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We use the scalar field constructed in phase space to analyze the analogous Stefan-Boltzmann law and Casimir effect, both of them
at finite temperature.The temperature is introduced byThermo Field Dynamics (TFD) formalism and the quantities are analyzed
once projected in the space of coordinates. We show that using the framework of phase space it is possible to introduce a thermal
energy which is related to temperature as it vanishes when the temperature tends to zero. In fact given such a correlation the
formalism of TFD is equivalent when project is in momenta space when compared to coordinates space.

1. Introduction

Eugene Paul Wigner [1, 2] introduced in 1932 the first formal-
ism to quantummechanics in phase space,motivated by find-
ing a way to treat transport equations for superfluids. Wigner
formalism allows mapping between quantum operators, say
A, defined in the Hilbert space, S, with classical functions,
say 𝑎�푤(𝑞, 𝑝), in phase space Γ, through the ∗ being the star-
product or Moyal-product. The opposite problem, i.e., from
a classical function finding the corresponding operator, is
accomplished by Weyl mapping. The main motivation to
define a given physical theory in phase space is its natural
interpretation as demonstrated by classical mechanics. It is
not a simple task; for instance, the uncertainty principle
is problematic to be formulated. In addition in Wigner’s
approach there is no true probability distribution. On the
other hand a general framework such as the phase space
allows one to analyze a certain system under a different
perspective.

The star-product has been explored in phase space in
different ways. Particularly, it has been used to define oper-
ators like 𝑎�푤(𝑞, 𝑝)∗ of interest to study irreducible unitary
representations of kinematical groups in phase space [3]. In
case of nonrelativistic symmetries, this leads to a Schrödinger

equation in phase space, where the wave function is directly
associated with Wigner function, so with full physical mean-
ing. In this formalism of quantummechanics, the observables
are represented by operators of type 𝑎 = 𝑎�푤⋆, which are
used to construct a representation of Galilei symmetries.
The Wigner function is given by 𝑓�푤(𝑞, 𝑝) = 𝜓 ⋆ 𝜓† where𝜓 = 𝜓(𝑞, 𝑝) are the wave functions, solutions of Schrödinger
equation represented in phase space. Since it is a theory
of representation, this formalism has been generalized to
the relativistic case, leading to the Klein-Gordon and Dirac
equations in phase space [4]. This method has been applied
successfully, for instance, to the analysis of abelian gauge
symmetries [5], describing the dynamics (interaction) in the
formulation of quantum theory in phase space.

Although the quantum field theory has successfully been
applied to several systems, it does not take into account
the temperature of such systems. This is a fundamental
problem since all macroscopic features of a quantum model
are related to temperature. Among all schemes to introduce
temperature in a physical theory we cite two ways. The first
one is to interpret time as temperature by a Wick rotation
[6]. This approach is problematic when one is dealing with a
time-evolution of a physical state. The second one the so-
called Thermo Field Dynamics (TFD) formalism; it is a
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natural way to deal with dynamical systems. It preserves
the time-evolution once the temperature is identified with
a rotation in a duplicated Fock space [7]. In this article we
explore how to implement TFD in phase space; particularly
we analyze the scalar field in phase space at finite temperature.
The Casimir effect for scalar field in phase space at zero and
finite temperature is calculated.

The Casimir effect [8] is measured when two parallel
conducting plates are attracted due to vacuum fluctuations.
Although the first application has been developed for the
electromagnetic field all quantum fields should exhibit this
phenomenon. In fact, it was demonstrated that in nonrela-
tivistic fields such as in Schrödinger equation the Casimir
effect is present [9]. Particularly for nonrelativistic fields such
an effect is physical only at finite temperature. Sparnaay [10]
made the first experimental observation of the Casimir effect.
Subsequent experiments have established this effect to a high
degree of accuracy [11, 12].

The article is divided as follows. In Section 2, the sym-
plectic Klein-Gordon field is introduced. In Section 3, we
show the canonical quantization of the scalar field. Then,
in Section 4, we recall the ideas of Thermo Field Dynamics
formalism. In Section 5, we calculate the energy-momentum
tensor of the symplectic scalar field and in Section 6 we
derive the Stefan-Boltzmann-like law and the Casimir effect
at finite temperature. Finally, in the last section we present
our conclusions.

2. Symplectic Klein-Gordon Field and
Wigner Function

Let us define the star-operator as

𝐴 = 𝐴 (𝑞, 𝑝) ⋆
= 𝐴 (𝑞, 𝑝) exp[𝑖ℏ2 (

←󳨀𝜕𝜕𝑞
󳨀→𝜕𝜕𝑝 −

←󳨀𝜕𝜕𝑝
󳨀→𝜕𝜕𝑞)]

= 𝐴(𝑞 + 𝑖ℏ2 𝜕�푝, 𝑝 − 𝑖ℏ2 𝜕�푝) ,
(1)

and hence we can derive the following operators:

𝑃̂�휇 = 𝑝�휇⋆ = 𝑝�휇 − 𝑖2 𝜕𝜕𝑞�휇 , (2)

𝑄�휇 = 𝑞�휇⋆ = 𝑞�휇 + 𝑖2 𝜕𝜕𝑝�휇 , (3)

and

𝑀̂]�휎 = 𝑀]�휎⋆ = 𝑄]𝑃̂�휎 − 𝑄�휎𝑃̂]. (4)

These operators satisfy Poincaré algebra and act inHilbert
space associated with phase space H(Γ). From them, we
construct a symplectic representation of Poincaré-Lie algebra

and, as a result, we obtain the Klein-Gordon equation in
phase space [4]:

𝑃̂2𝜙 (𝑞, 𝑝) = 𝑝2 ⋆ 𝜙 (𝑞, 𝑝) = 𝑚2𝜙 (𝑞, 𝑝) (5)

(𝑝�휇𝑝�휇 − 𝑖𝑝�휇 𝜕𝜕𝑞�휇 − 14 𝜕𝜕𝑞�휇 𝜕𝜕𝑞�휇)𝜙 (𝑞, 𝑝) = 𝑚2𝜙 (𝑞, 𝑝) . (6)

The functions 𝜙(𝑞, 𝑝) are defined in phase space Γ and satisfy
the condition

∫𝑑4𝑞𝑑4𝑝𝜙† (𝑞, 𝑝) 𝜙 (𝑞, 𝑝) < ∞. (7)

Equation (6) can be derived from Lagrangian given by [5]:

L = − (𝐷�휇 ⋆ 𝜙) ⋆ (𝜙∗ ⋆ 𝐷�휇) + 𝑚2𝜙∗ ⋆ 𝜙, (8)

where 𝐷�휇 = 𝑝�휇 − (𝑖/2)(𝜕/𝜕𝑞�휇). The association with Wigner
formalism is obtained from

