement of
nonmalicious but potentially vulnerable third-party libraries
in Node.js applications. We want to design a security frame-
work, NODESENTRY, that enables developers to include third-
party libraries more securely by limiting the privileges given
to such libraries. When loading a third-party library, the
developer can enforce a policy on the interactions of that
library with its clients and with other libraries.

3.1. Threat Model. We consider an attacker that can interact
with a Node.js web application. The attacker knows what
third-party libraries the application includes, and will try to
exploit vulnerabilities in these third-party libraries. This is
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a realistic scenario, since many web application frameworks
can be recognized (fingerprinted) by specific aspects of their
output. An attacker with knowledge of a vulnerability in a
commonly used third-party library can try to exploit that
vulnerability and, if successful, conclude that the third-party
library is indeed used in the web application.

NODESENTRY is intended to confine such nonmali-
cious libraries, although potentially vulnerable and exploitable
(semitrusted), such as the st library. The objective of our
security solution is to limit the damage that an attacker can
do by exploiting vulnerabilities in such semitrusted libraries.
For example we may want to filter access by the semitrusted
library to the trusted library offering access to the file system.

We consider outright malicious libraries out of scope
from our threat model, albeit one could use NODESENTRY
equally well to fully isolate a malicious library. We believe that
the effort to write the policies for all other possible libraries to
be isolated from the malicious one by far outweighs the effort
of writing the alleged benign functionality of the malicious
library from scratch.

Given the fact that NODESENTRY has a programmatic
policy and that policy code can effectively modify how the
enforcement mechanism functions, it could be possible to
introduce new vulnerabilities into the system via a badly
written policy, e.g., if the policy code interacts with clients’
requests. However, we consider the production of safe and
secure policy code an interesting but orthogonal—and thus
out-of-scope—issue, for which care must be taken by the
policy writer to prevent mistakes/misuse.

4. NODESENTRY

The key idea for NODESENTRY is to use a variant of an inline
reference monitor [14, 15] as modified for the Security-by-
Contract approach for Java and .NET [16, 17] in order to
make this monitor more flexible. We do not directly embed
the monitor into the code, as suggested by most approaches
for inline reference monitors, but inline only hooks in the
required places, and these hooks call a policy decision point
(implemented as a JavaScript object).

Further, we do not limit ourselves to purely raising
security exceptions and stopping the execution but support
policies that specify how to “fix” the execution [18-21]. This
is another essential requirement for server-side applications
which must keep going.

4.1. Membranes. In order to maintain control over all ref-
erences acquired by the library, e.g., via recursive calls
to require, NODESENTRY applies the membrane pattern,
originally proposed by Miller [22, §9] and further refined
by Van Cutsem et al. [23]. The goal of a membrane is to
fully isolate two object graphs [22, 23]. This is particularly
important for dynamic languages in which object pointers
may be passed along and an object may not be aware of who
still has access to its internal components. The membrane also
allows to intervene whenever code tries to cross the boundary
between object graphs.

Intuitively, a membrane creates a shadow object that
is a “clone” of the target object that it wishes to protect.
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upper-bound policy

lower-bound policy

FIGURE 2: NODESENTRY allows policies to be installed both on the public interface of the secure library (upper-bound policies) and on the

public interface of any depending library (lower-bound policies).

Only the references to the shadow object are passed fur-
ther to callers. Any access to the shadowed object is then
intercepted and either served directly or eventually reflected
on the target object through handlers. In this way, when
a membrane revokes a reference, essentially by destroying
the shadow object [23], it instantly achieves the goal of
transitively revoking all references as advocated by Miller
[22].

4.2. Policies. The NOoDESENTRY handler intercepts all inter-
actions that cross the membrane, and all these interac-
tions can be checked for compliance by a policy decision
point provided by the application developer using NODE-
SENTRY.

This policy decision point can be seen as a standard
security automaton: if it receives an action to check and the
security automaton can make the corresponding transition,
then the object proxied by the membrane is called and
the (proxied) result is returned; if the automaton could not
make a transition (i.e., the policy is violated), then a security
countermeasure can be implemented by the policy decision
point or, in the worst case scenario, a security exception will
be automatically raised.

Hence, the notion of policy in NODESENTRY has two
aspects: on the one hand, the policy specifies what goes inside
the membrane, and on the other hand the policy specifies the
allowed cross-membrane interactions.

With respect to placement of the membrane, we distin-
guish two useful types of policies. First, the membrane can
be placed around the public interface of the library itself with
the outer world, thus putting the library (and all libraries it
depends on) in the membrane. But second, it can be useful to
take some of the depending libraries outside the membrane,
to specify the allowed interactions on the public interface of
that depending library. This is often useful for built-in, core
libraries, but can also be done for other more trusted third-
party libraries.

With respect to specifying allowed interactions, this leads
to two different types of policies:

® Upper-bound policies are set on each member of the
public interface of a library itself with the outer world. Those
interfaces are used by the rest of the application to interact
with the third-party library. It is the ideal location to do all
kinds of security checks when specific library functionality is
executed, or right after the library returns control.

For example, these checks can be used (i) to implement
web application firewalls and prevent malformed or mali-
ciously crafted URLs from entering the library or (ii) to add
extra security headers to the server response towards a client.
Another example of a useful policy would be to block specific
clients from accessing specific files via the web server.

@ Lower-bound policies can be installed on the public
interface of any depending library, typically on built-in core
libraries (like, e.g., £s) but also on any other third-party
library.

Such a policy could be used to enforce, e.g., an
application-wide chroot jail or to allow fine-grained access
control such as restricting reading to several files or prevent-
ing all write actions to the file system.

Figure 2 illustrates these two types of policies with the
red arrows and highlights the isolated context or membrane
with a grey box. All interactions that cross the grey box
boundary will be instrumented by NoDESENTRY for policy
checks. Hence the choice of the membrane position is a
trade-off between performance (fewer membrane crossings
means fewer runtime checks) and security (more membrane
crossings may offer opportunities for a more fine-grained
policy).

