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For studying the interaction of displacements, stresses, and acting forces for elastic and viscoelastic materials, it is of utmost
importance to have a decent mathematical model available. Usually such a model consists of a coupled set of nonlinear differential
equations together with appropriate boundary conditions. However, since the different material classes vary significantly with
respect to their physical andmechanical behavior, the parameters which appear in these equations are unknown and therefore have
to be determined before the equations can be used for further investigations or simulations. It is this very step which is addressed
in this article where we consider elastic as well as viscoelastic material behavior. The idea is to compute the parameters as solutions
of a minimization problem for Tikhonov functionals. Tikhonov regularization is a well-established solution technique for tackling
inverse problems. On the one hand, it assures a computation that is stable with respect to noisy input data, and on the other hand,
it involves desired a priori information on the solution. In this article we develop problem adapted Tikhonov functionals and prove
that a Tikhonov regularization improves the accuracy especially when the underlying system is ill-conditioned.

1. Introduction

A material modeling process cannot be seen as a simple and
single procedure, since it consists of multiple tasks. Usually,
the beginning is the determination of the material behavior
out of experimental data. In this step of a material modeling
process, the data basis for the further work is established.
It has to be decided if elastic, plastic, or viscose effects or
combinations of these have to be included. The underlying
structure of the model is established on this choice. The
mathematical description has to follow physical principles,
so that in a second step, the theoretical background from
continuummechanics has to be considered, typically leading
to a model which consists of a coupled set of nonlinear
differential equations. Subsequently, the outcoming material
model has to be realized numerically. Based on these results,
it is now possible to quantitatively compare the simulation
to the experiments, which yields a parameter identification.
In general, an inverse method is proposed, which determines

the model parameters from the minimization of the error
between model and experiment.

This last point, the parameter identification, is mainly
examined in this contribution.Most of the attention is usually
dedicated to the three firstly mentioned steps: experiment,
theory, and numerics, whereby the final point of the identifi-
cation process is often disregarded. Especially in some recent
works, it comes up that the importance of the parameter
finding increases more and more since the models try to
include more material characteristics often resulting in a
high number of model parameters. Moreover, some previous
contributions have shown that a mechanical characterization
only based on uniaxial data is not sufficient for a realistic
description of three-dimensional, inhomogeneous problems.
For details concerning the necessity of a multiaxial approach
the reader is referred to the contributions of, for example,
Baaser et al. [1–3], Johlitz and Diebels [4], and Seibert et al.
[5]. In a model based only on uniaxial data the simulations
for a parameter identification can be executed on ordinary
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geometries, such as simple cubes, whereby in a multiax-
ial description the complete specimen geometry and the
resulting inhomogeneities have to be considered.This results
in inverse calculations, where the detailed experimental
conditions are reproduced in the numerics and subsequently
compared to the simulation.

A similar effort is necessary when a geometrical structure
has to be represented.This is the case when a complete geom-
etry of an assembly is investigated [6, 7] or if a microstructure
is examined, for example, for composites [8–10] or foams [11].

Both the increasing model complexity and the necessity
of multiaxial approaches result in a more complex simu-
lation which needs high effort to be solved. Finally, the
computational costs are very high and lead to long-lasting
computations. Regarding the parameter identification, many
simulations have to be executed to find amatching parameter
set. Hence, it is definitely recommended to treat the identifi-
cation process much more attentively. An efficient parameter
identification can reduce the duration for a finishedmodeling
process with matching parameters a lot.

In a material modeling process it is usual to invest a
high effort in the data acquisition in the experiments and
the model description, whereby it is a common method to
use only very simple optimisation algorithms for a parameter
finding. Stochastic methods such as evolution strategies
[12, 13] or the pattern search-algorithm [14, 15] as well as
the method fminsearch based on the Nelder-Mead simplex
algorithm [16] are often applied. The advantage of all of
these methods is that no gradient information of the model
is needed so that the effort in realizing and starting the
parameter identification process is very low, whereby the
performance of the algorithms is normally not satisfying.
Concerning the realization it is only necessary to run the
simulation and to define a fitness function which is able to
compare the experimental and numerical results adequately.
Due to the ill-posedness of the inverse problem, small errors
in the input data of the identification may lead to large errors
in the model parameters. This problem can be overcome
by the introduction of appropriate regularization strategies.
Regularization methods are stable solution strategies for
inverse problems.They assure that the computed solution fits
the givenmathematical model and at the same time attenuate
the noise that is contained in the measured data. Theory
and application of regularization methods in Hilbert spaces
are well-founded; we refer to the standard textbooks [17–
19]. In the last decade the theory was extended to Banach
spaces; see [20]. Amongst the most popular regularization
tools are Tikhonov functionals [21]. These consist of two
parts, a data fitting term and a penalty term. The latter is
responsible for the stability and at the same time for the incor-
poration of any a priori information. That is why Tikhonov
functionals might be an interesting tool to tackle parameter
identification problems connected to constitutive equations
of elastic and viscoelastic materials. This is the research
hypothesis to be validated in the present article.We construct
Tikhonov functionals that are adapted to our models and
demonstrate the performance of Tikhonov regularization in
different settings and condition numbers of the underlying
system.
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Figure 1: Rheological model of the viscoelastic behavior with 𝑛
Maxwell elements.