𝑓�푊 (𝑞, 𝑝) = 𝜙 (𝑞, 𝑝) ⋆ 𝜙∗ (𝑞, 𝑝) . (9)

To show this, we multiply the right-hand side of (5) by𝜙∗(𝑞, 𝑝),
(𝑝2 ⋆ 𝜙 (𝑞, 𝑝)) ⋆ 𝜙∗ (𝑞, 𝑝) = 𝑚2𝜙 (𝑞, 𝑝) ⋆ 𝜙∗ (𝑞, 𝑝) , (10)

but since 𝜙∗(𝑞, 𝑝) ⋆ 𝑝2 = 𝑚2𝜙∗(𝑞, 𝑝), we also have
𝜙 (𝑞, 𝑝) ⋆ (𝜙∗ (𝑞, 𝑝) ⋆ 𝑝2) = 𝑚2𝜙 (𝑞, 𝑝) ⋆ 𝜙∗ (𝑞, 𝑝) . (11)

Subtracting (10) from (11), and using the associativity of star-
product, we get

{𝑝2, 𝑓�푊 (𝑞, 𝑝)}�푀 = 0, (12)

where the Moyal-bracket is given by

{𝑎, 𝑏}�푀 = 𝑎 ⋆ 𝑏 − 𝑏 ⋆ 𝑎. (13)

Calculating, we obtain

𝑝�휇 𝜕𝑓�푊 (𝑞, 𝑝)𝜕𝑞�휇 = 0, (14)

a well-known result. Other properties of Wigner function,
such as nonpositiveness, can be derived analogous to a
nonrelativistic case [3].

If we consider the interaction potential 𝑉, the following
density of Lagrangian should be used:

L = −14 𝜕𝜓𝜕𝑞�휇
𝜕𝜓†

𝜕𝑞�휇 + 12 𝑖𝑝�휇 (𝜓† 𝜕𝜓𝜕𝑞�휇 − 𝜓𝜕𝜓
†

𝜕𝑞�휇 )
− (𝑝�휇𝑝�휇 − 𝑚2) 𝜓𝜓† + 𝑈(𝜓𝜓†) .

(15)
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This Lagrangian induces the equation

−14 𝜕2𝜓𝜕𝑞�휇𝜕𝑞�휇 − 𝑖𝑝�휇 𝜕𝜓𝜕𝑞�휇 + (𝑝�휇𝑝�휇 − 𝑚2) 𝜓 − 𝑉 (𝜓) = 0, (16)

where 𝑉(𝜓) = 𝜕𝑈(𝜓𝜓†)/𝜕𝜓†.
Solutions for (16) can be obtained from the Green

function method. For this proposal, take the function 𝐺 =𝐺(𝑞�휇, 𝑞�耠�휇, 𝑝�휇, 𝑝�耠�휇) in which the following is satisfied:

−14 𝜕2𝐺𝜕𝑞�휇𝜕𝑞�휇 − 𝑖𝑝�휇 𝜕𝐺𝜕𝑞�휇 + (𝑝�휇𝑝�휇 − 𝑚2) 𝐺
= 𝛿 (𝑞�휇 − 𝑞�耠�휇) 𝛿 (𝑝�휇 − 𝑝�耠�휇) ,

(17)

where 𝐺 is the Green function. By superposition principle,
solution of (17) is given by

𝜓 (𝑞�휇, 𝑝�휇)
= 𝜓0 (𝑞�휇, 𝑝�휇)
+ ∫ 𝑑4𝑞�耠�휇𝑑4𝑝�耠�휇𝐺(𝑞�휇, 𝑞�耠�휇, 𝑝�휇, 𝑝�耠�휇)𝑉 (𝜓) ,

(18)

where 𝜓0(𝑞�휇, 𝑝�휇) is the solution of free case.
We can find the solution of (18) taking its Fourier trans-

form. Defining 𝐹[𝜕2𝐺/𝜕𝑞�휇𝜕𝑞�휇] = −𝑘2𝐺(𝑘�휇, 𝜂�휇),𝐹[𝜕𝐺/𝜕𝑞�휇] =−𝑖𝑘�휇𝐺(𝑘�휇, 𝜂�휇), and 𝐹[𝐺] = 𝐺(𝑘�휇, 𝜂�휇), the following follows:
14𝑘2𝐺 (𝑘�휇, 𝑝�휇) − 𝑝�휇𝑘�휇𝐺(𝑘�휇, 𝑝�휇)

+ (𝑝�휇𝑝�휇 − 𝑚2)𝐺 (𝑘�휇, 𝑝�휇) = 1,
(19)

where𝐹[𝑔] stands the Fourier transform of function𝑔. In this
way, we obtain

𝐺(𝑘�휇, 𝑝�휇) = 𝛿 (𝑝�휇 − 𝑝�耠�휇)
(1/4) 𝑘2 − 𝑝�휇𝑘�휇 + (𝑝�휇𝑝�휇 − 𝑚2) . (20)

Then,

𝐺 (𝑞�휇, 𝑞�耠�휇, 𝑝�휇, 𝑝�耠�휇) = 1
(2𝜋)4 ∫𝑑4𝑘�휇𝑒−�푖�푘

𝜇�푞𝜇𝐺 (𝑘�휇, 𝑝�휇)

= 1
(2𝜋)4 ∫𝑑4𝑘�휇

𝛿 (𝑝�휇 − 𝑝�耠�휇) 𝑒−�푖�푘𝜇�푞𝜇
(1/4) 𝑘2 − 𝑝�휇𝑘�휇 + (𝑝�휇𝑝�휇 − 𝑚2) .

(21)

The solution is

𝜓 (𝑞�휇, 𝑝�휇)
= 𝜓0 (𝑞�휇, 𝑝�휇)
+ ∫ 𝑑4𝑞�耠�휇𝑑4𝑝�耠�휇𝐺(𝑞�휇, 𝑞�耠�휇, 𝑝�휇, 𝑝�耠�휇)𝑉 (𝜓) .

(22)

Wigner function can be derived from Green function by
[13]

𝑓�푊 (𝑞�휇, 𝑝�휇)
= lim

�푞𝜇
󸀠
�푝𝜇
󸀠
�㨀→�푞𝜇�푝𝜇

exp 𝑖 ( 𝜕𝜕𝑞�휇 𝜕
𝜕𝑝�휇󸀠

− 𝜕
𝜕𝑞�휇󸀠

𝜕𝜕𝑝�휇
)

⋅ 𝐺 (𝑞�휇, 𝑞�耠�휇, 𝑝�휇, 𝑝�耠�휇) .
(23)

Equation (23) provides a method to describe the interac-
tion process and scattering theory with physical interpreta-
tion in phase space.