A developer wishing to use NODESENTRY only needs to
replace the require call to the semitrusted library with a
safe_require. This approach makes it possible to imple-
ment a number of security checks used for web harden-
ing like, e.g., enabling the HTTP Strict-Transport-Security
header [24], set the Secure and/or Http-Only Cookies flags
[25], or configure a Content Security Policy (CSP) [26], in
quite a modular way without affecting the work of rank-and-
file JavaScript developers.
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1 // the function transforms the given url into
2 // a path on the local system
3 Mount.prototype.getPath = function (u) {
4 u = path.normalize (url.parse(u).pathname
5 .replace (/~[\/\\17?/, "/"))
6 .replace (/\\/g, "/")
7 !/
8 1}
L1sTING 2: Simplified code snippet from the ‘st’ library.
1 require ("nodesentry") ;
2 var http = require("http");
3 var st=  safe_require ("st", /* policy object */);
4 var handler = st(process.cwd());
5 http.createServer (handler).listen (1337);
LISTING 3: Safely require a library.
5. Usage Model other developers that want to use the st library for other

We first describe the usage model [27] of NODESENTRY for
a fictive developer that has chosen to use the st library in
her application to serve files to clients. In Section 5.1 we give
an overview of the different steps of NODESENTRY while it
enforces a policy to secure the library.

The st library version < 0.2.5 has a potential directory
traversal issue because it did not correctly check the file path
for potential directory traversal. The snippet in Listing 2
shows a simplified version of the code.

By itself, this may not be a vulnerability: if a library
manages files, it should provide a file from any point of the
file system, possibly also using ‘. .” substrings, as far as this is
a correct string for directory. However, when used to provide
files to clients of a web server based on URLSs, the code snippet
becomes a serious security vulnerability.

An attacker could expose unintended files by sending, for
example, a HTTP request for /%2e%2e/%2e%2e/etc/
passwd (%2e is the URL encoding for . (dot)) towards a
server using the st library to serve files.

It is of course possible to modify the original code, within
the st library’s source code, to fix the bug, but this patch
would be lost when a new update to st is done by the
original developers of the library. Getting involved in the
community maintenance of the library so that the fix is
inserted into the main branch may be too time demanding,
or the developer may just not be sufficiently skilled to get it
fixed without breaking other dependent libraries, or just have
other priorities altogether.

The developer could instead merge the “fix” into the main
code trunk but this “fix” might also be an actual “bug” for

purposes.

In all these scenarios, the application of NODESENTRY
is the envisaged solution. The st library is considered
semitrusted and a number of default web hardening policies
are available in the NODESENTRY policy toolkit. In the
evaluation in Section 7.2, we go into more detail on secure
deployment and how useful and practical NODESENTRY is to
fix real-life security issues.

The only adjustment is to load NODESENTRY and to make
sure that st is safely required so that the policy, given as a
parameter object, becomes active.

The code snippet in Listing 3 is an example of an upper-
bound policy decision point, as shown in Figure 2. After
loading NODESENTRY, policies can be (recursively) enforced
on libraries by loading them via the newly introduced
safe_require function. In our running example, when the
policy for the requested URL detects malicious characters,
it returns a pointer to a different page that could show a
warning message. This functionality (a feature we call policy
execution correction) is important in a server-side context
where terminating the server with a security exception is
undesirable.

If the policy in Listing 4 would be activated, all URLs
passed to st would be correctly filtered. The policy states
that if a library wants to access the URL of the incoming
HTTP request (via the method IncomingMessage .url), we
first test it for the presence of a directory traversal attack.
If so, we return a different URL that points to a warning
HTML page. In both a benign or malicious situation, a call
to IncomingMessage .url would return a URL string and
does not break the original contract of the API.
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1 if (method === "IncomingMessage.url") {
2 var regex = new RegExp (/[\N\\/I\N.N.IN\\/1/1ig);
3
4 if (regex.test(origValue.replace(’%2e’, ’.7))
5 return "/your_attack_is_detected.html";
6 else
7 return origValue;
s }
L1sTING 4: Example of a policy on a property lookup.
fmrmimim i e |
| |
main i st file system | 1 request policy
1
: ;
request i |
i -yl ‘‘‘‘‘‘‘‘‘ (2) IncomingMessage.url
1 1
i i Check & evaluate
! : policy for API call
1
i ' (3) Inspect request object
1 1 —_—
i i |
i (4) Return safe URL Retl?rn URL t hat
; - satisfies policy
! ] :
; (5) Fetch content :
response | :
i i

Safe to use URL for
file system access

FIGURE 3: Interaction diagram of the running example from Section 5. The membrane is shown as the dash-dotted line. The interception of
the API call IncomingMessage . url to read the requested URL is shown as a fat arrow.

5.1 Interactions Exemplified. Figure 3 shows the interaction
diagram of the running example. The Node.js main event
loop handles an incoming request and passes it to the st
library. Next, the library needs to parse the requested URL in
order to serve the corresponding file from the file system. The
call for IncomingMessage.url crosses the membrane and
gets forwarded to the policy object for evaluation. During the
evaluation, the policy checks the requested URL and makes
sure that it returns a safe URL to the st library. Finally, the
library continues its normal behavior: reading the requested
file (or a safe alternative) from the file system and sending
back the response to the main method.

6. Implementation

This section reports on our development of a mature proto-
type that works with a standard installation of Node.js.

The crux of our implementation relies on the membrane
pattern. We wrap a library’s public API with a membrane
to get full mediation, i.e., to be sure that each time an API
is accessed, our enforcement mechanism is invoked in a

secure and transparent manner. We detail on this in the first
subsection.

In the second subsection, we discuss how we coped with
the problem of safely requiring libraries. NODESENTRY needs
to know which libraries are recursively loaded. Therefore we
designed a custom module loader, relying for a part on the
original module loader and allowing us to specify a custom
require wrapper function.

In the third subsection, we go into detail on how to exactly
write policies and how these policy objects interact with a
membrane. In NODESENTRY, policies are written as objects
that define the custom behavior of fundamental operations
on objects.

6.1. Membranes. NODESENTRY works with the latest Node.js
versions and relies on the ES6 JavaScript standard. Mem-
branes require this standard, in order to implement fully
transparent wrappers. Membranes also build on WeakMaps,
to preserve object identity between the shadow object and the
real object (1) across the membrane and (2) on either side of
the membrane.
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1 function requireWrapper (require) {
2 return function require_log (path) {
3 console.log("require(’" + path + "?)");
4 return require (path);
5 }
6 };
LISTING 5: Require wrapper to log which libraries are loaded.
1 function newMembrane (ifaceObj, policyObj) {
2 return require ("membrane")
3 .makeGenericMembrane (ifaceObj, policyObj)
4 .target;
5

LISTING 6: Wrapping an interface with a policy.

