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The increased contaminants caused by anthropogenic activities in the environment and the importance of finding pathways to
reduce pollution caused the silicon application to be considered an important detoxification agent. Silicon, as a beneficial element,
plays an important role in amelioration of abiotic stress, such as an extreme dose of heavy metal in plants. There are several
mechanisms involved in silicon mediation in plants, including the reduction of heavy metal uptake by plants, changing pH value,
formation of Si heavy metals, and stimulation of enzyme activity, which can work by chemical and physical pathways. The aim of
this paper is to investigate themajor silicon-relatedmechanisms that reduce the toxicity of heavymetals in plants and then to assess
the role of silicon in increasing the antioxidant enzyme and nonenzyme activities to protect the plant cell.

1. Introduction

Silicon is a beneficial mineral element commonly found in
soil. It is the second most abundant element after oxygen
[1, 2] in soil. Since silicon is an essential element and a plant
nutrient [3, 4], it has an important role in plant growth, yield
[3, 5, 6], photosynthetic properties, chlorophyll contents, and
enzyme activity [7–9], especially under stressful conditions
[1, 10]. Currently, there is no evidence showing the direct
role of silicon in plant metabolism. However, silicon can
still be assumed to be essential in the process because it
belongs to a molecular compound which is involved in plant
metabolism. Because plants require silicon, it helps with plant
growth and development. Consequently, silicon reduction
can adversely affect plant growth and produce abnormal
characters in plants [11, 12]. Many researchers confirmed that
silicon has the ability to ameliorate the abiotic stresses such
as an excess dose of heavy metal and increase the tolerance
of plants against heavy metals [7, 13–15]. The mechanism
by which silicon alleviates stress from heavy metals can be
categorized into internal and external mechanisms [16, 17].
In the external mechanism, silicon ameliorates the heavy

metals’ toxicity through various methods, such as reducing
the absorption and activity of the metal or changing the
metal’s formation by adding a silicon compound. However, in
the internal mechanisms, silicon reduces the adverse effects
of heavy metal toxicity through different mechanisms, such
as stimulation of antioxidant enzyme activity, complexa-
tion and compartmentalization of silicon with metal ions,
and changing the cell wall by transportation control [17].
In addition, silicon can protect plants exposed to biotic
and abiotic stresses [18, 19]. The protective role of silicon
revealed in plants can be attributed to an accumulation of
polysialic acid in plant cells. Thus, with an enhancement in
polysialic acid concentration in the cell wall, plant tolerance
increases and indirectly interferes with stress factors [20].
The application of silicon on tissue cultures can protect the
cell wall by decreasing oxidative stress, ameliorating the plant
growth cycles, including embryogenesis, organogenesis, and
inducing growth in traits and leaves in vitro [21]. Moreover,
the protective role of silicon in reactive oxygen species (ROS)
scavenging is bold. Silicon can scavenge ROS indirectly. A
previously conducted experiment shows that Si can decrease
OH hydroxyl radical accumulation in cucumber leaves by
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reducing the free apoplastic Mn+2 [19]. One of the other
protective roles of silicon is regulating internal water in plants
[22] so that the accumulation of silicon in epidermal tissue
preserves water in the transpiration process [23]. Generally,
plants tend to accumulate heavy metals, such as cadmium, in
the root more than shoot and stem [24]. Therefore, silicon
is accumulated in plants’ roots for certain mechanisms,
including a physical barrier, reduction of translation, and
reduction of heavy metal uptake.

2. Silicon Defense Mechanisms

Silicon is often absorbed in plants through monosilicic acid
formation and precipitated in internal plant parts, such as
cell wall and lumens. In addition, it is deposited as an
amorphous silica (Opal A; Sio

2
⋅ 𝑛H

2
o) or in intercellular

sites like phytoliths [25-10]. Phytolith is a Greek word
meaning “stone of plant,” which is known to be the space
between the plant cells [25]. Silicon’s defense mechanisms
appear throughout plants. In leaves silicon is used to create
structures such as epidermal trichomes and hair. Silicon
is also accumulated in spines as amorphous silica (SiO