3. Canonical Quantization of Scalar Field in
Phase Space

In this section we construct the formalism of canonical
quantization of Klein-Gordon field in phase space. From this
formalism we obtain the propagator written in phase space.

From Lagrangian given in (15) we define the conjugate
momenta associated with fields 𝜙(𝑞, 𝑝) and 𝜙†(𝑞, 𝑝) by

𝜋 = 𝜕L(𝜕0𝜙) (24)

and

𝜋† = 𝜕L(𝜕0𝜙†) . (25)

After some calculations, we have

𝜋 = −14 𝜕𝜙
†

𝜕𝑞0 + 12𝑖𝑝0𝜙† = −12 𝑖𝑝0 ⋆ 𝜙† (26)

and

𝜋† = 14 𝜕𝜙𝜕𝑞0 − 12 𝑖𝑝0𝜙 = 12 𝑖𝑝0 ⋆ 𝜙. (27)

Following usual procedure of quantization, we impose the
commutation relations

[𝜋 (𝑞, 𝑞0; 𝑝) , 𝜙 (𝑞�耠, 𝑞0; 𝑝�耠)] = 𝑖𝛿 (𝑞 − 𝑞�耠) 𝛿 (𝑝 − 𝑝�耠) , (28)

and

[𝜋† (𝑞, 𝑞0; 𝑝) , 𝜙† (𝑞�耠, 𝑞0; 𝑝�耠)]
= 𝑖𝛿 (𝑞 − 𝑞�耠) 𝛿 (𝑝 − 𝑝�耠) , (29)

and the other commutation relations are nulls.

3.1. Annihilation and Creation Operators. The fields 𝜙(𝑞, 𝑝)
and 𝜙†(𝑞, 𝑝)may be expanded as

𝜙 (𝑞, 𝑝)
= ∫ 𝑑3𝑘

[(2𝜋)3 2𝜔�푘]1/2 [𝑎 (𝑘, 𝑝) 𝑒
−�푖�푘�푞 + 𝑏† (𝑘, 𝑝) 𝑒�푖�푘�푞] (30)
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and

𝜙† (𝑞, 𝑝)
= ∫ 𝑑3𝑘

[(2𝜋)3 2𝜔�푘]1/2 [𝑏 (𝑘, 𝑝) 𝑒
−�푖�푘�푞 + 𝑎† (𝑘, 𝑝) 𝑒�푖�푘�푞] , (31)

where𝜔�푘 = [((1/2)k−p)2 +𝑚2]1/2 and the canonical variable
related to the position is 𝐾; i.e., 𝑞 󳨀→ 𝑘.

The functions

𝑓�푘 (𝑞) = 𝑒−�푖�푘�푞
[(2𝜋)3 2𝜔�푘]1/2 , (32)

form an orthonormal set

∫𝑓∗
�푘 (𝑞) 𝑝0⋆𝑓�푘󸀠 (𝑞) 𝑑3𝑞 = 𝛿3 (k − k�耠) , (33)

where 𝐴𝑝0⋆𝐵 = 𝐴(𝑝0 ⋆ 𝐵) − (𝑝0 ⋆ 𝐴)𝐵.
In this way, the fields 𝜙(𝑞, 𝑝) and 𝜙†(𝑞, 𝑝)may be written

as

𝜙 (𝑞, 𝑝) = ∫ 𝑑3𝑘
[(2𝜋)3 2𝜔�푘]1/2 [𝑎 (𝑘, 𝑝) 𝑓�푘 (𝑞)

+ 𝑏† (𝑘, 𝑝) 𝑓∗
�푘 (𝑞)] ,

(34)

and

𝜙† (𝑞, 𝑝) = ∫ 𝑑3𝑘
[(2𝜋)3 2𝜔�푘]1/2 [𝑏 (𝑘, 𝑝) 𝑓�푘 (𝑞)

+ 𝑎† (𝑘, 𝑝) 𝑓∗
�푘 (𝑞)] .

(35)

Inverting (34) and (35) we obtain

𝑎 (𝑘, 𝑝) = ∫ 𝑑3𝑞 [(2𝜋)3 2𝜔�푘]1/2 𝑓∗
�푘 𝑝0⋆𝜙 (𝑞, 𝑝) ;

𝑏 (𝑘, 𝑝) = ∫ 𝑑3𝑞 [(2𝜋)3 2𝜔�푘]1/2 𝑓∗
�푘 𝑝0⋆𝜙† (𝑞, 𝑝) ;

𝑎† (𝑘, 𝑝) = ∫ 𝑑3𝑞 [(2𝜋)3 2𝜔�푘]1/2 𝜙† (𝑞, 𝑝) 𝑝0⋆𝑓�푘;
𝑏† (𝑘, 𝑝) = ∫ 𝑑3𝑞 [(2𝜋)3 2𝜔�푘]1/2 𝜙 (𝑞, 𝑝) 𝑝0⋆𝑓�푘.

(36)

We can show that

[𝑎 (𝑘, 𝑝) , 𝑎† (𝑘�耠, 𝑝�耠)] = (2𝜋)3 2𝜔�푘𝛿 (k − k�耠) , (37)

and

[𝑏 (𝑘, 𝑝) , 𝑏† (𝑘, 𝑝)] = (2𝜋)3 2𝜔�푘𝛿 (k − k�耠) . (38)

The operators 𝑎(𝑘, 𝑝), 𝑎†(𝑘, 𝑝), 𝑏(𝑘, 𝑝), and 𝑏†(𝑘, 𝑝) play
a crucial role in the particle interpretation of the quantized
field theory. First, define the operators

𝑁(𝑘, 𝑝) = 𝑎† (𝑘, 𝑝) 𝑎 (𝑘, 𝑝) (39)

and

𝑀(𝑘, 𝑝) = 𝑏† (𝑘, 𝑝) 𝑏 (𝑘, 𝑝) . (40)

It is simple to show that𝑁(𝑘, 𝑝) and𝑁(𝑘�耠, 𝑝�耠) commute

[𝑁 (𝑘, 𝑝) ,𝑁 (𝑘�耠, 𝑝�耠)] = 0. (41)

In analogous sense,

[𝑀(𝑘, 𝑝) ,𝑀(𝑘�耠, 𝑝�耠)] = 0. (42)

In this case, the eigenstates of these operators may be used
to form a basis. Let us denote the eigenvalue of 𝑁(𝑘, 𝑝) by𝑛(𝑘, 𝑝) and the eigenvalue of𝑀(𝑘, 𝑝) by𝑚(𝑘, 𝑝); i.e.,

