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Depending on the concentration of the drug and/or the method of administration, drugs could be used in various ways. To take full
advantage of the drug beneficial properties in oral medical interventions but also in other types of surgery, like plastic surgery,
general surgery, or gynecological surgery, the drug concentration as well as the administration method itself will depend on the
wound, type of surgery, and severity of the postoperative pain which can be very different. Generally, the local administration
methods are recommended. Piroxicam, a nonsteroidal anti-inflammatory drug (NSAID) of the oxicam class, is generally used to
relieve the symptoms of pain and inflammation. Starting from the idea of the special benefit of the interference between
collagen-based materials and drug beneficial properties, our work was focused on the synthesis and characterization of new
collagen-piroxicam materials. These new collagen-based materials present a good water absorption, and the piroxicam release
suggests a biphasic drug release profile whereas the obtained values for the release exponent revealed a complex release
mechanism including swelling, diffusion, and erosion.

1. Introduction

Pain represents a high and problematic symptom after any
kind of surgery all over the world irrespective of the surgery
type, wound dimensions, or the associated pathology of the
patient. The current researches in medicine are based on
the ongoing development of any potential cures for solving
the needs of the patient; the main goal is to reduce and relieve
the pain, the inflammation, and the sensation and to
heighten the recovery process. All these aspects will contrib-
ute to the improvement of patient life quality; this is one of
the main reasons for the use of a variety of medication in
chronic and acute pain treatment [1, 2].

Piroxicam, an NSAID of the oxicam class of anti-
inflammatory drugs, represents a very viable option in pain
management. The recent researches in the last decade show
that when oral administration of this drug may have negative
side effects, one of the usual effects is due to piroxicam gas-
trotoxicity. When the drug is applied locally, it may be able
to bypass this undesired side effect. The recent researches
show that by embedding the piroxicam in different types of
delivery systems, like gels, scaffolds, polymer-based nanopar-
ticles, liposomes, and even topical, intraligamentary, or intra-
muscular injection through dermal delivery, the negative
gastrointestinal effect may be avoided and at the same time
the systemic exposure of the drug is reduced. In this way,
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the various negative aspects of the piroxicam are practically
reduced. The recent comparative studies on patients with
postoperative pain and edema following maxillofacial sur-
gery demonstrated that the NSAID local application repre-
sents a better solution by reducing the swelling and the
pain in few days [3–7]. According to Desjardins’ study [8],
piroxicam drug lasts significantly longer (24 hours) and has
a better effect compared to aspirin. Because the drug is con-
centrated in the tissues, local application of piroxicam has
also a local analgesic effect, especially in the first few hours
after the intervention [9].

One of the main objectives for the use of a wound dress-
ing is the acceleration of the wound healing process.
Collagen-based biomaterials are usually the most commonly
used biomaterials in the bioengineering of the skin, connec-
tive tissue, mucosal tissue (oral and vaginal tissues and even
organic tissue), and also in nerve and tendon tissue repre-
senting an alternative solution to various types of grafts as
wound dressing after surgical defects that occur after removal
of benign or premalignant lesions/tumors or reactive prolif-
erations and incisional biopsy lesions. Collagen has some
big advantages including resilience, suppleness, dressing
property of mimicking the surrounding tissues, and a very
good tolerance by tissue itself. It also acts as a strong mechan-
ical barrier, and it helps in hemostasis, relieving pain, and
preventing excessive contracture [10–13].

The use of collagen in various forms goes back millennia,
but the main collagen application remains for burns and
wound cover dressings, alveolar filling, antithrombogenic
surfaces, wound healing process speeding, implant therapy
by preventing epithelial migration, and allowing cells to
regenerate. Collagen sponges when used in burns and ulcers
(decubitus ulcers) have the ability to absorb large quantities
of tissue exudates, blood, and saliva and present the benefit
to adhere to the wet wounds and by clouting to facilitate
the dermal and epidermal wound healing. Piroxicam-
collagen sponges could also be used as the delivery system
for intravaginal wounds or cervical dysplasia [14–18].

