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,e study reported in this paper is the first meta-analysis aimed at obtaining statistical models for the fresh state behavior of self-
consolidating concrete (SCC) mixes which effectively reproduce the complex relationships between mix design and fresh state
performance. A database compiled with data frommore than 120 different sources was analyzed.,is study proves that SCC fresh
state performance is determined by three fundamental, uncorrelated properties: flow time, flow spread, and resistance to
segregation, which constitute a robust mathematical framework for the optimization of SCCmixes.,emodels obtained for these
fundamental properties have proved consistent and reproduce very well the general trends and interactions implicit in SCC mix
design recommendations, which in effect constitute the mathematical validation of recommendations well sanctioned by practice.
It has been proved that, if no supplementary cementitious materials (SCMs) are used, there is a remarkably narrow margin in
which the three fundamental properties of fresh SCCmixes can be simultaneously optimized.,emost stable mixes were found to
be associated with sand-to-coarse aggregate ratios of at least 1.1.,e flowability of SCCmixes in terms of both flow times and flow
spread can be optimized when the following conditions concur: w/c ratio of 0.45, SCMs content below 100 kg/m3, and sand
content not lower than 750 kg/m3. Furthermore, it was also proved that, in general, it is best to keep the dosages of super-
plasticizers (HRWRs) and viscosity-modifying agents (VMAs) below 1.7% and 0.7%, respectively, subject of course to variation
across the different types of products available.

1. Introduction

Self-compacting or self-consolidating concrete (SCC) does
not need any compaction and instead flows under its own
weight, entirely fills the required formwork, and provides a
homogeneous material upon placing [1–4]. Chemical ad-
mixtures are incorporated to provide higher workability and
increased performance [5], namely, superplasticizers or high
range water reducers (HRWR) and viscosity modifying
agents (VMA). Superplasticizers increase the workability of
the mix [6, 7], whilst VMAs are often added to control the
risk of segregation or, more generally, the stability of fresh
SCC mixes [8]. ,e most salient differences between SCC
and normal vibrated concrete in terms of mix design are
lower coarse aggregate contents, increased paste content,
lower water/powders ratio, an increased superplasticizer
dosage, and the addition of VMAs when necessary [9]. A

study summarizing eleven years of case studies where SCC
was used [10] also concluded that the maximum aggregate
size was between 16 and 20mm in around 70% of the cases,
and that, in most of them, Portland cement was blended with
one or more additions or supplementary cementitious
materials (SCMs), such as ground-granulated blast slag,
silica fume, pulverized fuel ash, or limestone powder.

,ree main characteristics are said to define SCC, most
usually referred to as filling ability, passing ability, and
stability or resistance to segregation [9], and are controlled
by the rheology of the fresh mix, with yield stress and plastic
viscosity as the governing rheological parameters [2,11–13].
,e terms “stability” and “resistance to segregation” are
sometimes used indistinctly, although stability is a broader
concept than resistance to segregation. Segregation is con-
cerned with concrete remaining homogeneous [9, 14], whilst
the term “stability” also includes the resistance to bleeding,
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surface settlement after casting, and separation of the mix
constituents during placement or “dynamic stability” [15].

A variety of different tests have been proposed for
characterizing the fresh state performance of SCC mixes.
,e most widely used tests are slump flow, V-funnel, J-ring,
and the L-box [9]. In the slump-flow test, the maximum
spread (SF, in mm) is measured along with the time it takes
for the mix to reach a spread diameter of 500mm (T500, in
seconds) to evaluate the flowability of the mix. Resistance to
segregation can be assessed during the slump-flow test by
means of the visual stability index (VSI) [16]. It is based on a
visual examination of the mix once it has stopped flowing,
and a value between 0 and 3 is assigned (0 for very stable
mixes showing no segregation and 3 for cases of severe
segregation). In the V-funnel test, the time it takes for the
mix to pass through the funnel is measured (Tv, in seconds)
as an indirect measure of the mix viscosity: higher Tv times
are indicative of higher viscosity values [17]. ,e passing
ability can be assessed by means of the J-ring test, in which
the mix passes through a set of bars and the difference in
height at both sides is measured. In the L-box test, the
blocking ratio (H2/H1, nondimensional) is informative of
both passing and filling ability [18].