The applied methods and their advantages are shown
with respect to a material model according to the work of
Scheffer [22]. In order to focus on the process itself the data
bases for the identification are not the original experimental
values, where signal noise and statistics play an important
role. Moreover, it is not finally sure whether the resulting
parameters in the work of Scheffer [22] represent the optimal
set since the model is of high complexity in order to describe
a nonlinear viscoelastic material behavior depending on the
deformation velocity. Hence, for this article the model with
the already identified parameters is taken as the reference
and the parameters are reidentified. As the main advantage
the exact values of the parameters are known and it can be
proven if the proposed methods find this exact solution of
the problem.

Organization of theArticle. In Section 2 the theoretical aspects
concerning the material description and the resulting con-
stitutive equations are discussed. In Section 3 the problem of
parameter identification as an inverse problem is addressed.
Section 4 verifies the usage of the proposed methods by
showing theoretical results for simplified material models
as well as by reconstructing given material parameters. The
paper is concluded with a summary and an outline of future
research in Section 5.

2. Mathematical Model

A new approach for identifying material parameters is
discussed here. There are many viscoelastic materials, and
different models exist to characterize them fully. To test the
approach, the following model is used: It is inspired by real
life experiments and is based on a rheological model, where
a spring is positioned in parallel to 𝑗 = 1, . . . , 𝑛 Maxwell
elements. Each of the Maxwell elements consists of a spring
connected in series to a dashpot; compare, Figure 1 (Figure 1
is reprinted by permission from Springer Customer Service
Centre GmbH: [23]).

The single spring represents the equilibrium stiffness,
whereas the Maxwell elements describe the viscoelastic
effects. Even the 3-parametermodel consisting of a spring and
one Maxwell element in parallel shows the main viscoelas-
tic effects, namely, relaxation and creep. The mathematical
structure of this rheological model forms the basis for the
nonlinear and three-dimensional formulation used in the
following investigations.
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Figure 2: Typical stress-strain diagram.

The basic elasticity is given as the equilibrium response
and serves as the basis for the further material model. A basic
elasticity curve for elastomers often shows stiffening for larger
deformation values resulting in the typical S-shaped stress-
strain curve. This shape of the stress-strain correlation can
be monitored by a Yeoh model [24] with the free energy
function:

𝜌0𝜓eq (𝐼B) = 𝑐10 (𝐼B − 3) + 𝑐20 (𝐼B − 3)2 + 𝑐30 (𝐼B − 3)3 , (1)

with the first invariant 𝐼B = trB in the third order. Here
B = F ⋅F𝑇 is the left Cauchy-Green deformation tensor and F
is the deformation gradient. The higher-order approach can
monitor the S-shaped upturn of the stress-strain correlation
for bigger strains. Figure 2 shows a typical stress-strain
diagram for a carbon black filled rubber sample for the basic
elasticity as investigated in [23].

To cover the different time ranges in the relaxation behav-
ior, fourMaxwell elements are used.The viscoelastic behavior
can be captured by the easiest neo-Hookean approach for the
springs in theMaxwell elements.This leads to the free energy
contribution:

𝜌0𝜓neq (𝐼B) = 4∑
𝑗=1

𝑐10𝑗 (𝐼B𝑗𝑒 − 3) . (2)

The total free energy is given by the sum of (1) and (2):

𝜌0𝜓 = 𝜌0𝜓eq + 𝜌0𝜓neq. (3)

In the equations, B describes the deformation in the single
equilibrium spring and B𝑗𝑒 = F𝑗𝑒 ⋅ (F𝑗𝑒)𝑇 represents the elastic
deformation in the 𝑗th Maxwell element. The underlying
multiplicative split of the deformation gradient F = F𝑒 ⋅
F𝑖 was well established in finite strain theories of plasticity
or viscoelasticity; compare, for example, [25]. The Cauchy
stress T is obtained from the free energy functions according

to the Clausius-Planck inequality for isothermal processes
with respect to the argumentation of Coleman and Noll [26]
leading to