Collagen-based biomaterials can be applied in various
dental surgeries and dental medicine, including wound
dressing and hemostatic abilities, being a biomaterial that
can easily help in GTR (guided tissue regeneration) [13]. In
maxillofacial surgery, the mix between collagen and NSAIDs
represents a very viable option. For example, after removal of
an impacted third molar, one of the most frequent proce-
dures in oral and maxillofacial surgery, usually followed by
pain, swelling, and trismus (restricted jaw movements) [5],
such collagen-based materials could be beneficial. The adhe-
sion between the tissue and the piroxicam-collagen based
biomaterial, the mucoadhesion, represents that state where
two or more than two elements (from which at least one is
biological) may adhere to each other for extended periods
of time. The mucoadhesion offers the opportunity to release
the drug through different routes of administration like ocu-
lar, nasal, vaginal, oral and in some cases intraligamentary,
which is a more efficient and safer way of drug administra-
tion compared to oral administration [19, 20].

In this paper, piroxicam-collagen-based sponges are
studied due to several reasons:

(i) Local pain is one of the most critical points of patient
care in medicine. Therefore, a drug use is mandatory
and piroxicam, an NSAID, is a drug used for local
pain management where the anti-inflammatory
and analgesic effects are beneficial besides the basic
commonly used treatment

(ii) The need to create a local delivery system that
bypasses the systemic unwanted toxic side effects

(iii) Collagen sponges are a very high biocompatible and
biodegradable biomaterial. At the same time, they
are also well known for their safe and well-
characterized supports as drug delivery systems
[21–24]

The aim of this study was to obtain materials based on
collagen and piroxicam for biomedical purposes, especially
for various types of surgeries. The stability of collagen-
piroxicam sponges was assured by glutaraldehyde as a
cross-linking agent. Water absorption and enzymatic degra-
dation tests were performed. At the same time, the piroxicam
release from cross-linked collagen spongious forms was
investigated and the kinetic mechanism was discussed.

2. Materials and Methods

Type I fibrillar collagen was obtained using the bovine hide,
and, currently, technology from our laboratory (INCDTP-
Division Leather and Footwear Research Institute, Collagen
Department) was employed. Collagen can be obtained using
two main technologies: molecular technology and/or fibrillar
technology. In order to obtain molecular collagen, a proteoli-
tic enzyme is used to cleave telopeptides. In this study, we
used fibrillar technology to obtain type I collagen by alkaline
treatment of bovine dermis with 5–10% sodium hydroxide
and 1M sodium sulphate at room temperature for 2 days in
order to remove telopeptidic nonhelical regions. Alkaline
treatment was followed by an acidic one with 1N HCl, and
total solubilization of collagen in the undenatured state was
performed. The salt precipitation and resolubilisation were
carried out in order to purify collagen [25–27]. Collagen in
the form of gel was obtained, and its concentration of
2.82% (w/v) was determined by gravimetric methods (dried
at 105°C).

Piroxicam drugs were obtained from Alfa Aesar whereas
glutaraldehyde, used as a cross-linking agent, was purchased
from Merck.

The concentration of the collagen gel was adjusted from
concentration of 2.82% and acidic pH to concentration of
1% and 7.4 pH using 1M sodium hydroxide. The piroxicam
(solution) was added to the collagen gel in concentration of
1.0%, 1.5%, and 2.0% (with respect to the dry collagen), and
the obtained gels were cross-linked with 0.5% glutaraldehyde
(solution) reported to dry collagen. The cross-linked gels
were kept 24 hours at 4°C and then freeze-dried using a Delta
2-24 LSC lyophilizer (Martin Christ, Germany) as follows:
the gels casted into glass Petri dishes were initially frozen at
-40°C during 12 hours followed by main freeze-drying at
-40°C and 0.1mbar for 8 hours. Then, the temperature
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increases in steps to 10°C during 8 hours, to 20°C during
another 8 hours, and to 30°C for 8 hours at same pressure,
0.1mbar. The final freeze-drying lasted 4 hours: 1 hour at
30°C and 0.001mbar followed by 3 hours until temperature
reached 35°C. After 48 hours of freeze-drying, the collagen
sponges were obtained and then characterized as we
described below.