Different mix design methods have been proposed for
SCC, which can be grouped in five different categories based
on their methodological approach [19]: empirical, based on
the compressive strength of concrete, based on the aggre-
gates packing, and based on paste rheology, and statistical
methods. Empirical methods were the first to be formulated,
and the first was proposed in 1995 by Okamura and Ozawa
[3], which keeps the fine and coarse aggregate content
constant, so that self-compactibility can be achieved by
adjusting only the water/powder ratio and the super-
plasticizer dosage. Methods based on aggregates packing
models follow a more theoretical principle, as they aim at
minimizing the voids in the combined aggregates mix, which
are to be filled with paste [20, 21]. Compressive strength
methods are more recent and determine the proportions of
SCC constituents based on compressive strength re-
quirements, although they require adjustments to all pa-
rameters in order to finalize the mix design [19]. Paste
rheology models, such as the one developed by Saak et al.
[22], was built on the assumption that the rheology of the
paste affects the flowability and the resistance to segregation
of the mix. ,ey postulate that there are minimum yield
stress and viscosity requirements in order to avoid segre-
gation. ,ese models can help to reduce the amount of trial
mixes required to adjust the mix proportioning and provide
a way to increase the quality control of the SCC [19]. Sta-
tistical methods are based on the application of multilinear
regression and other statistical techniques to the results
obtained from testing different SCCmixes, in order to derive
equations that relate the parameters obtained from fresh and
hardened state tests to the mix proportions and the type of
constituents used [23, 24].

Significant efforts have been made to try and rationalize
the SCC proportioning process based on the application of
statistical tools, mostly by fitting descriptive equations to a
set of experimental results obtained from different fresh state

tests [23–26]. In most of these studies, the equations re-
ported fitted very well the experimental results they were
based upon, yielding extremely high R2 values. However,
descriptive equations with very high R2 values must be
approached with caution, for a number of reasons. Firstly,
models built on data obtained from 20 to 30 mix designs are
based on sample sizes that, in the context of multivariate
statistics, are generally regarded as small [27, 28]. Secondly,
there is the issue of overdetermination or overfitting: when
statistical models are formulated in an effort to obtain an
almost perfect fit with observations, they tend to have
limited general validity [29]. Statistical models which have a
high level of accuracy in terms of goodness of fit are usually
the least robust when it comes to prediction and optimi-
zation, which is commonly known as the “accuracy paradox”
in data mining and machine learning [30, 31]. In contrast,
models derived from the analysis of a broader range of data
collected from different sources are less precise from a purely
predictive point of view (i.e. lower R2 values) but are often
substantially more robust in representing general trends and
complex interactions, thus providing a more stable frame-
work for optimization. To date, no research concerning SCC
has been undertaken from this perspective. ,e study re-
ported in this paper is the first of its kind concerning SCC,
and it aimed at obtaining statistical models for the fresh state
behavior of SCC which do not necessarily produce highly
accurate predictions but rather are effective in reproducing
the relationships between any SCC mix design and its fresh
state performance and therefore have general validity for use
in the automated optimization of SCC mixes.

2. Methodology

A meta-analysis is a type of analysis that involves collecting
experimental results from multiple different studies and ag-
gregating them to form a larger set of results [32].,is way, the
variability that exists amongst SCCmixes produced by different
people, using different materials and equipment, following
different mixing regimes, and under different conditions, is
embedded in the database used for the analysis. After ade-
quately treating and cleaning the database, data mining
techniques, namely, principal component analysis (PCA) and
multiple linear regression [33–35], were applied to extract
meaningful information from this variability. An overview of
the different stages of this study is shown in Figure 1.

2.1. Data Collection. For this research, data were collected
from previous studies concerned with SCC. ,e main
challenges to address when compiling the database were
selecting what studies could be used so that the compiled
database was sufficiently representative and treating the
information that is sometimes incomplete [36]. ,e size of
the database (sample size or number of cases) was also
carefully considered. In multivariate statistics, sample sizes
of less than 30 cases are generally considered insufficient, but
excessively large samples can also cause problems as sample
sizes over 1000 tend to make tests of statistical significance
too sensitive, which causes most relationships to be
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statistically significant when in reality they are not neces-
sarily so [28].,erefore, it was established that the size of the
database had to be in the range of 30 to 1000 cases.