T = −𝑝I + 2𝜌0B ⋅ 𝜕𝜓eq𝜕B + 𝑛∑
𝑗=1

2𝜌0B𝑗𝑒 ⋅ 𝜕𝜓𝑗neq𝜕B𝑗𝑒 (4)

with 𝑝 as the Lagrangian multiplicator representing the
incompressibility of the material. Evaluating (4) for the
chosen free energy function results in

T = −𝑝I + 2 [𝑐10 + 2𝑐20 (𝐼B − 3) + 3𝑐30 (𝐼B − 3)2]B
+ 4∑
𝑗=1

2𝑐10𝑗B𝑗𝑒. (5)

The time-dependent behavior of the Maxwell elements is
described by the evolution equations

Ċ𝑗𝑖 = 4𝑟𝑗 [C − 13 tr (C ⋅ (C𝑗𝑖 )−1)C𝑗𝑖 ] 𝑗 = 1, . . . , 4 (6)

for the inelastic deformation C𝑗𝑖 = (F𝑗𝑖 )𝑇 ⋅ F𝑗𝑖 in the dashpot
of the 𝑗th Maxwell element; see [27]. Ċ𝑗𝑖 are the material time
rates of the inelastic right Cauchy-Green deformation tensors
C𝑗𝑖 . The parameters 𝑟𝑗 in the evolution equation stand for the
so-called relaxation time.Theyhave to be chosen according to
observation from relaxation tests. Usually different relaxation
processes take place in a black carbon filled rubber. While
the fastest process is triggered by the loading time 𝑡max, the
slowest process is governed by the total time of observation𝑏max. For simplicity the relaxation times of the model are
equally distributed with this time interval on a logarithmic
scale. Figure 3 shows the theoretical strain that a material
experiences during the relaxation experiments and its stress
answer.

In the experiments, the stretch values 𝜆, which are the
ratio of current length 𝑙 to initial length 𝑙0, are steadily
increased until the maximum values 𝜆max are reached and
are then held there. The time when this maximum is reached
is denoted by 𝑡max. While in an idealised relaxation test the
loading is applied instantaneously, in real experiments 𝑡max is
mainly governed by the maximum speed of the experimental
device. Furthermore, the stop time of the experiments is
denoted by 𝑏max. In the stress answer of the material an
increase is noticed until 𝑡max where the maximum is reached.
From then on, the stress tends towards the basic stress value𝑇eq while the deformation does not change. This process is
called relaxation.

The relaxation times were chosen in such a way that
the physical restrictions in the experiments are preserved.
On one side the maximal device velocity that is used in the
experiments gives a lower bound for the smallest observable
relaxation time. On the other side the time span of the
experiment determines the longest relaxation time. In order
to cover a broad interval, the relaxation times are set in a
range ofmultiple powers of ten as seen inTable 1. It also shows
the identified material parameters from the aforementioned
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Figure 3: Relaxation test.

Table 1: Used parameters.

𝑐10 [MPa] 𝑐20 [MPa] 𝑐30 [MPa] 𝑐101 [MPa] 𝑐102 [MPa] 𝑐103 [MPa] 𝑐104 [MPa] 𝑟1 [s] 𝑟2 [s] 𝑟3 [s] 𝑟4 [s]
0.200 −0.052 0.017 0.009 0.1045 0.065 3.382 0.1 1 10 100

experiments performed on a black carbon filled rubber
[23]. They are mechanically meaningful and can be used to
test the here proposed reconstruction methods. Due to the
complexity of the model the identification of its parameters
is far from being trivial. In general, an inverse problem is
formulated in such a way that the parameters are chosen by
minimization of the error between data and experiments.

3. Regularization Methods

If we neglect modeling errors, then the exact parameters
and those which have been predicted by solving the inverse
identification problem, coincide. This leads to the equation

𝑏 (𝑡𝑖) = 𝜑 (𝑡𝑖; 𝑐1, . . . , 𝑐𝑛) , (7)

where 𝑏𝑖 = 𝑏(𝑡𝑖) are the measurements at 𝑚 different
time steps 𝑡𝑖, 𝜑 the approximative model, and 𝑐1, . . . , 𝑐𝑛 the
unknown (exact) material parameters. Due to inevitable
errors in the experiments and the fact that themodel is unable
to describe the real process exactly, the residue V𝑖 can only be
approximated by

V𝑖 = 𝜑 (𝑡𝑖; 𝑐1, . . . , 𝑐𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
c

) − 𝑏𝑖, 𝑖 = 1, . . . , 𝑚. (8)

With the goal in mind to minimize the residues with respect
to the model parameters, the V𝑖 and 𝑐𝑗 are unified into vectors
k and c, respectively, and one obtains the minimization
problem

min
c∈R𝑛

12 ‖k‖22 = 12min
c∈R𝑛

𝑚∑
𝑗=1

V2𝑖 . (9)