We rely on the ES6 Reflect and Proxy API by Node.js
and use the implementation of a generic membrane abstrac-
tion by Van Cutsem (https://github.com/tvcutsem/harmony-
reflect/blob/master/examples/generic_membrane.js), which
is used as a building block of our implementation and
is available via the membrane library, as shown in the
code snippets below. The current prototype of NODESENTRY
runs seamlessly on a standard Node.js v6.0 or higher. An
older prototype, which uses the shim module by Van Cut-
sem (https://github.com/tvcutsem/harmony-reflect) for the
Reflect and Proxy modules, runs on v0.10 or higher.

In Listing 5 we show an example of a custom
require_log wrapper function that logs to the console
which libraries are loaded and relies on another require
function (i.e., the default, built-in function) to effectively load
a library into memory. The result of the require(path)
call on line 4 is a JavaScript object ifaceObj with properties
representing the application interface of the library.

We rely on a generic implementation, available via the
membrane library, to wrap a membrane around a given
iface0Obj with the given handler code in policyQbj, as
shown in Listing 6.

6.2. Safely Requiring Libraries. While loading a library with
safe_require, the original require function is replaced
with one that wraps the public interface object with a
membrane and a given (upper-bound) policy.

Our first stepping stone is to introduce the safe_
require function. Its main goal is to virtualize the require
function so that any additional library that will be loaded as
a dependency can be intercepted.

At the heart of the safe require function, as shown
in Listing 7, is the 1oadLib function (line 3) that initializes
a new module environment and loads it with a custom
membranedRequire function. This function will make sure

that every call for a dependent library will be intercepted
and that the library itself is properly wrapped, even in a
recursive way. This extra indirection in the library loading
process allows us to enforce lower-bound policies on the
public interface of any depending library. We elaborate more
on this in a later paragraph.

Finally, the API object (exports) gets wrapped in a new
membrane, based on a given policy, as shown on line 12.
This line in particular makes it possible to enforce upper-
bound policies on the public interface of the library.

This whole operation does not normally cost any addi-
tional overhead since it is only done at system start-up and
is therefore completely immaterial during server operations.
If require is called dynamically we can still catch it. Either
way, each time the function is called we can now test whether
a library we want to protect has been invoked.

Lower-bound policies are enforced by overwriting the
require function with the membranedRequire function,
which is shown in Listing 8. By controlling the loading
context of a library and providing it with our own require
function, we can intercept all its calls and those from any
dependinglibrary. At interception time, if the library has been
identified as needing control from a lower-bound policy, we
wrap the public interface object of that depending library
with a membrane (see line 10 in Listing 8). If decided so,
all interactions between the library and its depending library
are effectively subject to the lower-bound policy. If not, the
original interface objects get returned (see line 13).

6.3. Policy Objects. In NODESENTRY, a policyObj is a
regular JavaScript object that holds code that represents a
security policy. As shown in the previous section, that code
is used in a wrapper around the original Node.js API calls.
This wrapper basically hijacks the original call just like an
advice function in aspect-oriented programming. This way,
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1 function safe_require (libName, policyObj) {

2

3 function loadLib () {

4 var mod = new Module(libName) ;

5 // enforce lower-bound policies

6 mod.require = membranedRequire(policy0Obj);
7

8 return mod.loadLibrary();

9 ¥

10

11 // enforce upper-bound policies

12 return newMembrane (loadLib().exports, policyObj);
13}

LisTING 7: The implementation of the safe_require function.

1 function membranedRequire (policyObj) {

2 return function (libName) {

3 var libexports;

4

5 // [...] load the requested library

6 // and assign to libExports

-

8 if (lowerBoundPolicyNeeds (libName)) {
9 // enforce lower-bound policies
10 return newMembrane (1ibExports, policyObj);
11 } else {

12 // enforce no policy

13 return libExports;

14 }

15 }

16}

LisTING 8: The implementation of the membranedRequire function.

we allow custom code execution before and after the original
call execution. The policyQbj keeps track of which code to
execute before/after which Node.js API call.

We have designed a simple domain-specific language
(DSL), based on method chaining, that encodes this behavior
and that allows policy writers to express a policy in Java-
Script.

The current version of the DSL supports policies that can
modify return properties of objects (using the on method
on a policy) and policies that can execute custom functions
before or right after an actual API call before it returns to the
actual call site (using the methods before, after). It canalso
execute any other function via the do construct.

More formally, the DSL is structured as follows:

(i) let policy = new Policy (policy-name),  where
policy-name is a string, creates an empty policy with
a given name.

(ii) The first way to add a rule to a policy object is

policy.on(interception-
point) . return (wrapper-function)

where

(a) interception-point is a string that denotes a
property exported by the library that the policy
applies to (note that properties can also return
function values, i.e. methods);

(b) wrapper-function is a function that takes one
parameter.

The effect of this rule is that, on invocation of the
getter for the intercepted property at runtime, the
policy intervenes and instead invokes the wrapper-
function with the original property value as actual
parameter.
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1 let returnErrorPageIfAttack = (url) => {
2 if (/%2e/ig.test(url) === true) {

3 return "/your_attack_is_detected.html";
4 } else {

5 return url;

6 T

7}

8 let policy = new Policy("st example")

9 .on("IncomingMessage.url")

10 .return(returnErrorPageIfAttack)
11 .build ()

L1sTING 9: Implementation of the fix for the st library using NODESENTRY.

The return value of this call to wrapper-function
becomes the return value of the intercepted invoca-
tion and, hence, the value of the property seen by
clients of the library.

This is a very powerful mechanism that can be used to
replace the value of properties of primitive types (like
integers or strings), but it can also replace methods of
an object with another method that wraps the original
one.

(iif) It is often useful to specify that side-effecting oper-
ations should happen on lookup of a property. The
following DSL construct does just that:

policy.on(interception-point).do (on-advice)

where on-advice is a function that takes two param-
eters. On every invocation of the getter for the
intercepted property, the function on-advice will be
invoked with, as arguments, the receiver object and
the property value. The return value of the function is
ignored.

(iv) In the case where the intercepted property is a
method, it is also convenient to be able to specify
code that should be executed before and after every
invocation of the method (as opposed to before and
after every lookup of the property). Our DSL supports
three mechanisms to specify this:

policy.before (interception-

point) . do (before-advice)

policy.after (interception-point) . do (after-
advice)

policy.after (interception-

point) . return (transform)

The first two constructs invoke before-advice (respec-
tively, after-advice) before (respectively, after) each
invocation of the intercepted method. The function
before-advice gets three arguments: the receiver of the
invocation, the value of the method (as a function
value), and the arguments array of the invocation.

The function after-advice in addition gets as fourth
argument the return value of the invoked method.

The third construct just transforms the return value of
the intercepted method using the provided transform
function.