2.2. Principal Component Analysis (PCA). Each individual
datum or case in the database consisted of information
regarding themix constituents and their relative proportions
(mix design parameters) and the results from different fresh
state tests (fresh state parameters). Fresh state parameters
are not independent variables. For example, the Tv time
obtained from the V-funnel test and the T500 time obtained
from the slump-flow test are markedly correlated with one
another. When two or more variables that describe the same
phenomena are highly correlated, they effectively constitute
indirect measures of the same fundamental property or
latent variable [37]. It is possible to group such variables in a
reduced set of uncorrelated variables or factors, which
compress the original information and eliminate the diffi-
culties associated with multicollinearity [28, 38]. In this
study, principal component analysis (PCA) was applied to
the fresh state parameters to extract three factors, after
centering and scaling all parameters to unit variance, and a
Varimax rotation was applied [37, 39].

2.3. Multiple Linear Regression. Multiple linear regression
was used for modelling the relationships between the mix
design parameters (predictors) and each of the three
factors derived from the PCA representing the fresh state
performance of SCC mixes (responses). Initial models
that included all pairwise interactions between the mix
design parameters were considered, and stepwise re-
gression algorithms [33] were applied to these initial
models in order to detect and discard any terms and
interactions that were not statistically significant. ,e
resulting models were then described and discussed based
on their visualization by means of contour plots, in order
to verify that they were consistent with SCC mix design
recommendations [9], which in effect constitutes the
mathematical validation of recommendations well sanc-
tioned by practice.

3. Construction and Preparation of
the Database

,e database prepared for this study consisted of informa-
tion extracted from 124 different papers published between
2001 and 2016 and in total comprised 652 SCC mixes.
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Figure 1: Overview of the methodology followed in this study.
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,e main source of the data was http://www.sciencedirect.
com with the search terms being “self-compacting concrete”
and “self-consolidating concrete.”,e complete list of sources
from which the database was compiled is given in the Sup-
plementary Material File that accompanies this paper.

3.1. Variables in the Database. ,e mix design parameters
included in the database were the relative amounts, in kg/m3,
of water, cement, limestone powder, fly ash, silica fume, slag,
sand, coarse aggregate, superplasticizer or high-range water
reducer (HRWR), and viscosity-modifying admixture
(VMA) and the maximum aggregate size, in mm. Some of
these parameters, namely, limestone powder, fly ash, silica
fume, and slag, were zero in a high percentage of cases.
Having so many variables that follow highly skewed dis-
tributions would have compromised the robustness of the
regression models, and therefore, a transformation of these
variables was necessary before proceeding with the analysis.
It was decided to group them all in one single parameter,
supplementary cementitious materials (SCMs), which cor-
responded to the total amount of powders other than ce-
ment, instead of maintaining them as separate variables.,is
simplification was a necessary compromise, but the
grouping of variables has proven a simple and effective
approach to handle the problems associated with highly
skewed datasets [40].

,e fresh state parameters initially included in the da-
tabase were from the slump-flow test, the maximum spread
(SF, in mm), the T500 time (in seconds), and the visual
stability index (VSI, ranging between 0 and 3); from the
V-funnel test, the Tv time (in seconds); from the L-Box test,
the ratio H2/H1 (nondimensional); and from the J-ring test,
the maximum spread (SFJ, in mm) and the passing ability
index (PJ, nondimensional). ,e information contained in
the database is summarized in Table 1 (mix design pa-
rameters) and Table 2 (fresh state parameters). In both ta-
bles, the minimum, maximum, and average values are
shown for all parameters, after the database was cleaned and
treated as described in the following section.

3.2. Cleaning of the Database and Treatment of Missing Data.
After a preliminary examination of the original database, it
was concluded that some extreme cases had to be removed to
ensure that the database remained sufficiently representative
of the wide range of SCC mixes most commonly used in
practice. ,e database was cleaned in a systematic way to
avoid the introduction of unconscious bias: for all param-
eters, the average (m) and standard deviation (s) were cal-
culated, and the values outside the range betweenm − 2s and
m + 2s were considered outliers [41]. ,is resulted in the
following “filtering” rules, and those cases that did not satisfy
all of them were discarded:

(i) Water/binder ratio between 0.25 and 0.65
(ii) Total binder content between 300 and 650 kg/m3