2
)

and phytoliths [26]. In plants and soil, there are different
mechanisms and pathways by which silicon scavenges ROS
and ameliorates heavy metals. In growth media (i.e., tissue
culture), silicon decreases the ions’ activities and limits the
metal uptake andmetal translocation from roots to shoots. In
cell structure, silicon ameliorates heavy metal stress through
various mechanisms, such as regulating the gene expression
involved inmetal transport andmetal-chelationmechanisms,
participating in coprecipitation of metals, changing the plant
structure, and stimulating antioxidant enzymes’ activity [13,
18, 27]. Song et al. indicated that, with the combination of
silicon and cadmium, cadmium tolerance increases in B.
chinensis demonstrating the role of silicon in the reduction of
heavy metal uptake, limitation of root to shoot translocation,
and stimulation of antioxidant enzyme activity [28]. Many
researchers reported that codeposit of metal with silicon can
reduce the concentration of toxic ions in plants [13, 17, 29].
It has been reported that, using some mechanisms, such as
root exudation and pH increase, silicon limits the aluminum
uptake in roots; this issue can later precipitate Al concentra-
tion in the root surface [30, 31]. In a general classification,
silicon detoxification mechanisms can be grouped as either
chemical or physical mechanisms. Chemical mechanisms
refer to the mechanisms involved in coprecipitation of heavy
metals with silicon, while in physical mechanisms silicon
reduces the translocation of heavy metals to shoot and aerial
parts by changing the plant structure such as the apoplastic
barrier [32]. Generally, Si is involved in the alleviation process
in plants exposed to abiotic stresses and heavy metals in
some important mechanisms, including (1) stimulation of
antioxidant enzyme activity to enhance ROS scavenging,
(2) complexation and immobilization of toxic metal ions in
plants [18, 33], (3) deposition and accumulation in plant tissue
for developing the rigidity and stability in leaves, (4) water
mobility, and (5) providing plant nutrient and coprecipitation
ofmetal toxicity [34]. In the following, we discuss some of the
key mechanisms involved in silicon detoxification in plants.

2.1. Mechanism One: Reduction of Heavy Metal Uptake by
Plants. Regarding the relationship between the silicon and
heavy metal uptake, it can be stated that silicon can alleviate
and reduce the uptake of heavy metal and its transportation
in plants [13, 28, 35, 36]. Moreover, silicon can increase
the chelated ions through (1) stimulation of root exudate,
which can limit metal uptake by roots in plants [13] or (2)
decreasing the free metals in plant organs which reduces the
translocation activity in apoplasm [13]. In the cell wall, silicon
can accumulate in the lignin and improve the metal binding;
it can then reduce the translocation of ions from roots to
aerial organs [37, 38]. Silicon creates a complex with metal
ions in the cell wall and additionally precipitates metal ions
as a cofactor [30]. The results revealed that enhancement of
silicon could increasemalic and formic acid in plants growing
process and consequently reduce the uptake of Al [30].
Furthermore, it was observed that phenolic compounds in
maize can decrease the Al uptake so that flavonoid-phenolics
can lead to Al-chelating link and reduce the Al uptake in
plants [13]. Heavy metal chelating significantly contributes to
digestion of heavy metals, and it is created by chelation of
heavy metal with flavonic-phenolics or other organic acids
[39]. Silicon can increase heavy metal accumulation in inter-
cellular plant parts [13]. By investigating the amelioration role
of silicon in Mn, Doncheva indicated that silicon, used as a
barrier, can expand the epidermal layer of maize. It can lead
to an accumulation of Mn in nonphotosynthetic tissue [40].
Then, through certain mechanisms, such as coprecipitation,
it prevents the heavy metals from translocating to other plant
parts. It is reported by Hai-Hong Gu that the reduction in
stem-to-shoot translocation in rice was the consequence of
a high concentration of silicon [32].