(v) Multiple calls that add rules to a policy object (on
different interception points) can be chained, and
then policy.build() is used to finalize the policy.

These features of the DSL are sufficient to understand the
example policies in this paper. When reading the example
policies, keep in mind that JavaScript is very flexible in
argument passing: for instance, if an advice function only
needs its first argument, it can be declared as a single-
argument function even if it gets passed more arguments
at runtime. These additional arguments will then just be
ignored.

The full DSL supports a number of additional constructs,
for instance, to specify the conditional invocation of rules.

Example Policy for the st Example. In Listing 9 we show
the policy for the st example vulnerability mentioned in
Section 5. We want to prevent an attacker from providing
malicious input, without forwarding the input to the vulner-
able st library.

Example Policy Enabling HSTS. As a simple example for
the potential of NODESENTRY we describe how we imple-
mented the checks behind the helmet library, a mid-
dleware used for web hardening and implementing vari-
ous security headers for the popular express framework
(https://github.com/evilpacket/helmet).

It is used to, e.g., enable the HT'TP Strict Transport Secu-
rity (HSTS) policy [24] in an express-based web application
by requiring each application to actually use the library when
crafting HTTP requests. The HSTS policy is used to protect
websites against protocol downgrade attacks.

The snippet in Listing 10 shows a NODESENTRY policy
that adds the HSTS header before continuing with
sending the outgoing server response, via a call to
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1 let addHSTSHeader = (response) => {

2 let h = "Strict-Transport-Security";

3 let v = "max-age=3600; includeSubDomains";

4

5 return response.setHeader (h, v);

6 };

7

8 let policy = new Policy ("HSTS Example")

9 .before("ServerResponse.writeHead")

10 .do (addHSTSHeader)

11 .build ()

L1sTING 10: A policy that automatically adds a HSTS header.
12 const https = safe_require("https", policy);
13 const fs = require("fs");
14 const options = { pfx: fs.readFileSync("server.pfx") };
15
16 https.createServer (options, (request, respomnse) => {
17 response.writeHead (200, {"Content-Type": "text/plain"});
18 response.end("Welcome on this web site");
19 }).listen(7777);
L1sTING 11: Using the HSTS policy from Listing 10.

1 HTTP/1.1 200 OK
2 Content-Type: text/plain
3 Strict-Transport-Security: max-age=3600; includeSubdomains
4 Date: Sun, 04 Dec 2016 13:50:02 GMT
5 Connection: keep-alive

ServerResponse.writeHead, effectively mimicking the

behavior of the original helmet.hsts () call.

The developer does not need to modify the original
application code to exhibit this behavior. They only need to
safe_require the library whose HTTPS calls they want
to restrict. This can be done once at the beginning of
the library itself, as customary in many Node.js packa-

ges.

In the code snippet in Listing 11, we initialize a HTTPS
server by loading the https library with our example policy.
The server needs access to an archive file for its key and
certificate and sends back a static message when contacted

on port 7777.

In Listing 12 are the HTTP response headers from
a request made to the server from Listing 11 (https://
localhost:7777/), clearly showing that the policy added the

Strict-Transport-Security header.

LIsTING 12:

Example Policy Preventing Write Access to the File System. The
next example shows a possible policy to prevent a library
from writing to the file system without raising an error or
an exception. Whenever a possible write operation via the fs
library gets called, the policy will silently return from the
execution. The policy uses the on construct so that the real
method call never gets executed, and thus effectively prevents
writing to the file system.

It is possible to change this behavior by, e.g., throwing
an exception or chrooting to a specific directory. A possible
policy that wants to prevent a library from writing to the
file system must cover all available write operations of
the fs library and therefore requires in-depth knowledge
of the internals of the built-in libraries. Such a policy is
implemented in Listing 13.

Although our API is fairly simple and does not protect
against unsafe or insecure policy code, we do provide some
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let doNothing = ()

.writeFile")
.write")

.on("fs
.on("fs
~on("fs
.on("fs.writeSync")
.on("fs.
.on("fs.
.return(doNothing)
o biddd (Y2

© W N OC W N

=
- o

//do not forward the call to the original API method
=> { return; }
let policy = new Policy("no writing to file system allowed")

.writeFileSync")

appendFile")
appendFileSync")

L1sTING 13: Disabling access to the write operations in the £s library.

var st;

if (enable_nodesentry) {
require ("nodesentry");

0 N O Tk W N e

©

} else {
st = require("st");

}

e e e
o U W N RO

var http = require("http");

// toggle between plain Node.js and NodeSentry
var enable_nodesentry = true;

st = safe_require("st", null);

// actual benchmark application
var handler = st(process.cwd());
http.createServer (handler).listen(1337);

FIGURE 4: Our streamlined benchmark application implements a bare static file hosting server, by relying on the popular st and the built-in

http libraries.

form of containment, as defined by Keil and Thiemann [28].
NODESENTRY makes sure that the evaluation of a policy
takes place in a sandbox so that it cannot write to other
variables outside of the policy scope. Different from the work
of Keil and Thiemann [28, §3.6], we rely on the built-in vm
module of Node.js. As mentioned in Section 3, we do not
explicitly protect against introducing new vulnerabilities via
badly written policy code.

7. Evaluation

This section details our evaluation of both the performance
cost and the security of NODESENTRY. The main goal
of our benchmark experiment is to verify the impact of
introducing NODESENTRY in an existing software stack. We
evaluate the cost of both an empty policy and a meaningful
policy.

We also evaluate secure deployment in terms of both
effectiveness and ease of use. We show how NODESENTRY
can be used to secure real-world, existing vulnerable libraries,
as mentioned in our threat model, and we try to give an
indication as to how hard it is to weave the NODESENTRY API
within an existing code base.

71 Performance. Our first benchmark experiment aims
to verify the impact of introducing NODESENTRY on per-
formance measured as throughput, i.e., the number of tasks
or total requests handled by our server.

In order to streamline the benchmark and eliminate all
possible confounding factors, we have written a stripped file
hosting server that uses the st library to serve files. The entire
code of the server, besides the libraries http and st, is shown
in Figure 4. The only conditional instruction present in the
code makes it possible for us to run the benchmark test suite
at first for pure Node.js and then compare it with Node.js with
NODESENTRY enabled (with no specified policy). In a third
benchmark we also implement a meaningful policy, as shown
in Figure 5.