(iii) Cement content between 150 and 550 kg/m3

(iv) Coarse aggregate between 400 kg/m3 and 1100 kg/m3

(v) Total aggregates content between 1250 kg/m3 and
2050 kg/m3

It was also necessary to treat those cases where the in-
formation was incomplete, since not all sources reported
values for all fresh state parameters. ,e removal of all cases
with partially missing data was not a viable option as it
would have negatively affected the statistical power of the
analysis, but the fresh state parameters from the J-ring test
could not be kept in the analysis because their percentages of
missingness were very high (86%). Data mining techniques
for the treatment of missing data, such as multiple impu-
tation, could be applied to variables with a missingness
percentage of up to 30% [28, 42]. Since the percentage of
missing values was higher than that for all fresh state pa-
rameters initially considered, it was necessary to remove
some of the incomplete cases in the database to reduce the
percentage of missingness prior to the multiple imputation
process. It was decided to remove half of the cases with
missing data following an automated, fully randomized
process. Table 2 shows the final percentage of missingness,
together with the minimum, maximum, and average values
for each of the fresh state parameters. Multiple imputation
was then applied to complete the missing data, performing a
regression imputation based on the predictive mean
matching algorithm, where missing values were estimated
based on the relationships amongst the different variables in

Table 1: Mix design parameters after cleaning the database.

Variables Minimum Maximum Average
Cement (kg/m3) 180 500 367
SCMs (kg/m3) 58 378 120
Water (kg/m3) 126 265 190
Fine aggregate (kg/m3) 392 1135 904
Coarse aggregate (kg/m3) 420 1187 705
Maximum aggregate size (mm) 8 20 16
HRWR (kg/m3) 0.8 13 5
VMA (kg/m3) 0 6 0.2

Table 2: Fresh state parameters after randomized removal of in-
complete cases.

Variables Minimum Maximum Average Missing (%)
SF (mm) 565 830 686 0
T500 (s) 0.5 7 2.6 25
TV (s) 1.2 23 7.8 28
H2/H1 0.3 1 0.85 26
VSI 0 2 0.5 25

Table 3: Factors extracted by PCA of the fresh state parameters.

Fresh state parameters F1 F2 F3
SF (mm) 0.075 0.862 −0.153
T500 (s) 0.821 −0.103 −0.006
TV (s) 0.854 0.008 −0.038
(H2/H1)−1 0.197 −0.784 −0.214
VSI 0.022 −0.022 −0.981
Explained variance 32.2% 24.8% 20.1%
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the dataset [43]. �is method was chosen because it suc-
cessfully handles variables inside prede�ned boundaries,
such as the L-boxH2/H1 ratio (between 0 and 1) and the VSI
(between 0 and 3).

4. Factor Analysis and Modelling

4.1. Principal Component Analysis of Fresh SCC Properties.
As a result of the PCA on the fresh state parameters, three
factors referred to as F1, F2, and F3 were obtained. Each of
these factors was a linear combination of the original
variables, centered and scaled to unit variance, where the
coe�cients that multiply each fresh state parameter
are known as loadings and have absolute values between
0 and 1.

�e loadings obtained are shown in Table 3 and give a
clear indication of the physical interpretation of F1, F2, and
F3. �e variables with the highest loadings on F1 were T500
from the slump-�ow test and Tv from the V-funnel test, and
therefore, F1 directly represents the �ow times. On the
contrary, F2 was mostly determined by the spread as
measured in the slump-�ow test and the L-box ratio, and
therefore, it can be said to represent the spread of the �ow.
F3 was clearly determined by the VSI, and therefore, it
represents the resistance to segregation. Bearing inmind that
these three factors are, by the very nature of PCA, completely
uncorrelated, it follows that these loadings mathematically
proved that there are three fundamental properties de-
scribing the performance of fresh SCC mixes: the �ow time,
the �ow spread, and the resistance to segregation, and that
they are uncorrelated to one another.

�is separation of the original fresh state parameters into
three di�erent factors derived by PCA is shown graphically
in Figure 2, where the loadings are projected unto two
biplots: one where the axes correspond to F1 and F2, and one
where the axes correspond to F2 and F3.

Table 3 shows the percentage of variance explained by
each of these three factors, referred to the total variance in
the dataset formed by all the values of fresh state parameters.
Added together, the total explained variance was 77%, which

was high enough to conclude that F1, F2, and F3 adequately
reproduce the information in the database [44].

4.2. Multiple Linear Regression Models. �e �nal regression
models obtained for the relationships between F1, F2, and F3
(responses) and the mix design parameters (predictors) are
summarized in Tables 4 and 5. �e terms that were found to
be statistically signi�cant, as well as the �tted coe�cients
multiplying each of these terms in the regression models, are
shown in Table 5.

�e three models were checked to ensure that the as-
sumptions of normally distributed residuals, homoscedas-
ticity, and no multicollinearity were satis�ed [28]. Table 4
shows the outcomes of the statistical tests corresponding to
the aforementioned diagnostics. �e F-test of overall sig-
ni�cance yielded p values lower than 0.05 for the three
models, con�rming that the relationships between responses
and predictors were statistically signi�cant. Furthermore,
the corresponding lack-of-�t tests [45] yielded p values
signi�cantly higher than 0.05, thus con�rming that no al-
ternative models could better reproduce the information in
the database.