𝑁(𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑛 (𝑘, 𝑝)⟩ = 𝑛 (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑛 (𝑘, 𝑝)⟩ ,
𝑀 (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑚 (𝑘, 𝑝)⟩ = 𝑚 (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑚 (𝑘, 𝑝)⟩ . (43)

And now using the commutation relations [𝑁(𝑘, 𝑝), 𝑎†(𝑘,𝑝)] = 𝑎†(𝑘, 𝑝), [𝑁(𝑘, 𝑝), 𝑎(𝑘, 𝑝)] = −𝑎(𝑘, 𝑝), [𝑀(𝑘, 𝑝), 𝑏†(𝑘,𝑝)] = 𝑏†(𝑘, 𝑝), and [𝑀(𝑘, 𝑝), 𝑏(𝑘, 𝑝)] = −𝑏(𝑘, 𝑝), we find
𝑁(𝑘, 𝑝) 𝑎† (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑛 (𝑘, p)⟩
= (𝑛 (𝑘, 𝑝) + 1) 𝑎† (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑛 (𝑘, 𝑝)⟩ ,

(44)

𝑁(𝑘, 𝑝) 𝑎 (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑛 (𝑘, 𝑝)⟩
= (𝑛 (𝑘, 𝑝) − 1) 𝑎 (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑛 (𝑘, 𝑝)⟩ , (45)

𝑀(𝑘, 𝑝) 𝑏† (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑚 (𝑘, 𝑝)⟩
= (𝑚 (𝑘, 𝑝) + 1) 𝑏† (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑚 (𝑘, 𝑝)⟩ ,

(46)

𝑀(𝑘, 𝑝) 𝑏 (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑚 (𝑘, 𝑝)⟩
= (𝑚 (𝑘, 𝑝) − 1) 𝑏 (𝑘, 𝑝) 󵄨󵄨󵄨󵄨𝑚 (𝑘, 𝑝)⟩ . (47)

Equations (44) and (45) tell us that if the state |𝑘, 𝑝⟩has eigen-
value 𝑛(𝑘, 𝑝), the states 𝑎†(𝑘, 𝑝)|𝑛(𝑘, 𝑝)⟩ and 𝑎(𝑘, 𝑝)|𝑛(𝑘, 𝑝)⟩
are eigenstates of𝑁(𝑘, 𝑝)with respective eigenvalues 𝑛(𝑘, 𝑝)+1 and 𝑛(𝑘, 𝑝) − 1. And analogously, we note that (46) and
(47) tell us that if the state |𝑘, 𝑝⟩ has eigenvalue 𝑚(𝑘,𝑝), the
states 𝑏†(𝑘, 𝑝)|𝑚(𝑘, 𝑝)⟩ and 𝑏(𝑘, 𝑝)|𝑚(𝑘, 𝑝)⟩ are eigenstates of𝑀(𝑘, 𝑝)with respective eigenvalues𝑚(𝑘, 𝑝)+1 and𝑚(𝑘,𝑝)−1. So, the operators 𝑎†(𝑘, 𝑝) and 𝑎(𝑘, 𝑝) are interpreted as
creation and annihilation operators of particles, respectively.
Then, analogously, 𝑏†(𝑘, 𝑝) and 𝑏(𝑘, 𝑝) can be interpreted as
creation and annihilation operators of antiparticles, respec-
tively.

Using the creation and annihilation operators, theHamil-
tonian of scalar fields in phase space can be written by

𝐻 = ∫ 𝑑3𝑘
(2𝜋)3 2𝜔�푘

[𝑎† (𝑘, 𝑝) 𝑎 (𝑘, 𝑝)
+ 𝑏† (𝑘, 𝑝) 𝑏 (𝑘, 𝑝)] .

(48)
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We can also show that the particles that are the quantum
of the Klein-Gordon field obey the Bose-Einstein statistics.
For this, note that
󵄨󵄨󵄨󵄨𝑛 (𝑘, 𝑝) , 𝑚 (𝑘, 𝑝)⟩
= 1
(𝑛 (𝑘, 𝑝)!𝑚 (𝑘, 𝑝)!)1/2 [𝑎

† (𝑘, 𝑝)]�푛 [𝑏† (𝑘, 𝑝)]�푚

⋅ |0⟩ .
(49)

The connection between the solution of free Klein-
Gordon equation, 𝜑(𝑞, 𝑝) = 𝜉(𝑝�휇)𝑒−�푖�푘𝜇�푞𝜇 , and the canonical
quantization formalism is given by

𝜑 (𝑞, 𝑝) = ⟨0| 𝜙 (𝑞, 𝑝) 󵄨󵄨󵄨󵄨𝑘, 𝑝⟩ . (50)

In sequence, we establish the association between
Green function given in (21) and the expression ⟨0|𝑇[𝜙(𝑞,𝑝)𝜙∗(𝑞�耠, 𝑝�耠)]|0⟩. For this purpose, we consider the Green
function

𝐺(𝑞�휇, 𝑝�휇, 𝑝�耠�휇) = 1
(2𝜋)4

⋅ ∫ 𝑑4𝑘�휇 𝛿 (𝑝�휇 − 𝑝�耠�휇) 𝑒−�푖�푘𝜇�푞𝜇
((1/2) 𝑘0 − 𝑝0)2 − [((1/2) k − p)2 + 𝑚2] ,

(51)

in which it can be written in the form

𝐺 (𝑞�휇, 𝑝�휇, 𝑝�耠�휇) = 𝛿 (𝑝 − 𝑝�耠)
⋅ ∫ 𝑑3k𝑑𝑘0(2𝜋)4

𝑒−�푖�푘�푞2𝜔�푘

( 1(1/2) 𝑘0 − 𝑝0 − 𝜔�푘 + 𝑖𝜖
− 1(1/2) 𝑘0 − 𝑝0 + 𝜔�푘 − 𝑖𝜖) ,

(52)

where 𝜔2
�푘 = ((1/2)k − p)2. Using Cauchy Theorem we have

𝐺 (𝑞�휇, 𝑞�耠�휇, 𝑝�휇, 𝑝�耠�휇) = −2𝑖𝛿 (𝑝�휇 − 𝑝�耠�휇)
(2𝜋)3

⋅ ∫ 𝑑3k2𝜔�푘

[𝜃 (𝑞0 − 𝑞�耠0) 𝑒−�푖�푘(�푞0−�푞󸀠0)
+ 𝜃 (𝑞�耠0 − 𝑞0) 𝑒�푖�푘(�푞0−�푞󸀠0)] .