The water absorption tests were performed on collagen
sponge half-cubes of 1 cm × 1 cm × 0 5 cm immersed in dis-
tilled water at 25°C. Water absorption was calculated at dif-
ferent periods of time using equation (1). Every test was
performed in triplicate.

%water absorption = w1 −w0
w0

× 100, 1

where w0 is the dry mass and w1 is the wet mass.
Enzymatic degradation test was performed using collage-

nase of Clostridium histolyticum from Sigma-Aldrich (USA)
and a phosphate-buffered saline (PBS) solution with pH7.4.
Sponges with a known weight were immersed in PBS solu-
tion and incubated at 37°C overnight. Collagenase
(10μg/mL) was then added, and the test tube was replaced
at 37°C. At different time intervals, the degradation was inter-
rupted by removing the scaffold from the degradation solu-
tion, squeezing, and weighting again the sponges. The mass
loss percentage was calculated as follows:

%collagenmass degraded = wi −wt

wi
× 100, 2

where wi is the initial mass and wt is the mass after time t.
Each biodegradation test was performed in triplicate.

Optical microscopy images were registered using a Zeiss
Scope A1 digital microscope equipped with a Canon camera
(Taiwan).

IR spectra were performed using an Interspec 200-X
FTIR equipment from Interspectrum in transmittance mode

in the region 4000–400 cm-1. Collagen samples were pre-
pared for IR measurements by using a manual hydraulic
press to form KBr pellets.

The in vitro release of piroxicam from the tested formu-
lations was performed using a sandwich device adapted to a
paddle dissolution equipment, as previously detailed [28].
The concentration of piroxicam in each sample was investi-
gated by UV spectroscopy at its maximum absorbance corre-
sponding to a wavelength of 353nm and using the standard
calibration curve (A1cm

1% = 479). The cumulative released drug
percentage was then assessed. The kinetic data were fitted
with the power law model (equation (3)) and its particular
cases, Higuchi (n = 0 5) and zero-order (n = 1) models, and
the drug release mechanism was set.

mt

m∞
= k × tn, 3

where mt/m∞ is the fractional release of the drug at time t, k
is the kinetic constant, and n is the release exponent showing
the drug release mechanism. The experiments were con-
ducted in triplicate.

3. Results

Figure 1 presents the results obtained for water absorption
experiments. The collagen matrices should possess proper
water uptake abilities allowing the biological fluid penetration
into the spongious structure and consecutively the drug diffu-
sion within the swollen polymeric network. The obtained data
suggest that the amount of piroxicam does not affect the water
absorption capacity. At the same time, as expected, the water
absorption is increasing in time, being 100% after 24 hours.

The enzymatic collagen degradation measurements as
presented in Figure 2 revealed that piroxicam addition, as
consequence, decreases the sample degradation. However,
after more than 8 hours in collagenase solution, the samples
disintegrate, even if they are not completely degraded. The
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Figure 1: Water absorption of piroxicam sponges.
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sponge degradation is relatively slow in the beginning (5–10%
in thefirst two hours). After 8 hours and before disintegration,
around 30% of the samples are degraded suggesting that such
kind of materials could be useful in oromaxillofacial surgery.

The optical microscopy images (Figure 3) displayed a
fibrillar structure with interconnected pores. In all obtained
sponges, the light spots prove the piroxicam presence.

The presence of the piroxicam in the collagen sponges
was certified also by the IR spectra. Table 1 lists the

assignments for the main absorption peaks obtained for the
infrared spectra recorded. As expected, the IR spectra were
similar as the characteristic peaks for the main vibrations
are the same for collagen and for piroxicam. Nevertheless,
some wavenumber shifts were present.

All the above analyses indicate that the designed collagen
sponges present adequate properties as drug release supports.
Thus, the collagen-piroxicam sponges were further analyzed
from the kinetic point of view.
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Figure 3: Optical microscopy images for collagen sponge (a) (100x), 1% piroxicam collagen (b) (50x), 1.5% piroxicam collagen (c) (50x), and
2% piroxicam collagen (d) (100x).
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From Table 2, it can be seen that the power law model
describes well the drug release (correlation coefficient > 0 98,
being higher than the ones specific to Higuchi and zero-
order models).