5. Interpretation and Discussion of the Models

�e models obtained for F1, F2, and F3 were visually ex-
amined by means of contour plots, where average values
were plotted against the mix design parameters. Given the
multivariate nature of the models developed, it was im-
possible to visualize at the same time the trend followed by
any of these factors with respect to all mix design param-
eters. In consequence, the contour plots in Figures 3–8 are
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Figure 2: Biplots resulting from the principal component analysis (PCA).

Table 4: Summary of the models developed: statistical tests.

Model R-squared
(goodness-of-�t)

Overall signi�cance
F-test: p value

Lack-of-�t
test: p value

F1 0.61 <0.0001 0.35
F2 0.48 <0.0001 0.73
F3 0.65 <0.0001 0.31
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Table 5: Summary of the models developed: statistically signi�cant terms and �tted coe�cients.

F1 F2 F3
Term (×10−3) Term (×10−3) Term (×10−3)
(Constant) −11660.00 (Constant) 7000.00 (Constant) −4600.00
HRWR 863.00 HRWR 1060.00 MAS 455.00
VMA2 −44.20 SCM 40.40 MAS2 −13.56
Cement 34.27 Sand −18.92 Coarse VMA 3.51
Coarse 10.62 HRWR2 −18.25 Sand VMA −2.44
Water HRWR 1.38 Cement VMA 11.91 Water HRWR 2.32
HRWR SCM −0.65 Coarse VMA −6.34 Sand HRWR −0.48
Cement HRWR −0.62 MAS2 4.92 Water2 −0.29
Cement MAS 0.60 Water HRWR −2.71 Water cement 0.25
SCM MAS 0.60 HRWR SCM 1.02 Water SCM 0.24
Sand HRWR −0.57 Coarse HRWR −0.43 Cement SCM 0.10
Coarse HRWR −0.43 Water cement −0.24 Sand SCM −0.07
Coarse MAS −0.21 Water SCM −0.18 SCM2 0.05
Sand MAS −0.12 Coarse MAS −0.18 Coarse SCM −0.05
Cement2 −0.04 Water2 0.13 Cement coarse −0.04
SCM2 0.03 Water sand 0.06 Sand cement −0.03
Water coarse −0.02 Cement sand 0.04 Coarse2 0.01
Cement coarse −0.01 Coarse SCM −0.02 Sand2 0.01
Coarse SCM −0.01 Cement coarse 0.01 Sand coarse 0.01
Sand coarse 0.01 Sand2 −0.01
All variables are in kg/m3, except MAS, which is the maximum aggregate size, in mm.
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Figure 3: E�ect of the paste composition on the quickness of the �ow (F1).

6 Advances in Civil Engineering



partial representations of the models developed and cannot
be regarded in isolation.�eir detailed discussion con�rmed
that the models obtained were consistent and, in fact,
reproduced very well the general trends and interactions
implicit in SCC mix design recommendations and in pre-
vious literature.

5.1. Factor F1, or FlowTime. Figure 3 shows the �ow time, as
represented by factor F1, with respect to di�erent variables
related to the composition of the paste. �e line that cor-
responds to F1 � 0 is representative of the average �owability
of the mixes in the database and separates better-than-
average (in red) and worse-than-average (in green) mixes
in terms of their �owability.

Figure 3(a) shows that increasing the water content
reduces F1, that is, the �ow times, and is therefore consistent
with the fact that higher water contents are generally as-
sociated with higher �owability. More interestingly, it is
observed that a water content of 190 kg/m3 proves su�cient
to keep the �ow times low, irrespective of the cement
content, and in consequence, higher water contents would
not be justi�ed on the sole grounds of improving �owability.
For that particular water content, an average �owability is
obtained with a cement content of 425 kg/m3, corresponding

to a w/c ratio of 0.447. For water contents below 190 kg/m3,
the maximum cement contents and the corresponding w/c
ratios to ensure an average �owability (F1 � 0) can be
obtained. In general, to achieve better-than-average �ow-
ability, there is a lower limit to the w/c ratio, which is be-
tween 0.44 and 0.48 depending on the cement content.