Most beneficial effects of silicon can be revealed in the
accumulation in the cell walls of root, stems, leaves, and
hulls, which enhance the stability of plant tissue as a physical
barrier [37]. In roots, silicon increases the binding of metal
ions by decreasing the apoplastic bypass flow and reduces the
translocation of toxic metals from roots to shoots. Moreover,
accumulation of Si in the cell wall of stems, leaves, and hulls
limits the transpiration of the cuticle with alternation in the
efficiency and function of the cell wall and consequently
increases the plant’s resistance against stresses [41]. Rizwan
et al. reported that silicon decreases cadmium uptake and
reduces the translocation of cadmium to shoots [42]. In the
case of silicon precipitation in shoots, silica precipitates in
water evaporation sites of the plant’s shoot as phytoliths. This
can be close to the epidermis of the plant shoot [42–44].
Additionally, silicon can shift theMn to the leaf blade causing
a homogeneticmechanism againstMn and then decreaseMn
uptake [45]. Thus, it can be estimated that beneficial impacts
on plants can be obtained by high deposition in shoots [46].
However, most deposition in plants depends on Si uptake
by roots [37]; therefore, plants with less ability to uptake
silicon could be deprived of silicon benefits [45]. The roots
are the first line exposed to heavy metals; this issue shows
the role of root anatomy in reducing heavy metal toxicity.
Apoplastic barriers in roots, including exodermis, epiblema,
and endodermis, can play an important role in reducing
heavy metal uptake and consequently diminishing metal
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toxins in plants [47]. Furthermore, extension of apoplastic
barriers, such as development of endodermis under metal
stresses, are among important mechanisms to prevent the
translocation of cadmium to aerial parts [48].Thismatter has
been reported in the rice plant [49]. Similar results obtained
from Qiong Zhong’s study on Avicennia reported that silicon
with expanding and improved apoplastic barriers in roots can
reduce Cd uptake in plants [47].

2.2. Mechanism Two: Changes in pH Value in Soil and
Plant Culture. The pH value plays an important role in bio-
availability and mobility of heavy metals in soil and culture
[50–54]. One of themainmechanisms of silicon amelioration
is the role of silicon in changing soil and growth medium’s
pH. Silicon compounds, like biosolids, increase the pH
value so that this increase can improve the absorption of
silicon. On the other hand, it can lead to an immobilization
and unavailability of heavy metals, such as Cd, in plants
[16] and also to a reduction of heavy metal bioavailability.
Organic materials and pH exist in soil, including soil sodium
metasilicate or alkaline pH, playing an important role in
the reduction of metal availability in soil and consequently
amelioration of metal toxicity to plants [39]. The results of
[55] show that reducing the toxicity of aluminum metal ions
by changing the pH in a medium can be one of the external
mechanisms in amelioration of Al by silicon in soybeans.
This can later lead to the unavailability and precipitation of
AL [30]. Moreover, silicon can facilitate metal transport in
plants. As a result, silicon with the formation of hydroxy
aluminum silicate complexes in shoots can increase the
transportation from root to shoot. Kopittke et al. (2017)
reported that detoxification of aluminum by silicon is related
to the formation of hydroxy aluminum silicates in roots [56].
However, this formation depends on pH [57], so that the
formation of hydroxy aluminosilicate reduces the pH value
to less than 4.0 [58].

It is seen that, in exposure tometal stress, such as extreme
concentration of Al, silicon accumulates in cell walls and
leads to a reduction in Al toxicity in the apoplasm. The
result of one experiment showed that Al with formation of
hydroxyl aluminum silicates in root apoplast can convert the
Al to a nontoxic form in the apoplast and ameliorate the
Al toxicity in the plant root. This issue indicates the silicon
mechanism to reduce metal toxicity in the apoplast. The rate
of HAS (hydroxy aluminum species) efficiency depends on
the enhancement of pH and high concentration of Al and Si
[58]. The pH value is an important factor in the formation of
HAS. Al toxicity often occurs in low pH, and HAS formation
does not have enough efficiency in low pH (<5) [58].

2.3. MechanismThree: Formation of Si Heavy Metals. Silicon,
in the first step, detoxifies the heavy metals in plants with
(1) solution chemistry mechanism (i.e., making complexes
with heavy metals) and (2) planta mechanism [1, 30, 59] (i.e.,
stimulating the organic acid exudate from plants to chelate
metals ions) [1, 30, 59]. In the solution chemistrymechanism,
silicon creates a compound by forming silicates and oxides
with heavy metals, which is caused by the unavailability of
Si in plants [59]. For instance, Si, in a complex formation of