(53)

In order, substituting (34) and (35) in ⟨0|𝑇[𝜙(𝑞, 𝑝)𝜙∗(𝑞�耠,𝑝�耠)]|0⟩, we obtain
⟨0| 𝑇 [𝜙 (𝑞, 𝑝) 𝜙∗ (𝑞�耠, 𝑝�耠)] |0⟩
= ∫ 𝑑3k𝑑3k�耠

(2𝜋)6 (2𝜔�푘󸀠𝜔�푘)1/2 [𝜃 (𝑞0 − 𝑞
�耠
0) 𝑒−�푖(�푘�푞−�푘󸀠�푞󸀠) ⟨0|

⋅ 𝑎 (𝑘, 𝑝) 𝑎† (𝑘�耠, 𝑝�耠) |0⟩ + 𝜃 (𝑞�耠0 − 𝑞�표) 𝑒−�푖(�푘�푞󸀠−�푘󸀠�푞) ⟨0|
⋅ 𝑎 (𝑘, 𝑝) 𝑎† (𝑘�耠, 𝑝�耠) |0⟩] ,

(54)

where the Heaviside function 𝜃(𝑥) is defined as 𝜃(𝑥) = 1 for𝑥 > 1 and 𝜃(𝑥) = 0 for 𝑥 < 1. Then, using (37) and (38) we
obtain

⟨0| 𝑇 [𝜙 (𝑞, 𝑝) 𝜙∗ (𝑞�耠, 𝑝�耠)] |0⟩ = 𝛿 (𝑝�휇 − 𝑝�耠�휇)
(2𝜋)3

⋅ ∫ 𝑑3k2𝜔�푘

[𝜃 (𝑞0 − 𝑞�耠0) 𝑒−�푖�푘(�푞0−�푞󸀠0)
+ 𝜃 (𝑞�耠0 − 𝑞0) 𝑒�푖�푘(�푞0−�푞󸀠0)] .

(55)

We then have

⟨0| 𝑇 [𝜙 (𝑞, 𝑝) 𝜙∗ (𝑞�耠, 𝑝�耠)] |0⟩
= 𝑖2𝐺 (𝑞�휇, 𝑞�耠�휇, 𝑝�휇, 𝑝�耠�휇) . (56)

Equation (56) shows us the connection between the propa-
gator ⟨0|𝑇[𝜙(𝑞, 𝑝)𝜙∗(𝑞�耠, 𝑝�耠)]|0⟩ and Green function in phase
space.

4. Thermo Field Dynamics (TFD)

In this section a brief introduction to TFD formalism is
presented [14–18]. In this formalism the thermal average of
an observable is given by the vacuum expectation value in an
extended Fock space, i.e., ⟨𝐴⟩ = ⟨0(𝛽)|𝐴|0(𝛽)⟩, where |0(𝛽)⟩
is the thermal vacuum. The foundation of the TFD consists
in two ingredients: (i) doubling of the original Hilbert space,
i.e., the original Hilbert space S of the system is doubled
leading to an expanded spaceS�푇 = S⊗S̃ and (ii) Bogoliubov
transformations. This doubling is defined by a mapping (∼):
S 󳨀→ S̃ associating each operator say 𝑎, in S to two
operators in S�푇, such as

𝐴 = 𝑎 ⊗ 1,
𝐴 = 1 ⊗ 𝑎. (57)

The standard doublet notation for an arbitrary bosonic
operatorX is

X
�푎 = (X1

X2
) = ( X

−X̃†
) , (58)

where 𝑎, 𝑏 = 1, 2. The physical variables are described by
nontilde operators.

The Bogoliubov transformation introduces a rotation in
the tilde and nontilde variables. Then the thermal effects are
introduced by a Bogoliubov transformation, U(𝛼), that is
defined as

U (𝛼) = ( 𝑢 (𝛼) −V (𝛼)
−V (𝛼) 𝑢 (𝛼) ) , (59)

where 𝑢2(𝛼) − V2(𝛼) = 1. These quantities 𝑢(𝛼) and V(𝛼) are
related to the Bose distribution. The parameter 𝛼 is associated
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with temperature, but, in general, it may be associated with
other physical quantities.TheBogoliubov transformations for
bosons and fermions are different. For bosons they are given
as

𝑎 (𝑘) = 𝑐�퐵 (𝜔) 𝑎 (𝑘, 𝛽) + 𝑑�퐵 (𝜔) 𝑎† (𝑘, 𝛽) ,
𝑎† (𝑘) = 𝑐�퐵 (𝜔) 𝑎† (𝑘, 𝛽) + 𝑑�퐵 (𝜔) 𝑎 (𝑘, 𝛽) ,
𝑎 (𝑘) = 𝑐�퐵 (𝜔) 𝑎 (𝑘, 𝛽) + 𝑑�퐵 (𝜔) 𝑎† (𝑘, 𝛽) ,
𝑎† (𝑘) = 𝑐�퐵 (𝜔) 𝑎† (𝑘, 𝛽) + 𝑑�퐵 (𝜔) 𝑎 (𝑘, 𝛽) ,

(60)

where (𝑎†, 𝑎†) are creation operators and (𝑎, 𝑎) are destruc-
tion operators, with

𝑐2�퐵 (𝜔) = 1 + 𝑓�퐵 (𝜔) ,
𝑑2�퐵 (𝜔) = 𝑓�퐵 (𝜔) ,
𝑓�퐵 (𝜔) = 1𝑒�훽�휔 − 1,

(61)

with 𝜔 = 𝜔(𝑘).
For fermions the Bogoliubov transformations are

𝑎 (𝑘) = 𝑐�퐹 (𝜔) 𝑎 (𝑘, 𝛽) + 𝑑�퐹 (𝜔) 𝑎† (𝑘, 𝛽) ,
𝑎† (𝑘) = 𝑐�퐹 (𝜔) 𝑎† (𝑘, 𝛽) + 𝑑�퐹 (𝜔) 𝑎 (𝑘, 𝛽) ,
𝑎 (𝑘) = 𝑐�퐹 (𝜔) 𝑎 (𝑘, 𝛽) − 𝑑�퐹 (𝜔) 𝑎† (𝑘, 𝛽) ,
𝑎† (𝑘) = 𝑐�퐹 (𝜔) 𝑎† (𝑘, 𝛽) − 𝑑�퐹 (𝜔) 𝑎 (𝑘, 𝛽) ,

(62)

with

𝑐2�퐹 (𝜔) = 1 − 𝑓�퐹 (𝜔) ,
𝑑2�퐹 (𝜔) = 𝑓�퐹 (𝜔) ,
𝑓�퐹 (𝜔) = 1𝑒�훽�휔 + 1.