Figure 3(b) shows that the addition of SCMs tends to
increase the �ow times, as they tend to adsorb additional
water due to their small particle size and high speci�c
surface, although there is of course signi�cant variation
amongst di�erent SCMs. However, Figure 3(b) shows that
relatively low dosages of SCMs are compatible with good
levels of �owability. When the cement content is 425 kg/m3,
the incorporation of SCMs in dosages not higher than
60 kg/m3 does not have a noticeable e�ect on �owability. For
cement contents lower than 425 kg/m3, higher dosages of
SCMs can be introduced without being detrimental to
�owability. Considering both Figures 3(a) and 3(b), it can be
concluded that the addition of SCMs in dosages of up to
100 kg/m3, when the cement content is between 350 and
500 kg/m3, is generally compatible with better-than-average
�owability.

�e dosage of SCMs also in�uences the e�ectiveness of
chemical admixtures, as shown in Figures 3(c) and 3(d),
although there is important variation across di�erent
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Figure 4: E�ect of the amount of aggregates and powders on the quickness of the �ow (F1).
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HRWRs and VMAs depending on their formulation.
Figure 3(c) shows that, when the SCMs content is below
100 kg/m3, good �owability can be achieved using no more
than 8 kg/m3 of HRWR, which means that in general there is
no need to dose HRWR beyond 1.6% over weight of cement.
Figure 3(d) shows that, as long as the SCMs content is
limited to 100 kg/m3, VMA is not necessary to achieve
better-than-average �owability. For SCMs contents higher
than 100 kg/m3, the required VMA content to maintain
�owability increases linearly.

In summary, the contour plots in Figure 3 prove that, to
attain good �owability, the following recommendations are
valid in general: (i) there is no need to increase water content
beyond 190 kg/m3; (ii) for cement contents between
350 kg/m3 and 500 kg/m3, the dosage of SCMs should not be
higher than 100 kg/m3; (iii) HRWR dosages below 1.6% over
weight of cement should su�ce; and (iv) when SCMs are
added above 100 kg/m3, the use of VMA is necessary.

�e contour plots in Figure 4 complement those in
Figure 3 by incorporating the e�ect that the relative amounts
of sand and coarse aggregate have on �owability. Figure 4(a)
shows that, for cement contents between 400 kg/m3 and
500 kg/m3, good �owability is associated with coarse ag-
gregate contents above 600 kg/m3 or 700 kg/m3, depending
on the cement content. When the cement content is

425 kg/m3, at least 700 kg/m3 of coarse aggregates are nec-
essary to keep the �ow times low. On the contrary, when
the cement content is not higher than 375 kg/m3, variations
in the coarse aggregate content are not decisive to con-
trolling �owability. When powders other than cement are
present in the mix, Figure 4(a) must be interpreted together
with Figure 4(b), which shows that the impact of coarse
aggregate content on �ow times gains signi�cance when the
SCMs content is increased. When SCMs are added at
100 kg/m3, better-than-average �owability requires coarse
aggregate contents higher than 800 kg/m3. However, a wider
range of coarse aggregate contents is compatible with good
�owability when the SCMs content is less than 60 kg/m3. In
summary, Figures 4(a) and 4(b) together show that the
coarse aggregate content is not key to controlling �owability
when the relative amounts of cement and SCMs are below
375 kg/m3 and 60 kg/m3, respectively.

Concerning the amount of sand, Figure 4(c) shows that
better-than-average �owability generally requires sand
contents above a certain minimum, which is 750 kg/m3

when the cement content is in the region of 350 kg/m3 but
increases to 900 kg/m3 for higher cement contents. However,
when powders other than cement are added to the mix,
Figure 4(d) shows that the minimum sand content required
to maintain good �owability increases beyond 750 kg/m3. In
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Figure 5: E�ect of the paste composition on the �ow spread (F2).
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particular, if SCMs are incorporated at 100 kg/m3, the
minimum sand content required to keep the �ow times low
is 900 kg/m3.

In summary, the contour plots in Figure 4 prove that, to
optimize �owability, the following recommendations are
generally valid: (i) sand should not be proportioned below
750 kg/m3; (ii) for cement contents in the region of
425 kg/m3, theminimum sand and coarse aggregate contents
are 900 kg/m3 and 700 kg/m3, respectively, which corre-
sponds to a total of 1600 kg/m3; and (iii) when up to
100 kg/m3 of SCMs are added, the minimum sand and
coarse aggregate contents required are 900 kg/m3 and
800 kg/m3, respectively, which corresponds to a total ag-
gregates content of 1700 kg/m3. �is last combination is the
best as a general recommendation, since it is the most likely
to yield better-than-average �owability for cement contents
between 350 and 550 kg/m3 and SCMs contents up to
100 kg/m3.