Al-Si, decreases the toxicity of Al3+ [30, 56]. Additionally, it
decreases theAl availability [55] and reduces the freeAl by the
formation of the aluminum silicate compound in plant cells
[60]. The plant cell wall has an important site in colocalized
Al-Si in hypodermal and epidermal cells [61], which is shown
to be a major site for accumulation of silicon to make wall-
bound organosilicon compounds [62]. InvestigatingMinuar-
tia verna, Neumann et al. expressed that formation of Zn-
silicate precipitated in the leaf epidermis acts as an important
pathway for Zn detoxification [63]. There are different ideas
regarding the impact of silicon on the cell wall. In some
experiments on the cell wall, the results showed that silicon
could not significantly reduce the Al concentration, but they
indicated an exchange enhancement in Al-cell wall binding.
Therefore, it was concluded that silicon decreases the Al-cell
wall binding in the apoplast [58]. There are, however, other
researchers who attributed this factor to the reduction of alu-
mina biologic activities; they believe that Si could not reduce
Al concentration in the cell wall, but Si can decrease the ability
of Al biologic activity in the cell wall. This is assumed as a
factor in the reduction of aluminum efficiency in connection
with the cell wall, which reduces the toxicity of aluminum.
Prabagar et al. (2011) demonstrated that degradation of freeAl
by silicon in the cell wall can be an important factor to protect
the plant cells in P. abies [60] so that the reduction of Al
biological availability, hydroxy aluminum species, and silicic
acid is key in the formation of HAS in low pH [30]. Silicon
involved in the translocation of the cell wall is one of the
crucial mechanisms in the reduction of heavy metal toxicity
in plants [13, 64]. One experiment conducted by Gunes et
al. (2007) showed that silicon limited baron translocation
from root to shoot in spinach [65]. Formation of Si heavy
metals in ultrastructures revealed the role of Si in heavy
metal transport. The results of another experiment reported
that, in Cardaminopsis sp., silicon actively contributes to the
transportation of Zn to vacuoles. Through this process, Zn
precipitates to the cytoplasm with silicate formation. The
formation of Zn-silicate during such a fast process degrades
to SiO

2
and Zn immediately. Then, Zn is transferred to the

vacuole, and SiO
2
precipitates in the cytoplasm [17].Theother

pathway is related to plasma member and tonoplast forming
pinocytotic vesicles in which Zn is directly transferred from
extracellular fractions to vacuoles [39]. This is known as a
compartmentation mechanism in plants. In both cases, the
formation of Si heavy metals has a vital role in the digestion
and precipitation of metal ions. It can be concluded that
silicon can reduce the heavy metal mobility with chemical
interaction mechanisms, such as formation of Si heavy metal
[39].

2.4. Mechanism Four: Stimulation of Enzyme Activities. Met-
als ions, with distribution in photosynthesis electron trans-
fer (Phet) and reduction of net photosynthesis (Pn), may
lead to a severe impairment in photosynthetic metabolism
[66]. Severe impairment in photosynthetic metabolism is
expressed as an important factor in the generation of ROS
derivatives, such as H

2
O

2
, O−2, and OH [67] in chloroplasts,

mitochondria, and plasma membranes [68], which is a
primary response of plants to oxidative stress [69, 70]. An
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ROS compound is divided into two categories: (1) nonrad-
ical molecules, such as singlet oxygen (1O

2
) and hydrogen

peroxide (H
2
O

2
), and (2) free radicals. Free radicals include

hydroxyl radical (∙OH), superoxide anion (O2∙−), alkoxy
radical, perhydroxyl radical (HO

2
), reactive molecules, and

ions. Chloroplasts and mitochondria are major colonies in
generating O

2
and O−2 [68, 70]. The primary location in the

plant for generating ROS includes the reaction center of PS1
and PS11 in chloroplast thylakoid membranes. Generation
of ROS usually occurs with the excess of photons (p) in
environmental changes (environmental stress) when there is
an extra dose of CO

2
assimilation (A) (P > A) [71]. ROS

derivatives increase oxidative stress in plants, which can lead
to an increase in MDA and lipid peroxidation, disturbance
in enzyme activity and amino acids in cells, and protein
oxidation [68, 72, 73]. Thus, damaging impacts of ROS can
be summarized as follows:

(A) Morphological impacts, including (1) decreasing of
root and shoot growth and (2) leaf curling

(B) Biochemical impacts, such as (1) membrane damag-
ing, (2) permeability, and (3) protein structure

(C) Physiological impacts, such as (1) chlorosis, (2) pho-
tosynthesis, and (3) metal uptake [74, 75].