Each experiment (for plain Node.js, Node.js with
NODESENTRY with a null policy, and NODESENTRY with
a meaningful policy) consists of multiple runs. Each run
measures the ability of the web server to concurrently serve
files to N clients, for an increasingly large N, as illustrated
in Figure 6. Each client continuously sends requests for files
to the server throughout the duration of each experiment.
At first only few clients are present (warm-up phase), and
after few seconds the number of clients steps up and quickly
reaches the total number N (ramp-up phase). The number of
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1 var validUrl = function(url) {

2 return url.index0f ("%2e") > -1 || url.index0f("..") > -1;

3}

4

5 var po = new node.Policy().on("IncomingMessage.url").return(function() {
6 return "/redirect_to_404_page";

7 }).if (function(incomingMessage, url) {

8 return validUrl (url);

9 }) .build ();

F1GURE 5: The policy implemented by the static file hosting server with a meaningful policy. This policy is implemented instead of the null

policy in Figure 4.

Requests
Peak

Cool down

Lo [N

t3 Time

FIGURE 6: In our experimental setup, the load profile of the experiment varies between a minimum (the warm-up phase) and a maximum
(the peak phase) of concurrent users. This is repeated for N = 1..1000 concurrent users sending requests to our server.

clients then remains constant until the end of the experiment
(peak phase) with N clients continuously sending concurrent
requests for files. We only measure the performance in the
peak phase.

The experimental setup consists of two identical virtual
machines with 8GB RAM and 8 virtual CPUs, in the same
network. One machine is responsible for generating HTTP
requests by spawning multiple threads, representing indi-
vidual users. The second machine runs Node.js v8.7.0 and
acts as the server. The load generating machine relies on a
benchmarking framework developed by Heyman et al. [29].
The maximal load the framework could generate was 1200
concurrent users.

The results of the experiment are summarized in Table 1.
This table reports the throughput: how many requests the
system is able to concurrently serve as the number of clients
increases. As can be seen, NODESENTRY has a very low impact
on throughput, even with a very high number of clients, and
even if an actual policy is being enforced.

Table 1 suggests that, even at the highest load that our
benchmarking framework can generate, the CPUs of the
server are not fully loaded. Hence, we perform an additional
experiment to measure the impact of NODESENTRY on
the request response time of individual requests. We used
ApacheBench (ab) to measure the time needed per request,
averaged over 100.000 requests. We ran ab on an identical
virtual machine as those used in the experiments described
earlier, with the Node.js server on a separate machine. We
used a concurrency level of one, meaning we send only
one request at a time, to prevent one request influencing
the processing time of another request. The results are
summarized in Table 2.

We can conclude from this experiment that the impact of
the NODESENTRY infrastructure (just the interception, with
empty policy) on performance is negligible. Obviously, as

soon as one implements policy logic, the performance cost
depends on the policy logic, and the additional computation
time shows up in the request response time. However, for the
specific application and policy used in our benchmarks, the
additional cost is small enough that it does not significantly
impact application throughput even under a load of 1200
concurrent clients.

Finally, we also measured the impact of using
NODESENTRY on start-up cost. We measured the difference
of using the regular require versus a safe_require, where
we measure both using a null policy and a meaningful
policy. We only measure the time it takes to execute the line
of code containing the require or safe_require using
the console. time functionality in Node.js. We started the
process 100 times as warm-up and measured the average
time for 1000 runs of the process. The results are summarized
in Table 3. As expected safe_require takes slightly longer
than require, but the impact is limited, especially since
applications do not frequently require libraries except on
start-up.

7.2. Secure Deployment. Securely deploying an existing
Node.js application with NODESENTRY is as simple as
installing and loading the NODESENTRY library, as clarified
in Section 5.

Another aspect of secure deployment is the effectiveness
of our security framework. We provide evidence of the
security benefits that NoDESENTRY provides through the
following experiment. The Node Security Project was a com-
munity initiative raising awareness about security-related
problems within the Node.js ecosystem and maintained
a list of advisories for all known, reported vulnerabilities
of Node.js libraries, which is now integrated with npm
(https://www.npmjs.com/advisories). We analyzed all the 73
vulnerabilities reported by the Node Security Project at the
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TaBLE 1: The throughput (total number of requests processed in 10 seconds) of the simple file server without NODESENTRY, with NODESENTRY
with a null policy, and with NoDESENTRY with a sensible policy. The performance for all cases up to 800 users is near optimum, and there
is no significant difference between the performance of the plain file server and the file server protected with NODESENTRY.

Concurrent users Node.js NODESENTRY With Policy
1 10 10 10
10 99 99 100
20 199 199 200
50 500 499 499
100 999 997 993
200 1993 1997 1984
400 3959 3945 3897
600 5987 5878 5829
800 7777 7747 7706
1000 9948 9926 9336
1200 11710 11613 10556

TABLE 2: The average request response time.

Node.js
0.400ms

NODESENTRY
0.407ms

With Policy
1.125ms

TABLE 3: The average time it takes to require the st library.

Node.js
16.696ms

NODESENTRY
19.075ms

With Policy
20.939ms

time of the experiment (March 1, 2016) and investigated if and
how these vulnerabilities could be mitigated by NODESENTRY.
To answer this question, we relied on the description of the
vulnerability, as well as the proposed patch for the vulnerabil-
ity if one was available (to determine if a NODESENTRY policy
could implement behavior that is semantically equivalent to
the patch).

We have not implemented and tested policies for each
issue individually, as this would require building test cases
to confirm that benign functionality of the library is not
prevented, as well as example attacks to confirm that the
policy stops attacks. We do provide a full implementation of
policies for a subset of the vulnerabilities below.

We classified the vulnerabilities in five separate categories,
based on the type of policy required to fix the vulnerability.
In defining the policies, we have tried to be as modular
as possible: real system security policies are best given
as collections of simpler policies, because a single large
monolithic policy is more difficult to comprehend. The
system’s security policy is then the result of composing the
simpler policies in the collection by taking their conjunction.
This is particularly appropriate considering our scenario of
filtering library actions: If the library may not be trusted
to provide access to the file system, it may be enough to
implement OWASP’s check on file system management (e.g.,
escaping or file traversal). If a library is used for processing
HTTP requests to a database, it could be controlled for
URL sanitization. Each of those two libraries could then be

TABLE 4: Summary of the reported vulnerabilities of the Node
Security Project and their corresponding type of policy. About 95%
are in scope for NODESENTRY.

Type of policy # Vulnerabilities involved
@ Input filtering 31 (42%)

@ Output filtering 7 (10%)

(® Additional logic 12 (16%)

@ Denial-of-Service filtering 19 (26%)

® Out of scope 4 (5%)

wrapped by using only the relevant policy components, thus
avoiding paying an unnecessary performance price.