5.2.FactorF2, orSpreadof theFlow. �e contour plots for the
�ow spread, as represented by factor F2, in relation to the
composition of the paste, are given in Figure 5, where the
line F2 � 0 separates the regions corresponding to high
spread mixes (in green) and low spread mixes (in red).

Figure 5(a) shows that better-than-average �ow spread levels
are associated with water contents below 190 kg/m3 as long
as SCMs are not added in excess of 100 kg/m3. Increasing the
SCMs content can improve the spread of the �ow, but only
when the water content is low. In fact, the addition of SCMs
at 100 kg/m3 only has a noticeable e�ect on �ow spread when
the water content is not higher than 150 kg/m3.

Figure 5(b) shows that, in general, variations in the
cement content do not have an important e�ect on the �ow
spread. However, increasing the cement content above
425 kg/m3 can slightly improve the �ow spread when SCMs
are added at relatively high dosages, in the region of
100 kg/m3.�e e�ect of HRWR dosage, on the contrary, is of
more signi�cance. Figure 5(c) shows that, for SCMs contents
below 100 kg/m3, there is no need to increase the HRWR
dosage beyond 6–8 kg/m3 to obtain better-than-average �ow
spread levels, which is consistent with Figure 3(c). �at
corresponds to an average HRWR dosage of 1.7% over the
weight of cement.�is is consistent with the de�nition of the
optimal dose or saturation point of superplasticizers, which
is usually between 1.5% and 2% [46], and therefore, the
models obtained for F1 and F2 prove that, in order to
optimize both �ow times and the �ow spread of SCC mixes,
the use of HRWRs beyond their saturation points is very
rarely justi�ed. Concerning VMA, Figure 5(d) shows that
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Figure 6: E�ect of the aggregates and powders on the �ow spread (F2).
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the �ow spread can be negatively a�ected if the VMA dosage
is higher than 1 kg/m3 in the absence of SCMs, or higher
than 2.5 kg/m3 when the SCMs content is 100 kg/m3 (0.3%
and 0.7% by weight of cement, respectively). In summary,
this meta-analysis proves that, generally, the maximum
dosage for HRWRs and VMAs is 1.7% and 0.7% by weight of
cement, respectively, subject of course to variation across the
di�erent types of products available.

Figure 6 shows the e�ect of the aggregates mix on the
�ow spread. In general, changes in the coarse aggregate
content do not make a signi�cant di�erence in terms of �ow
spread as long as the sand content is kept between 700 and
1000 kg/m3, as can be observed in Figure 6(a). A reduction in
maximum aggregate size can slightly improve the �ow
spread, as shown in Figure 6(b), but only when the coarse
aggregate content is 900 kg/m3 or higher.

As already discussed in relation to Figure 5, increasing
the SCMs content has generally a positive e�ect on the
spread of the �ow, particularly for low water contents.
Figure 6(c) shows that the e�ect of the addition of up to
100 kg/m3 of SCMs on �ow spread is not sensitive to changes
in the coarse aggregate content. However, the e�ect of
limestone powder is of particular relevance, as observed in
Figure 6(d), which shows that optimal levels of �ow spread

were generally associated with limestone powder contents of
at least 50 kg/m3.

5.3. Factor F3, or Segregation Resistance. �e contour plots
for the stability against segregation, as represented by factor
F3, in relation to the composition of the paste, are presented
in Figure 7.

Figure 7(a) shows that, for cement contents above
350 kg/m3, adequate stability is associated with water con-
tents not lower than 180 kg/m3, and that the segregation
resistance of the mix can be improved by increasing both.
However, it has been established in previous sections that
water contents of 190–200 kg/m3 are generally inadequate
from the point of view of optimizing the �ow spread.
�erefore, by adjusting the water and cement contents only,
there is only a narrow margin where the three factors F1, F2,
and F3 can be all optimized. �is is in agreement with the
fact that SCCmixes are highly sensitive to variations in water
content [47]. Figure 7(b) shows that incorporating SCMs to
the mix can be a more e�ective strategy, as an increase in
SCMs and/or cement contents generally yields more stable
mixes. �is positive e�ect of SCMs on stability is noticeable
when they are added in dosages above 50 kg/m3 and is most
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Figure 7: Stability of the fresh mix with respect to changes in paste composition (F3).
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signi�cant when added between 100 kg/m3 and 200 kg/m3.
When added at those levels, SCMs also moderate the sen-
sitivity of the mix to variations in the HRWR dosage, as can
be observed in Figure 7(c). However, as discussed in the
previous sections, only SCMs contents below 100 kg/m3 are
compatible with optimal �owability, and their e�ect on
stability is only noticeable when the cement content is
425 kg/m3 or above. �e incorporation of VMA improves
the mix stability, and Figure 7(d) shows that the addition of
SCMs above 50 kg/m3 reduces the VMA dosage required to
improve stability, thus improving its e�ectiveness.