(63)

Let us consider a free scalar field inMinkowski space with𝑑𝑖𝑎𝑔(𝑔�휇]) = (+1, −1, −1, −1) and then analyze its propagator.
Using the Bogoliubov transformation the 𝛼-dependent scalar
field is given by

𝜙 (𝑥; 𝛼) = U (𝛼) 𝜙 (𝑥)U−1 (𝛼) . (64)

There is a similar equation for tilde field. The propagator for
the scalar field, 𝛼-dependent, is

𝐺(�푎�푏)
0 (𝑥 − 𝑥�耠; 𝛼)
= 𝑖 ⟨0, 0̃󵄨󵄨󵄨󵄨󵄨 𝜏 [𝜙�푎 (𝑥; 𝛼) 𝜙�푏 (𝑥�耠; 𝛼)] 󵄨󵄨󵄨󵄨󵄨0, 0̃⟩ ,

(65)

where 𝜏 is the time ordering operator. Using |0(𝛼)⟩ =
U(𝛼)|0, 0̃⟩
𝐺(�푎�푏)

0 (𝑥 − 𝑥�耠; 𝛼) = 𝑖 ⟨0 (𝛼)| 𝜏 [𝜙�푎 (𝑥) 𝜙�푏 (𝑥�耠)] |0 (𝛼)⟩ ,
= 𝑖 ∫ 𝑑4𝑘

(2𝜋)4 𝑒−�푖�푘(�푥−�푥
󸀠)𝐺(�푎�푏)

0 (𝑘; 𝛼) , (66)

where

𝐺(�푎�푏)
0 (𝑘; 𝛼) = U

−1 (𝑘; 𝛼) 𝐺(�푎�푏)
0 (𝑘)U (𝑘; 𝛼) , (67)

with

U (𝑘; 𝛼) = ( 𝑢 (𝑘; 𝛼) −V (;, 𝛼)
−V (𝑘; 𝛼) 𝑢 (𝑘; 𝛼)) ,

𝐺(�푎�푏)
0 (𝑘) = (𝐺0 (𝑘) 0

0 −𝐺∗
0 (𝑘)) ,

(68)

and

𝐺0 (𝑘) = 1𝑘2 − 𝑚2 + 𝑖𝜖 . (69)

Then

𝐺(11)
0 (𝑘; 𝛼) = 𝐺0 (𝑘) + V2 (𝑘; 𝛼) [2𝜋𝑖𝛿 (𝑘2 − 𝑚2)] , (70)

where

V2 (𝑘; 𝛼) = �푑∑
�푠=1

∑
{�휎𝑠}

2�푠−1 ∞∑
�푙𝜎1 ,...,�푙𝜎𝑠=1

(−𝜂)�푠+∑𝑠𝑟=1 �푙𝜎𝑟

⋅ exp[
[
− �푠∑
�푗=1

𝛼�휎𝑗 𝑙�휎𝑗𝑘�휎𝑗]]
(71)

is the generalized Bogoliubov transformation [19], with 𝑑
being the number of compactified dimensions, 𝜂 = 1(−1) for
fermions (bosons), and {𝜎�푠} denotes the set of all combina-
tions with 𝑠 elements.

An important note is that in phase space the Green
function is dependent on the parameters 𝑞 and 𝑝; i.e.,𝐺(�푎�푏)

0 (𝑥 − 𝑥�耠; 𝛼) = 𝐺(�푎�푏)
0 (𝑞�휇 − 𝑞�耠�휇, 𝑝�휇 − 𝑝�耠�휇; 𝛼).

5. Energy-Momentum Tensor for
the Scalar Field in Phase Space

The Lagrangian that describes the scalar field in phase space
is given by

L�휙 = −14 𝜕𝜙𝜕𝑞�휇
𝜕𝜙∗𝜕𝑞�휇 + 12 𝑖𝑝�휇 (𝜙∗ 𝜕𝜙𝜕𝑞�휇 − 𝜙𝜕𝜙

∗

𝜕𝑞�휇 )
− (𝑝�휇𝑝�휇 − 𝑚2) 𝜙𝜙∗.

(72)

In order to calculate the Casimir effect, we need the energy-
momentum tensor that is defined as

T
�휇] = 𝜕L�휙

𝜕 (𝜕�휇𝜙)𝜕
]𝜙 − 𝑔�휇]L�휙, = −14 (𝜕𝜙

∗

𝜕𝑞�휇
𝜕𝜙𝜕𝑞]

+ 𝜕𝜙𝜕𝑞�휇
𝜕𝜙∗𝜕𝑞] ) +

12 𝑖𝑝�휇 (𝜙∗ 𝜕𝜙𝜕𝑞] − 𝜙
𝜕𝜙∗𝜕𝑞] )

− 𝑔�휇] [−14 𝜕𝜙𝜕𝑞�휆 𝜕𝜙
∗

𝜕𝑞�휆 +
12 𝑖𝑝�휆 (𝜙∗ 𝜕𝜙𝜕𝑞�휆 − 𝜙𝜕𝜙

∗

𝜕𝑞�휆 )
− (𝑝�휆𝑝�휆 − 𝑚2) 𝜙𝜙∗] .

(73)
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To avoid divergences, the energy-momentum tensor is writ-
ten at different space-time points as

T
�휇] = lim

�푞󸀠𝜇�㨀→�푞𝜇
𝜏{−14 (𝜕𝜙

�耠∗

𝜕𝑞�耠�휇
𝜕𝜙𝜕𝑞] +

𝜕𝜙𝜕𝑞�휇
𝜕𝜙�耠∗𝜕𝑞�耠] ) +

12
⋅ 𝑖𝑝�휇 (𝜙�耠∗ 𝜕𝜙𝜕𝑞] − 𝜙

𝜕𝜙�耠∗𝜕𝑞�耠] ) − 𝑔
�휇] [−14 𝜕𝜙𝜕𝑞�휆 𝜕𝜙

�耠∗

𝜕𝑞�耠�휆
+ 12 𝑖𝑝�휆 (𝜙�耠∗ 𝜕𝜙𝜕𝑞�휆 − 𝜙𝜕𝜙

�耠∗

𝜕𝑞�耠�휆 )

− (𝑝�휆𝑝�휆 − 𝑚2) 𝜙𝜙�耠∗]}
= lim

�푞󸀠𝜇�㨀→�푞𝜇
{Γ�휇]𝜏 [𝜙 (𝑞) 𝜙�耠∗ (𝑞�耠)]} ,

(74)

where 𝜏 is the ordering operator and
Γ�휇] = −14 ( 𝜕𝜕𝑞�耠�휇

𝜕𝜕𝑞] +
𝜕𝜕𝑞�휇

𝜕𝜕𝑞�耠]) +
12 𝑖𝑝�휇 ( 𝜕𝜕𝑞]

− 𝜕𝜕𝑞�耠]) − 𝑔
�휇] [−14 𝜕𝜕𝑞�휆 𝜕𝜕𝑞�耠�휆

+ 12𝑖𝑝�휆 ( 𝜕𝜕𝑞�휆 − 𝜕𝜕𝑞�耠�휆) − (𝑝�휆𝑝�휆 − 𝑚2)] .