Silicon accumulation in different plant tissues, such as root,
stem, leaves, and hulls, can preserve the plant from abiotic
and biotic stresses [76]. Plants’ major defense mechanisms
to adjust to heavy metal stress and to protect plant cells
from oxidative stress are scavenging free radicals by ROS.
ROS stimulates enzyme activities, either antioxidant enzymes
or nonenzyme activities [77–80]. Antioxidant enzymes and
nonenzymes include superoxide dismutase (SOD), perox-
idase (POD), catalase (CAT), guaiacol peroxidase (GPX),
ascorbate peroxidase (APX), glutathione reductase (GR)
[65, 71, 81, 82], ascorbic acid (AA), flavonoids, reduced
glutathione, 𝛼-tocopherol, carotenoids, and osmolyte proline
[83, 84]. They can scavenge ROS in plants with some
chemical cycles, such as ascorbate-glutathione, water-water,
and peroxisomal glutathione peroxidase. And these chemical
cycles are in intercell organs including cytosol, mitochondria,
chloroplast, apoplast, and the peroxisomes [85–87]. They
can maintain plant integrity against metal stress inside
mitochondria, nuclei, and chloroplasts [28, 88]. In this case,
SOD converts superoxide anion to peroxide [63]. CAT
catalyzes the conversion of H

2
O

2
to water and O

2
[89, 90].

Ascorbic oxidase majorly contributes to the regulation of
GR andNADPH [91]. Glutathione, which shows intracellular
redox potential and ascorbate, would then be involved in
cytoplasmic and apoplastic signaling [92, 93]. In terms of
antioxidant activity, silicon leads to stimulation of antioxidant
enzyme activity in plant growth under heavy metal stress
[37]. This issue has been shown in many plants under
different metal stressors, including soybean [94], barley [65],
rice [95], A. thaliana [96], cotton [7], banana [97], Brassica
chinensis L [28], peanut [35], and ramie [98]. For instance,
the results obtained from Ajuga multiflora indicated that the
medium with extra dose of silicon to MS can increase shoot
regeneration by increasing the antioxidant enzyme activities,

such as SOD, POD, APX, and CAT [99]. However, other
sources indicated that silicon can impact the Mn uptake by
root and reduce Mn concentration in cucumber [100]. A
similar result was reported for sorghum [101]. In another
experiment on rice exposed to extreme doses of Zn, it is
shown that Si application increases the antioxidant activities,
such as SOD, CAT, and APX, while reducing the H

2
O

2
and

MDA content [95]. Feng et al. indicated that an extra dose of
Si applied in cucumber and exposed to manganese toxicity
increases antioxidant and nonantioxidant enzyme activities,
including SOD, APX, DHAR, GR, ascorbate, and GSH and
decreases the lipid peroxidation [102]. Additionally, Song et
al. obtained the same result in a study on cucumber exposed
to Mn [95]. In general, silicon plays an important role in
increasing the antioxidants in plants. However, the efficiency
of this mechanism relates to the concentration of heavy
metals so that in a high dose of metal toxicity antioxidant
activity may not work well [13].

2.4.1. Silicon via Ascorbate. Ascorbate, as a regulator with
small molecular weight, can regulate cell processes, including
those through cell cycle, those during cell expansion, and
senescence [103]. The main site of ascorbate is located in the
mesophyll cells of leaves with 40% storage in the chloroplast,
which is often decreased in stress conditions [70]. Ninety
percent ofAsA ascorbate is localized in cell cytoplasm, known
as a frontier line in the interference with external oxidant
damage [104]. It plays an important role in removing H

2
O

2

from water [105]. Additionally, reduced glutathione (GSH)
is an important component for the formation of ascorbate-
GSH (AsA-GSH), which consists of the bench of the enzyme,
including GSH sulfotransferases (GSTs), glutathione perox-
idase (GPX), and glutathione reductase (GR) [106]. GSH,
as a biothiol tripeptide, plays a vital role in cell tolerance
to metal stresses using two pathways: (1) antioxidant and
phytochelatins (PCs) regulating redox imbalance and (2)
reducing the concentration of free ion cellular, respectively
[107, 108], that is important to the amelioration of heavymetal
stress as the antioxidant [109, 110]. Glutathione peroxidase
(GPX, EC 1.11.1.9.), as one peroxidase enzyme, plays an impor-
tant role in the degradation of ROS compounds in cytoplasm
and apoplast area [68] and also biosynthesis of lignin [111].
GPX can scavenge ROS from intra- and extracellular media
[112]. Additionally, it would scavenge H