Figure 8 completes the discussion by examining the
e�ect of the aggregates on the resistance to segregation, for
di�erent contents of cement and SCMs.

Figure 8(a) shows that, in general, high cement contents
combined with high sand contents tend to compromise
stability. When cement is dosed in the region of 350–
400 kg/m3, changes in sand content alone do not have a
signi�cant impact on the mix stability. However, for higher
cement contents, sand needs to be proportioned at no more
than 750 kg/m3 in order to maximize the resistance to
segregation. Figure 8(b) shows that the addition of SCMs
tends to improve the mix stability, and in that respect, it is
consistent with what has been discussed in relation to

Figure 7. In particular, it can be observed that the addition of
100 kg/m3 of SCMs can yield very stable mixes when the
sand content is relatively low.

Figure 8(c) is consistent with Figure 8(a) in showing that
high cement contents combined with high coarse aggregate
contents yield the most unstable mixes and limits the coarse
aggregate content to 600 kg/m3 in the absence of SCMs in
order to optimize stability. Considered together, Figures 8(a)
and 8(c) prove that, in very stable mixes, sand and coarse
aggregate contents are not too dissimilar, especially if the
cement content is relatively high. In other words, the model
developed for F3 implicitly reproduces the e�ect that the
sand-to-coarse aggregate ratio has on cohesion and therefore
stability. From these �gures, it is obtained that, for better-
than-average stability, the sand-to-coarse aggregate ratio is
at least 1.15. Also, Figures 8(a) and 8(b) together indicate
that the advantageous e�ect of SCMs on stability is maxi-
mized when the total aggregates content is relatively low,
which is equivalent to the more general recommendation to
increase the relative volume of paste. Figure 8(d) shows that
variations in the maximum aggregate size between 12mm
and 20mm are not key to segregation resistance, although
the range between 15mm and 18mm is the most compatible
with high levels of stability.
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Figure 8: E�ect of the dosage of aggregates and powders on the mix stability (F3).
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6. Conclusions

,is paper presents the results of a meta-analysis of SCCmix
designs and their fresh state performance by means of
multivariate statistics methods. ,e models obtained for F1,
F2, and F3 reproduce the relationships between the fun-
damental characteristics of fresh state performance of SCC
mixes and their composition and are applicable to the SCC
mixes most common in practice. ,e most relevant con-
clusions of this study are as follows:

(i) ,e PCA on the fresh state parameters proved that
there are three fundamental properties which describe
the fresh state performance of SCC: flow time (F1),
flow spread (F2), and resistance to segregation (F3).
,ese three dimensions constitute a robust mathe-
matical framework for the optimization of SCCmixes.

(ii) ,ree models relating F1, F2, and F3 to the mix
design parameters were developed by means of
multiple linear regression analysis. Contour plots
were used to discuss how changes in the mix design
affect the fundamental properties of fresh SCC
mixes. ,ese models were found to reproduce very
well the general trends and interactions implicit in
SCC mix design recommendations and in previous
literature, which in effect constitutes the mathe-
matical validation of recommendations well sanc-
tioned by practice.

(iii) ,e flowability of SCC mixes in terms of both flow
times and flow spread can be optimized when the
following conditions concur: w/c ratio of 0.45,
SCMs content below 100 kg/m3, and sand content
not lower than 750 kg/m3. Furthermore, it was
concluded that, in general, it is best to keep the
dosages of HRWRs and VMAs below 1.7% and
0.7%, respectively.

(iv) It was proved that, if no SCMs are used, there is a
remarkably narrow margin where the three fun-
damental properties of fresh SCC mixes can be
simultaneously optimized. ,e highest levels of
segregation resistance were generally associated
with sand-to-coarse aggregate ratios of at least 1.15,
and increasing the cement and/or SCMs contents
was found to yield more stable mixes at the same
time it moderates their sensitivity to variations in
the dosage of chemical admixtures.
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