We report on the result of the experiment below. For
each of the 73 vulnerabilities, we report on whether the
vulnerability can be mitigated by means of a NODESENTRY
policy, and if so by what type of policy.

The main results are summarized in Table 4. Out of the
73 vulnerabilities, only 4 could not realistically be mitigated
with NODESENTRY.

The complete list of vulnerable libraries, with a short
explanation of the vulnerability type and their corresponding
vulnerability category, can be found in the table in the
appendix.

We now discuss each vulnerability category in more
detail.

Vulnerability Categories. We have divided all 73 vulnerabilities
into five separate categories, based on the type of policy that
would fix their security issue. In the remainder of this section,
we give details for each category and give an example policy
for an existing vulnerability.

The first category contains libraries for which a policy
is based on filtering incoming data before passing it on to
a library. The second category contains libraries for which
policies filter outgoing data, i.e., data coming from a library,
after it has been processed. The third category combines all
libraries that have policies that extend some functionality
of the library, because they must be able to rely on original
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1 let checkForValidPassword = (msg, fun, args, ret) => {
2 if (args[0] === "access-key") {
3 var input_key = ret;
4 var configFile = require("./config");
5 if (configFile.master.api.access_key !== input_key) {
6 throw new Error("unauthorized access");
7 }
8 }
9 1}
10
11 let policy = new Policy("tomato example")
12 .after("IncomingMessage .header")
13 .do(checkForValidPassword)
14 .build ()
LisTING 14: Fixing a bug where the access key was not correctly checked in the tomato library.
1 let addUTFEncoding = (response, func, args) => {
2 if (args [0] === 400) {
3 let contentType = response.getHeader ("content-type");
4 if (contentType === null) {
5 response.setHeader ("content-type", "text/html; charset=utf-8");
6 }
7 ¥
8 1}
9
10 let policy = new Policy("UTF8 encoding")
11 .before("ServerResponse.writeHead")
12 .do (addUTFEncoding)
13 .build O);

L1sTING 15: Fixing a bug where no content-type header was sent in the express library.

functionality of the library. The fourth category are denial-
of-service vulnerabilities that cannot be handled correctly
in all corner cases of their input. It is clear that a general
policy implementation can only be coarse grained and only
put some limit on the input. The fifth category contains
libraries that have vulnerabilities that are too hard to fix
with NODESENTRY-style policies as they occur on a layer
different from JavaScript (e.g., the vulnerability is located in
a Clibrary).

@ Input Filtering: All policies within this category are
based on the idea that the vulnerable library never gets access
to the malicious input as it gets filtered before it can be
effectively used. The examples from Section 5 fall within the
category of input filtering.

Other examples of input filtering policies are the ones that
filter incoming requests. The tomato library unintentionally
exposed the admin API because it checked if the provided
access key was within the configured access key, not equal to
it. A possible policy for this vulnerability would implement
a correct check and any unauthorized request would simply

be filtered and left unanswered. The policy hooks in when the
tomato library searches for the custom access-key HTTP
header (Listing 14).

@ Output Filtering: All policies within this category are
based on the idea that the vulnerability in a library happens
because their output can turn into malicious output in certain
cases.

The express library did not specify a character set
encoding in the content-type header while displaying a 400
error message, leaving the library vulnerable to a cross-
site scripting attack. A NODESENTRY policy for such a
vulnerability could automatically attach the necessary header
to the server response, right before sending it, effectively
filtering and modifying the output (Listing 15). The policy
only performs this operation if it detects a 400 error message
being sent.

Another example for pure output filtering is the policy
for the cross-site scripting vulnerability in serve-index,
because the library did not properly escape directory names
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"
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.build ();

"
"

1 let escapeDirectoryNames = (result) => {

2 // an open source HTML sanitization library
3 // linked to on the OWASP website

4 var bleach = require("bleach");

5 return bleach.sanitize(result);

6}

7

8 let policy = new Policy("escape directoy names")

9

.after ("fs.readdir")
.return(escapeDirectoryNames)

L1STING 16: Fixing a bug where directory names were not escaped in the serve-index library.

}
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.build O
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let verifyCorrectAlgorithm (jwt0Obj, func, verifyArgs) => {
var jws = require("jsws");
var jwtString = verifyArgs[0];
var options = verifyArgs[2];
var header = jws.decode(jwtString).header;

if (!~options.algorithms.index0f (header.alg)) {
throw new Error("invalid algorithm");

let policy = new Policy("jsonwebtoken algorithm check")
.before("jsonwebtoken.verify")
.do(verifyCorrectAlgorithm)

L1sTING 17: Fixing a bug where the algorithm used was not verified in the jsonwebtoken library.

when showing the contents of a directory. A NODESENTRY
policy could rely on a decent HTML sanitization library and
filter and fix, if necessary, the resulting HTML of the library
(Listing 16).

(® Additional Logic: Some policies need to extend the
original behavior of a library, e.g., to strengthen certain
conditional checks. Policies from this category are inherently
specialized for one specific library.

A vulnerability in jsonwebtoken allowed an attacker
to bypass the verification part by providing a token with
a digitally signed asymmetric key based on a different
algorithm from the one used by the library. The official
patch for this security issue is to first decode the header
of the token and explicitly verify whether the algorithm
is supported (URL of the patch, as visited on Novem-
ber 4th, 2015: https://github.com/auth0/node-jsonwebtoken/
commit/1bb584bc382295eeb7ee8c4452a673a77a68b687).

The exact same solution could be implemented with a
policy for NODESENTRY, which is in fact idempotent with
the official patch. A NODESENTRY policy wraps the verify
API functionality, does the necessary check, and throws
an error in case an invalid algorithm is specified (Listing
17).

® Denial-of-Service Filtering: A denial-of-service filter is
either a coarse-grained filter to limit the input to a specific
regular expression or a very ad hoc filter that eliminates
specific corner cases that would trigger the denial-of-service.

An example policy for the former case is the library
marked. It was vulnerable to a regular expression denial-of-
service (ReDoS) attack in which a carefully crafted message
could cause a regular expression to take an exponentially long
time to try to match the input. A quick fix might be to limit
the length of the input to be matched.

An example of the latter case is the denial-of-service
vulnerability in mqtt-packet. A carefully crafted network
packet can crash the application because of a bug in the
parser code. A quick fix could be to check for a valid protocol
identifier and make sure that we catch the out of range
exception when the vulnerability is triggered.

® Out of Scope: Technically, there are no solid policies for
libraries in this category. However, in some use cases it might
be possible to construct a working policy but it would require
an extensive case-by-case analysis and highly depends on the
situation and context the library is used in.