2
O

2
by reducing

the glutathione and regenerating GSSG using glutathione
reductase (GR) [70]. Ascorbate peroxidase (APX) (1.1.11.1) is
known to be the indicator of H

2
O

2
amounts in chloroplasts

and cytosol, which can be used to degrade the ascorbic acid
[105]. APX in the ascorbate-glutathione cycle degrades H

2
O

2

to water (as a cofactor) [70, 113] which can raise its activity
with some enzyme functions, such as SOD, CAT, and GSH
reductase [105]. APX is the main form of AsA-GSH cycle
which has the ability to scavenge H

2
O

2
to H

2
O and oxygen

withMDHAmolecular [105].The ability to scavenge H
2
O

2
in

APX ismuch stronger thanCAT [105, 114].The role of APX in
cell protection is crucial and can cover plant cells with five dif-
ferent isoforms, including cytosolic form (cAPX), chloroplast
stromal soluble form (s APX), and thylakoid (t APX) gly-
oxysome membrane form (gmAPX) [105]. The role of silicon
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is to increase the APX, GSH, and AsA activity under heavy
metal stress conditions. Silicon application also has a positive
impact on the ascorbate-glutathione cycle and can improve it
by increasing APX [28].Thus, it can be concluded that silicon
indirectly associates with the degradation of ROS com-
pounds, such as H

2
O

2
and OH to detoxify plant toxicity, and

consequently can increase the plant tolerance to metal stress.

2.4.2. Silicon via Glutathione. Glutathione, as a redox buffer,
plays an important role in the antioxidant mechanisms to
scavenge ROS by preserving the balance of cellular redox
[115]. Glutathione reductase (GR, EC, 1.6.4.2) is a compound
containing disulfide groups. It is categorized as flavoen-
zymes, which can work with some mechanisms, including
catalyzing and oxidizing flavin with NADH and disulfide. It
also interchanges some reactions by GSSG degradation in
disulfate [116], which has an important role in the synthesis
of phytochelatins and is an essential factor in sequestering
heavy metals [117]. Additionally, it has the ability to scavenge
ROS by converting it to sulfhydryl form GSH through
catalyzing glutathione disulfide [118], which has a major role
in the control of H

2
O

2
levels [119]. Glutathione reductase

occurs during the photosynthetic process for scavenging
and degradation of H

2
O

2
[120, 121] and was often localized

in chloroplasts. However, a small amount of that was also
found in mitochondria and cytosol, which play the catalyst
role in ASH-GSH cycle by mechanisms of degradation and
regeneration of GSH [122]. GSH plays an important role
in the cell system through certain mechanisms such as the
regulation of the sulfhydryl (-SH) group and GSTs [123]. In
addition, it is known to be one of the important antioxidant
and redox buffers and has an important role in cell division
[123]. GR andAPX, with the ascorbate-glutathione cycle, play
an important role in scavenging ROS by degrading H

2
O

2
, so

that ascorbate converts H
2
O

2
to H

2
O and GR in the first line

of this pathway and continues degrading H
2
O

2
to reduced

glutathione level in the last step [71, 124].

2.4.3. Superoxide Dismutase. The soluble enzyme dismutase
has an important duty in the dismutation of O−2 to O

2
and

H
2
O

2
[125]. It also plays a vital role in cell protection. In

the case of heavy metal toxicity, superoxide dismutase (SOD)
with enzyme code (EC 1.15.1.1) is known to be the first line
in the detoxification of ROS compound. Firstly the enzyme
causes a dismutation of O−2 and secondly it reduces the
possibility of OH formation [125]. The dismutation reaction
is conducted by three types of formations to use different
metals as cofactors in SOD, includingmanganese (Mn-SOD),
iron (Fe-SOD), and copper/zinc (Cu/Zn-SOD) [126]. The
SOD site, in a plant cell, can be located in the chloroplast,
mitochondria, cytosol, or peroxisomes. More precisely, the
sites of these three types of formations are normally in
peroxisomes; however, their specific sites are manganese in
mitochondria, iron in the chloroplast, and copper/zinc in
glyoxysomes, chloroplast, and cytosol [127, 128].