The piroxicam release from the designed formulations
showed an anomalous drug transport kinetic mechanism,
the values obtained for the release exponent being smaller
than 0.5.

Figure 4 reveals typical biphasic drug release profiles,
with an important piroxicam burst release effect in the first
30 minutes for the collagen matrices with 1%, 1.5%, and 2%
piroxicam, ensuring an inflammation rapid diminution,
followed by a prolonged release over the next hours of exper-
iments. The obtained values for the release exponent (<0.5)
revealed a complex release mechanism including swelling,
diffusion, and erosion [28, 33].

Corroborating drug release results with those of collage-
nase degradation, it can be affirmed that before the sponge
disintegration the drug is almost completely released. More-
over, depending on where these materials will be used, the
fact that they absorb water suggests that they can absorb oral
liquids or sanguinolent liquids and thus reducing the inflam-
mation and the hematoma risk.

4. Conclusions

This study presents new collagen-based materials for bio-
medical applications, especially in dentistry. These new
materials, collagen-based spongy materials, obtained by the
lyophilization method, were characterized by various tech-
niques like optical microscopy, IR spectroscopy, water

Table 1: FTIR spectra peak position and assignments for collagen sponges.

Assignment
Wavenumber (1/cm)

Collagen
sponge

Collagen + 0 5%
piroxicam sponge

Collagen + 1%
piroxicam sponge

Collagen + 1 5%
piroxicam sponge

N-H stretch (νNH) of amide A [29, 30]
3540 3569 3552 3550Hydrogen bonding of the N-H group with a carbonyl

group of the peptide chain [29]

CH2 asymmetrical stretch (νasCH2) by amide B band
[29, 30]

3017 3008 3016 3007

C-O stretching vibration (νCO) [29] 1681 1681 1680 1680
Amide I C=O stretching [30, 31]

Hydrogen bond between N-H stretch (νNH) and C-O
(νCO) [29]

1607 1606 1608 1610

Helical structure of collagen [29]

1494 1499 1499 1496
Stretching vibration of the C-N group [29]

C=N stretching of piroxicam [31]

CH2 deformation (δCH2) [32]

CH3 bend (δCH3) [32] 1443 1441 1443 1443
CH2 bending vibration (δCH2) [30]

CH2 group wagging vibration [29] 1376 1379 1387 1380

NH deformation of amide III (δNH) [32] 1274 1274 1273 1275

Hydrogen bonding of N-H bending [29, 30] 1241 1237 1240 1240

NH deformation of amide III (δNH) [32] 1191 1192 1189 1190
S=O asymmetric stretching [31]

Ester bond [29] 1113 1113 1115 1113

ν(C-O), ν(C-O-C) of carbohydrate moieties (collagen)
[32]

1062 1063 1062 1063

Skeletal stretching vibrations [30] 899 899 900 900

Table 2: Kinetic parameters and correlation coefficients specific to power law model, correlation coefficients specific to Higuchi and zero-
order models, and drug release percentage.

Collagen-piroxicam
matrices (% of piroxicam)

Kinetic constant
(1/minn)

Release exponent
Correlation coefficient Drug release

percentage (%)Power law model Higuchi model Zero-order model

1 0.11 0.39 0.9811 0.9716 0.8761 87.44

1.5 0.12 0.38 0.9860 0.9755 0.8822 96.24

2 0.10 0.41 0.9892 0.9831 0.9009 91.33
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absorption, enzymatic degradation, and in vitro release
kinetics.

The results obtained concerning the hydrolysis and
enzymatic degradation showed the inhibitor role of the
cross-linking agent, while the piroxicam presence determines
an increasing sponge degradation under collagenase leading,
at the end, to the sponge disintegration.

The kinetic profiles determined for piroxicam release
suggest biphasic drug release profiles whereas the obtained
values for the release exponent (<0.5) revealed a complex
release mechanism including swelling, diffusion, and erosion.

The results obtained suggest that, in the near future,
piroxicam-collagen-based biomaterials would easily repre-
sent a viable and modern solution to treat various types of
wound that occurs in oromaxillofacial surgery, cumulating
the best properties of collagen and the NSAIDs.
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