For example 1ibyam]l relied on a vulnerable version of
the original LibYaml C library. In this case, the patch against
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the heap-based buffer overflow involved modifying C code to
allocate enough memory for the given YAML tags. However,
designing a policy that puts limits on the input of the wrapper
library would severely limit the usefulness of the library in
real-life.

Conclusions. Out of the original list of 73 vulnerable libraries,
only 4 are out of scope and not generally fixable. This means
that the majority of the vulnerable libraries could benefit
from a security architecture like NODESENTRY. About 43
vulnerabilities could be fixed with proper input filtering (31)
or proper output filter (12). Only 7 vulnerabilities require a
custom crafted policy. As input and output filtering policies
are often generic (e.g., cross-site scripting or URL saniti-
zation) and count for more than half of all our policies,
the results seem to suggest that in practice even more
libraries with unknown vulnerabilities could profit from
NoODESENTRY. About one-fourth (19) of the vulnerabilities
have to do with denial-of-service. In 13 cases, extremely long
input can cause the regular expression implementation of
Node.js to consume too much execution time. Limiting the
input to a more reasonable size is probably the best fix for
all of them, again suggesting that in the future more of these
types of vulnerabilities will be automatically fixed. The other
6 cases require a truly custom fix.

Our analysis also suggests that NODESENTRY could be
used as a community-driven tool to provide (quick) patches
to vulnerabilities before they are fixed in the original library.
NODESENTRY could even be the only way to enroll security
patches, e.g., in case a library gets abandoned or if the original
developers have no interest in fixing the issues. Enforcing
general policies, like, e.g., the anti-directory traversal policy,
could also prevent previously unknown vulnerabilities in
libraries from popping up.

8. Discussion and Future Work

While our evaluation shows that NODESENTRY can provide
protection for a significant number of security threats, it also
has some important limitations that we briefly discuss in this
section, as well as how these limitations could be addressed
with future work.

First, the privilege reduction that NODESENTRY enforces
on a third-party library depends on the policy provided by
the application developer integrating the library. While the
conference paper used the term least-privilege integration
to describe the secure integration of libraries offered by
NODESENTRY, it would be more correct to describe this as
reduced-privilege integration. There is no guarantee what-
soever that the remaining privileges are minimal in some
sense. There is an independent line of research investigating
approaches to infer least-privilege policies [30-32] and it
would be an interesting topic for future work to try to inte-
grate such policy inference. We expect this to be challenging,
however, given the nature of the JavaScript language.

Second, an important disadvantage of NODESENTRY is
that it is a powerful tool and developers can easily make
mistakes in writing policies that could result in new vul-
nerabilities. NODESENTRY supports a kind of aspect-oriented
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programming: a policy programmer can inject arbitrary code
at multiple points in the application. When used badly, this
can negatively impact maintainability and understandability
of the code. It would be beneficial to make sure that policy
code has a kind of precision property; i.e., the code does
not impact the execution unless some well-specified security
property is violated. With that precision property, application
developers do not need to worry about the impact of policy
code on their application: the application is not affected when
the program is not under attack. An interesting question
for future work is how one could enforce such a precision
property on NODESENTRY policies.

Third, and related to the previous point, is the devel-
opment of suitable policy languages for NODESENTRY. The
current prototype has an ad hoc domain-specific language
implemented as a JavaScript API, but this policy language
can definitely be further improved. For instance, policies in
the current language may require updating when the API
they protect is extended with new methods; i.e., there is no
way to quantify over multiple methods, for instance, to forbid
access to all write methods on a file system APIL The design
of a good policy language will need to balance expressivity,
usability and understandability, and support for analysis
(such as for enforcing the precision property discussed
above).

We show in Section 7.2 that NODESENTRY can resolve
vulnerabilities in many cases. However, NODESENTRY is by
no means a silver bullet, and in some cases better alternative
solutions are possible. For instance, if it is easy to solve
the vulnerability directly in the library itself, that should be
preferred, since this will fix the vulnerability for all users
of that library. Another example is malicious libraries: if a
developer considers a given library as possibly arbitrarily
malicious, then a NODESENTRY policy might have to be very
defensive, checking, for instance, every return value of the
library by recomputing it independently. While one can in
principle write such a policy, it would obviously be less effort
to write the desired library from scratch. The sweet spot for
using NODESENTRY is the protection against library behavior
that leads to vulnerabilities in this specific application but
might be acceptable behavior for other applications relying
on that library. Another useful use case is patching of
vulnerabilities in libraries when patching the library itself is
not an option.

Finally, NODESENTRY is a JavaScript specific security
framework. An interesting question is whether the same
approach can be ported to other programming languages or
server-side frameworks. The key requirement seems to be
that the language or framework should have good support
for implementing the membrane object capability pattern.
Investigating such ports to other platforms is a final very
relevant path for future work.

9. Related Work

NODESENTRY builds on two long-standing research lines.
First, it is an application of the idea of aspect-oriented
programming [33]: in aspect-oriented programming, a base-
program can be enriched with aspects that specify additional
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program functionality (advice) that must be executed at
specific program points. The application of this idea for
security has also been called inlined reference monitoring and
been investigated intensively for integrating access control
into application code [15, 34]. NODESENTRY can be seen as an
instance of this idea: policies provide advice that is executed
when crossing the membrane.

Second, NODESENTRY is an application of the ideas of
the object-capabilities community. This community has been
investigating the use of capabilities (unforgeable references)
as a security mechanism for many years. The PhD thesis of
Miller [22] provides an excellent history and overview of
the field. In particular, Miller proposes a number of object
capability patterns to address specific security problems, and
the membrane pattern used in NODESENTRY is a prominent
example of these patterns. Miller’s work on Caja [35] has
contributed to the understanding of how JavaScript can be
made a capability-safe language, and several authors have
investigated the security properties that can be achieved using
object capability patterns. Maffeis et al. [36, 37] were the first
to study the isolation of JavaScript using object capability
techniques in a formal setting. Devriese et al. [38] proposed a
more advanced formalization that more completely captures
the notion of capability safety. In particular, their technique is
powerful enough to reason about isolated components with
restricted communication between these components. Very
recently, Swasey et al. [39] propose the first program logic
that can compositionally specify and verify object capability
patterns in JavaScript-like languages. The membrane pattern
that we rely on in NODESENTRY is one of the object capability
patterns they specity in their logic. These foundational works
on developing the formal basis for proving properties about
object capability patters are complementary to our work on
NODESENTRY. It is conceivable that they could in the future
be used to provide provable guarantees about the security of
systems like NODESENTRY.