(75)

The vacuum expectation value of the energy-momentum
tensor is

⟨T�휇] (𝑥)⟩ = lim
�푞󸀠𝜇�㨀→�푞𝜇

{Γ�휇] ⟨0| 𝜏 [𝜙 (𝑞) 𝜙�耠∗ (𝑞�耠)] |0⟩} . (76)

The scalar field propagator in phase space is defined as

𝐺0 (𝑞�휇 − 𝑞�耠�휇, 𝑝�휇 − 𝑝�耠�휇) = ⟨0| 𝜏 [𝜙 (𝑞) 𝜙�耠∗ (𝑞�耠)] |0⟩
= ∫ 𝑑4𝑘

(2𝜋)4
𝛿 (𝑝�휇 − 𝑝�耠�휇) 𝑒�푖�휅𝜇(�푞𝜇−�푞󸀠𝜇)

((1/4) 𝜅2 − 𝑖𝜅�휇 (𝑝�휇 − 𝑝�耠�휇) + (𝑝�휇 − 𝑝�耠�휇) + 𝑚2) .
(77)

Using the identity

1𝜒�휇𝜒�휇 +𝑀2
= ∫∞

0
𝑒−�푡(�휒𝜇�휒𝜇−�푀2)𝑑𝑡 (78)

with𝑀2 = 𝑚2−2(𝑝�휇−𝑝�耠�휇)(𝑝�휇−𝑝�耠�휇), the propagator becomes

𝐺0 (𝑞�휇 − 𝑞�耠�휇, 𝑝�휇 − 𝑝�耠�휇)
= 64𝑀2

𝜋2
𝛿 (𝑝�휇 − 𝑝�耠�휇) 𝑒−2(�푝𝜇−�푝󸀠𝜇)(�푞𝜇−�푞󸀠𝜇)

× (𝑀
󵄨󵄨󵄨󵄨󵄨𝑞 − 𝑞�耠󵄨󵄨󵄨󵄨󵄨2 )

−1

𝜅1(𝑀
󵄨󵄨󵄨󵄨󵄨𝑞 − 𝑞�耠󵄨󵄨󵄨󵄨󵄨2 ) ,

(79)

where 𝜅](𝑧) is the Bessel function.Using the doublet notation,
the physical energy-momentum tensor in terms of the 𝛼-
parameter is

T
�휇](�푎�푏) (𝑞) = lim

�푞󸀠𝜇�㨀→�푞𝜇
{Γ�휇]𝐺�푎�푏

0 (𝑞�휇 − 𝑞�耠�휇, 𝑝�휇 − 𝑝�耠�휇; 𝛼)} , (80)

where T�휇](�푎�푏)(𝑞; 𝛼) = ⟨T�휇](�푎�푏)(𝑞; 𝛼)⟩ − ⟨T�휇](�푎�푏)(𝑞)⟩ and
𝐺(�푎�푏)

0 (𝑞�휇 − 𝑞�耠�휇, 𝑝�휇 − 𝑝�耠�휇; 𝛼)
= 𝐺(�푎�푏)

0 (𝑞�휇 − 𝑞�耠�휇, 𝑝�휇 − 𝑝�耠�휇; 𝛼)
− 𝐺(�푎�푏)

0 (𝑞�휇 − 𝑞�耠�휇, 𝑝�휇 − 𝑝�耠�휇) .
(81)

6. Some Applications

In this section the Stefan-Boltzmann law and the Casimir
effect at finite temperature are calculated.

6.1. Stefan-Boltzmann Law. Here the 𝛼 parameter is 𝛼 =(𝛽, 0, 0, 0) and the generalized Bogoliubov transformation
takes the form

V2 (𝛽) = ∞∑
�푙0=1

𝑒−�훽�푘0�푙0 (82)

and the Green function becomes

𝐺(�푎�푏)

0 (𝑞�휇 − 𝑞�耠�휇, 𝑝�휇 − 𝑝�耠�휇; 𝛽)
= 2 ∞∑

�푙0=1

𝐺0 (𝑞�휇 − 𝑞�耠�휇 − 𝑖𝛽𝑙0𝑛0, 𝑝�휇 − 𝑝�耠�휇) , (83)

where 𝑛0 = (1, 0, 0, 0) is a time-like vector. For 𝜇 = ] = 0, the
energy-momentum tensor becomes

T
00(11) (𝛽) = 2 lim

�푞󸀠𝜇�㨀→�푞𝜇

{{{
∞∑
�푙0=1

Γ00𝐺0 (𝑞�휇 − 𝑞�耠�휇

− 𝑖𝛽𝑙0𝑛0, 𝑝�휇 − 𝑝�耠�휇)}}}
= ∑

�푙0

128𝜋2
𝑀2𝛿 (𝑝�휇 − 𝑝�耠�휇)

⋅ 𝑒2�푖(�푝0−�푝󸀠0)(�훽�푙0) {𝜅1 (𝑀2 𝑖𝑙0𝛽) × (𝑝�휇𝑝�휇 +𝑀2)
⋅ (𝑀2 𝑖𝑙0𝛽)

−1 − 18𝑙20𝛽2
[12𝜅0 (𝑀2 𝑖𝑙0𝛽)

+ 1𝑖𝑀𝑙0𝛽 (24 − 𝑖2𝑙20𝑀2𝛽2) 𝜅1 (𝑀2 𝑖𝑙0𝛽)]} .