2.4.4. Catalase. In peroxisomes and photorespiration, cata-
lase acts as a dismutation factor in scavenging H

2
O

2
to oxy-

gen and H
2
O through the process of 𝛽-oxidation of fatty

acids. Oxidation has a vital role in the digestion of the ROS
components especially for H

2
O

2
[129, 130]. One molecule of

CAT can catalyze twomolecules ofH
2
O

2
to water and oxygen

[131]. Additionally, CAT can degrade some hydroperoxide
groups, including methyl hydrogen peroxide (MeOH). By
controlling the H

2
O

2
compound, CAT preserves cell walls

from lipid production and membrane damage. It is also
involved in photosynthesis and prevents chlorophyll degra-
dation [132].

3. Conclusion

Silicon is the second most abundant element in soil and the
earth’s crust. It cannot be found as a free element in soil and
always appears as a combination of oxygen and silicate and
other elements, which can be used in plants as silicic acid,
Si(OH)

4
. Silicon can be considered a quasi-essential element

to increase plant growth and development and to reduce
the abiotic and biotic stresses in plants through different
mechanisms. It also plays a positive role in increasing the
plant’s resistance against stress, which can be achieved by
silicon accumulation in plant parts, including roots stem,
leaves, and hulls.

Silicon is generally used in plant protection processes
against heavy metals in two mechanisms: avoidance and
tolerance. Avoidance mechanisms include silicon reducing
heavy metal uptake and availability by increasing the soil pH.
It can additionally chelate-heavy metal compounds with root
exudates, such as phenolics and organic acids, or decrease
the translocation of heavy metals in the plant. However, in
tolerance mechanisms, silicon elevates heavy metal stress
with various mechanisms, including compartmentalizing
heavy metals into cell walls and vacuoles, increasing enzyme
antioxidant and nonenzyme antioxidant activity, limiting
transportation in plants, homogeneously distributing metals
in the leaf surface, and chelating or making a heavy metal
barrier to reduce translocation in plants.The pH valuemech-
anism caused by silicon is one of the important mechanisms
for amelioration of heavy metals. Having additional silicon
in the soil causes the pH value to increase. It can be vital for
the immobility of heavy metals, may decrease heavy metal
uptake, and can finally reduce the precipitation of silicon
and heavy metals. Reduction of heavy metal uptake can be
done in two ways: chemical or physical pathways. In the
first way, stimulating the root exudate, silicon leads to an
increase in chelating heavy metals, which can then reduce
the ion uptake by plants. In the other case, plasmids in
root cells prevent the translocation of heavy metals from
root to shoot with building barriers. This can be counted
as a physical mechanism to reduce heavy metal uptake
in plants. The terms “chemical solution” and “planta” in
silicon mechanisms are very important; “planta” expresses
the increase in organic acid exuded from plants for chelation
purposes of metals ions, as previously discussed. However,
“chemical solutions” often occur in plant cells; they have
this ability to initiate a silicon-to-metals ion formation and
make a new compound of the silicon-heavy metal, which
can cause the precipitation of heavy metal and silicon in the
space between cells and phytoliths. The impacts of silicon
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on antioxidant enzymes’ and nonenzymes’ activities are
considered one of the important mechanisms to reduce the
negative effects of heavy metals in plants. This can effectively
protect plant cells from oxidative stress and scavenging
free radicals caused by ROS to stimulate both antioxidant
enzymes’ and nonenzymes’ activities, such as superoxide dis-
mutase (SOD), peroxidase (POD), catalase (CAT), guaiacol
peroxidase (GPX), ascorbate peroxidase (APX), glutathione
reductase (GR), ascorbic acid (AA), flavonoids, reduced
glutathione,𝛼-tocopherol, carotenoids, and osmolyte proline.
Antioxidants can scavenge ROS in plants with some chemical
cycles, such as ascorbate-glutathione, water-water, and per-
oxisomal glutathione peroxidase. And these chemical cycles
are in plant intercell organs, including cytosol, mitochondria,
chloroplasts, apoplast, andperoxisomes.Anothermechanism
related to silicon mediation under heavy metal stress is
gene expression. Physiologic alteration in plants related to a
change in gene expression and changes in plant structures
causes amelioration of heavymetals.This topic requiresmore
research to identify mechanisms and thus will be followed by
the authors in future research.

This article attempted to highlight the major mechanisms
of silicon in reducing and ameliorating heavy metals in
plants. Additionally, it tried to address the role of genes and
intracellular organs and nuclei in plants.
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