With respect to related work on security architectures
for JavaScript, there is a substantial body of work on
securing JavaScript on the client-side, including approaches
for sandboxing (e.g., based on Google’s Caja or [40, 41]),
approaches that do information flow control [20, 42, 43],
as well as approaches that instrument the browser with a
number of policies [44] or try to guarantee control-flow
integrity at a web-firewall level [45]. Bielova presents a good
survey on JavaScript security policies and their enforcement
mechanism within a web browser [46]. While some of these
client-side approaches also rely on object capability patterns
to isolate JavaScript, they focus on isolating completely
untrusted code that is not essential to the application’s core
functionality (for instance, isolating advertisement code). In
contrast, NODESENTRY confines semitrusted code of libraries
whose functionality is essential to the application. It counters
relatively basic attacks where an attacker tries to exploit a
vulnerability in a nonmalicious but buggy library included
in the application, and it does so by making it simple
to instrument entry and exit points of the library with
security checks. As a consequence, the performance cost of
NODESENTRY can be significantly smaller than that of the
existing client-side approaches.
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Compared to the amount of work on securing JavaScript
on the client-side, there is surprisingly little work on securing
JavaScript on the server side. The conference version of this
paper [5] was to the best of our knowledge the first security
architecture addressing the secure inclusion of JavaScript
libraries on the server side. Very recently, Staicu et al.
proposed Synode [47], an automated mitigation technique for
injection attacks on Node.js. In contrast with NODESENTRY,
Synode only protects against injection attacks on the eval
and exec functions in Node.js, two functions that allow
a developer to execute arbitrary code, by using static
analysis to generate runtime checks. NODESENTRY on the
other hand supports hand-written policies for any module-
exported function or variable. This allows a developer to
use NODESENTRY for writing policies for limiting library
functionality even if they do not use eval or exec functions
and are not vulnerable to injection attacks. A developer can
thus arbitrarily modify functionality of a library without the
limitation to fix only code injection vulnerabilities.

10. Conclusion

In order to address the problem of secure integration of third-
party libraries, we have developed NODESENTRY, a novel
server-side JavaScript security architecture.

We have illustrated how our enforcement infrastructure
can support a simple and uniform implementation of security
rules, starting from traditional web hardening techniques to
custom security policies on interactions between libraries
and their environment, including any dependent library.
We have described the key features of the implementation
of NoDESENTRY which builds on the implementation of
membranes by Miller and Van Cutsem as a stepping stone for
building trustworthy object proxies [23].

We evaluated the performance impact of NODESENTRY in
an experiment where a server must be able to provide files
concurrently to an increasing number of clients. Our eval-
uation shows that the performance cost of the enforcement
infrastructure itself is negligible and that useful policies can
be enforced with very low performance overhead.

We evaluated the security effectiveness of NODESENTRY
by analyzing all 73 reported vulnerable libraries on the
Node Security Project website, and we showed that the vast
majority of these vulnerable libraries could be protected with
NODESENTRY.

Appendix

A table with a complete list of all the reported vulnerabilities
of the Node Security Project as used within the evaluation in
this document can be found in Table 5.

An in-depth discussion of our findings can be found in
Section 7.2.

Data Availability

The NODESENTRY prototype is available on GitHub
(https://github.com/WillemDeGroef/nodesentry/).
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TABLE 5

Package Vulnerability Category

hapi-auth-jwt2 Authentication Bypass

moment
i18n-node-angular
i18n-node-angular
hawk
is-my-json-valid
mgqtt-packet
mapbox.js
jshamcrest
jadedown
bittorrent-dht
ws

mysql

hapi

ecstatic

hapi
mustache
handlebars
keystone
milliseconds
tar

send

gm

ansiZhtml
uglify-js
secure-compare
mapbox.js
bleach

ms

hapi

ldapauth
datatables
ldapauth-fork
ulgify-js
ungit

geddy

semver
jsonwebtoken
marked
marked
sequelize
serve-static
serve-index
inert
fancy-server
dns-sync
bassmaster
crumb
express

hapi

hapi

libyaml

Regular Expression Denial of Service
Denial of Service
Content Injection
Regular Expression Denial of Service
Regular Expression Denial of Service
Denial of Service
Content Injection
Regular Expression Denial of Service
Regular Expression Denial of Service
Remote Memory Disclosure
Remote Memory Disclosure
SQL Injection
Route level CORS config
Denial of Service
Denial of Service
Content Injection
Content Injection
Authentication Weakness
Regular Expression Denial of Service
Symlink Arbitrary File Overwrite
Root Path Disclosure
Command Injection
Regular Expression Denial of Service
Regular Expression Denial of Service
Insecure Comparison
Content Injection via TileJSON attribute
Regular Expression Denial of Service
Regular Expression Denial of Service
Incorrect handling of CORS preflight request headers
LDAP Injection
Cross-Site Scripting
LDAP Injection
Incorrect non-boolean comparisons
Command injection
Directory traversal
Regular Expression Denial of Service
Verification Bypass
Regular Expression Denial of Service
VBScript Content Injection
SQL Injection in Order
Open Redirect
XSS
Hidden Directories Always Served
Directory Traversal
Command Injection
JavaScript Execution in Bassmaster
CORS Token Disclosure
No Charset In Content-Type Header
File Descriptor Leak Can Cause DoS Vulnerability
Rosetta-flash Jsonp Vulnerability
Heap-based Buffer Overflow When Parsing YAML Tags
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TaBLE 5: Continued.

Package Vulnerability Category

marked Multiple Content Injection Vulnerabilities

nhouston Directory Traversal

paypal-ipn Validation Bypass

printer Potential Command Injection on Untrusted Input

qs Denial-of-Service Extended Event Loop Blocking

qs Denial-of-Service Memory Exhaustion

remarkable Content Injection

send Directory Traversal

st Directory Traversal

syntax-error
validator
validator

yar

js-yaml
hubot-scripts
tomato
codem-transcode
ep_imageconvert
libnotify

connect
validator

Potential For Script Injection
isURL Regular Expression Denial of Service
XSS Filter Bypass via Encoded URL
Denial-of-Service
Deserialization Code Execution
Scripts Potential Command Injection in Email.coffee
API Admin Auth Weakness
Potential Command Injection in Ffprobe Functionality
Unauthenticated Remote Command Injection
Command Injection in Libnotify.notify
Middleware Reflected Cross-Site Scripting
XSS Filter Bypasses
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