(84)

This is the Stefan-Boltzmann law in phase space. This result
becomes T00(11)(𝛽) ∼ 𝑇4, when it is projected in the usual
quantum mechanics space. It is possible to introduce a
“temperature”, 𝜀, in the momenta space which in fact
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represents a thermal energy. Using the same procedure above,
we get

𝑇00(11) (𝛽, 𝑝, 𝜀) = ∑
�푗,�푙0

128𝜋2
𝜇2�푗𝛿 (−𝑖𝜀𝑗)

⋅ 𝑒2(�휀�푗)(�훽�푙0) {𝜅1 (𝜇�푗2 𝑖𝑙0𝛽) × (𝑝�휇𝑝�휇 + 𝜇2�푗)
⋅ (𝜇�푗2 𝑖𝑙0𝛽)

−1 − 18𝑙20𝛽2
[12𝜅0 (𝜇�푗2 𝑖𝑙0𝛽)

+ 1𝑖𝜇�푗𝑙0𝛽 (24 − 𝑖2𝑙20𝜇2�푗𝛽2) 𝜅1 (𝜇�푗2 𝑖𝑙0𝛽)]} ,

(85)

where 𝜇2�푗 = 𝑚2 + 2(𝜀𝑗)2. It is interesting to note the limit of
such an expression when 𝑚 󳨀→ 0 and 𝛽 󳨀→ ∞; it
shows that when the temperature goes to zero the thermal
energy follows whichmeans a correlation between them.The
symplectic structure of phase space allows one to introduce
both finite temperature and energy which is one advantage of
our method.

6.2. Casimir Effect at Zero Temperature. Now 𝛼 = (0, 0, 0,𝑖2𝑑); then
V2 (𝑑) = ∞∑

�푙3=1

𝑒−�푖2�푑�푘3�푙3 (86)

and thus

𝐺0 (𝑞�휇 − 𝑞�耠�휇, 𝑝�휇 − 𝑝�耠�휇; 𝑑)
= 2 ∞∑

�푙3=1

𝐺0 (𝑞�휇 − 𝑞�耠�휇 − 2𝑑𝑙3𝑛3, 𝑝�휇 − 𝑝�耠�휇) (87)

is the Green function with 𝑛3 = (0, 0, 0, 1), being the
space-like vector.The energy-momentum tensor for this case
becomes

T
33(11) (𝛽) = 2 lim

�푞󸀠𝜇�㨀→�푞𝜇

{{{
∞∑
�푙3=1

Γ33𝐺0 (𝑞�휇 − 𝑞�耠�휇

− 2𝑑𝑙3𝑛3, 𝑝�휇 − 𝑝�耠�휇)}}}
= ∑

�푙3

128𝜋2
𝑀2𝛿 (𝑝�휇 − 𝑝�耠�휇)

⋅ 𝑒2�푖(�푝3−�푝󸀠3)�푑�푙3 × {𝜅1 (𝑀2 𝑖𝑑𝑙3) + (−𝑝�휇𝑝�휇 +𝑀2)

⋅ (𝑀2 𝑖𝑑𝑙3)
−1 + 116𝑙23𝑑2 [6𝜅0 (𝑑𝑙3𝑀)

+ (12 + 𝑑2𝑙23𝑀2)
𝑑𝑙3𝑀 𝜅1 (𝑑𝑙3𝑀)]} .

(88)

It is the Casimir pressure at zero temperature in phase space.
In the standard quantum mechanics space the usual result is
recovered. The introduction of a thermal energy at this point
is similar to finite temperature once they are related to each
other as already mentioned. Hence in the next section we
analyze the Casimir effect for a finite temperature.

6.3. Casimir Effect at Finite Temperature. In this case the 𝛼
parameter is chosen as 𝛼 = (𝛽, 0, 0, 𝑖2𝑑). The generalized
Bogoliubov transformation is given by

V2 (𝛽, 𝑑) = ∞∑
�푙0=1

𝑒−�훽�푘0�푙0 + ∞∑
�푙3=1

𝑒−�푖2�푑�푘3�푙3

+ 2 ∞∑
�푙0,�푙3=1

𝑒−�훽�푘0�푙0−�푖2�푑�푘3�푙3 .
(89)

The first two terms are associated with the Stefan-Boltzmann
law and the Casimir effect at zero temperature. The Green
function of the third term in (89), our interest here, is

𝐺0 (𝑞�휇 − 𝑞�耠�휇, 𝑝�휇 − 𝑝�耠�휇; 𝛽, 𝑑)
= 4 ∞∑

�푙0,�푙3=1

𝐺0 (𝑞�휇 − 𝑞�耠�휇 − 𝑖𝛽𝑙0𝑛0 − 2𝑑𝑙3𝑛3, 𝑝�휇 − 𝑝�耠�휇) . (90)

Then the Casimir pressure at finite temperature in phase
space is given as

T
33(11) (𝛽, 𝑑) = 4 lim

�푞󸀠𝜇�㨀→�푞𝜇

{{{
∞∑

�푙0,�푙3=1

Γ33𝐺0 (𝑞�휇 − 𝑞�耠�휇 − 𝑖𝛽𝑙0𝑛0

− 2𝑑𝑙3𝑛3, 𝑝�휇 − 𝑝�耠�휇)}}}
= ∑

�푙0,�푙3

256𝑀2

𝜋2
𝛿 (𝑝�휇 − 𝑝�耠�휇)

⋅ 𝑒2�푖(�푝3−�푝󸀠3)�푑�푙3𝑒2�푖(�푝0−�푝󸀠0)(�훽�푙0) × {{{
𝜅1 [𝑀2 √(2𝑑𝑙3)2 + (𝑙0𝛽)2]

+ (−𝑝�휇𝑝�휇 +𝑀2) [𝑀2 √(2𝑑𝑙3)2 + (𝑙0𝛽)2]
−1

+ 12 [[
(3 (2𝑑𝑙3)2 − (𝑙0𝛽)2)
((2𝑑𝑙3)2 + (𝑙0𝛽)2)2 𝜅0 (

𝑀2 √(2𝑑𝑙3)2 + (𝑙0𝛽)2)

+ (48 (2𝑑𝑙3)2 + (2𝑑𝑙3)4𝑀2 − (𝑙0𝛽)2 (16 + (𝑙0𝑀𝛽)2))
𝑀((2𝑑𝑙3)2 + (𝑙0𝛽)2)5/2

⋅ 𝜅1 (𝑀2 √(2𝑑𝑙3)2 + (𝑙0𝛽)2)]]
}}}
.

(91)

This result contains the effect of both time and space
compactification. In the same way, in the usual quantum
mechanics space the standard result is recovered.
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7. Conclusions

In this article the introduction of temperature in phase space
was explored. We defined the scalar field in phase space by
means of using invariants of the respective relativistic algebra.
Then we presented the energy-momentum tensor in such a
space. This result was used to implement the prescription
of Thermo Field Dynamics, which allows dealing with some
phenomena at finite temperature, such as the analogous
Casimir effect and Stefan-Boltzmann law. We point out that
we projected the mean energy and pressure in the space of
coordinates in order to recover the results of literature. If we
project our result in the momentum space we should obtain
a fundamental energy associated with the given temperature.
Such a result should be better understood since the existence
of this thermal energy affects the interpretation of phase
space.
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