Due to the nature of the presented constitutive model (5), the
equations are simplified to linear ones with respect to cwith a
common form. This leads for 𝑚 values of the stretch 𝜆𝑘, 𝑘 =1, . . . , 𝑚 to

𝑇 (𝜆𝑘) = 𝑎1 (𝜆𝑘) 𝑐1 + ⋅ ⋅ ⋅ + 𝑎𝑛 (𝜆𝑘) 𝑐𝑛. (10)

For different values of the stretch𝜆𝑘, which explicitly depends
on time, we obtain the stress as a linear combination of the
coefficients 𝑎𝑗(𝜆𝑘) determined from themodel equations and
the material parameters 𝑐𝑗. The coefficients 𝑎𝑗(𝜆𝑘) are given
by (5) and are united into a vector a𝑘:

a𝑘 = (𝑎1 (𝜆𝑘) , 𝑎2 (𝜆𝑘) , . . . , 𝑎𝑛 (𝜆𝑘)) ∈ R
𝑛. (11)

For rate-dependent material behavior, the stress and the
coefficients in a𝑘 have explicit additional dependency on the
inelastic stretch 𝜆𝑖.

In the following we do not investigate data measured
in real experiments but for simplicity we treat the so-called
problem of parameter reidentification. Therefore, the used
data are not derived from actual experiments but are obtained
by the stress-strain relationship given by the constitutive
equations and a set of known parameters; compare Table 1.
To further simulate errors in the measurement process, a
perturbation by white additive Gaussian noise is added to the
simulated stress vector, which leads to󵄩󵄩󵄩󵄩󵄩b − b𝛿󵄩󵄩󵄩󵄩󵄩 < 𝛿, (12)

where b is the simulated stress vector and b𝛿 the perturbed
one. Here, 𝛿 measures the deviation between the two vectors
and is called noise level. From here on out we use b𝛿 as
(simulated) input data.
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The vectors a𝑘 are collected to build the rows of a single
matrix A:

A = (a1, a2, . . . , a𝑚)𝑇 ∈ Mat𝑚,𝑛 (R) . (13)

Thus we have A = (𝑎𝑘𝑗) with 𝑎𝑘𝑗 fl 𝑎𝑗(𝜆𝑘). With the vector
c containing material parameters and b𝛿 containing stress
values 𝑇, one obtains the following minimization problem:

min
c∈R𝑛

12 󵄩󵄩󵄩󵄩󵄩Ac − b𝛿󵄩󵄩󵄩󵄩󵄩2 (14)

with b𝛿 = (𝑏𝛿1 , . . . , 𝑏𝛿𝑚)𝑇.
The minimization problem is differentiable due to the

Euclidean norm and can therefore be solved by setting the
first derivative equal to zero as a necessary condition. By
defining a function

𝐹 (c) = 12 󵄩󵄩󵄩󵄩󵄩Ac − b𝛿󵄩󵄩󵄩󵄩󵄩2 (15)

and its derivatives

∇𝐹 (c) = A𝑇Ac − A𝑇b𝛿,
H𝐹 (c) = A𝑇A, (16)

it can be shown that the 𝑛×𝑛-matrixH𝐹 = A𝑇A is symmetric
and positive definite, if A has full rank, so that the extremum
of ∇𝐹 is an absolute minimum. Setting ∇𝐹 = 0 leads to the
so-called normal equation

A𝑇Ac∗ = A𝑇b𝛿. (17)

This equation has a unique solution, if rang(A) = 𝑛. This
can be realized by using a sufficient number of samples. The
solution of (17) is then given as

c∗ = A+b𝛿, (18)

where A+ is defined as the pseudoinverse

A+ = (A𝑇A)−1 A𝑇. (19)

The difficulties that may arise when computing the inverse
of a matrix should be mentioned here. Explicitly, one should
consider the condition of the problem. It tells how much the
obtained solution deviates from the real one if the input data
is perturbed. In general, a problem is called well-conditioned
when small errors in the input data only generate small
errors in the solution. On the other hand, an ill-conditioned
problem gives rise to big errors in the solution for small
perturbation of the data. For linear problems, the condition
number 𝜅(A) of a matrixA can be calculated with the help of
the singular values by

𝜅 (A) = 𝜎max (A)𝜎min (A) (20)

with 𝜎max and 𝜎min being the largest and smallest singular
value, respectively.

To compensate for the measurement errors which pos-
sibly lead to the bad condition of A+, we propose a reg-
ularization scheme that is based on the Tikhonov-Phillips
method; see, for example, [18]. A penalty term is added to
the minimization problem (14) such that the norm of the
solution vector ‖c‖ is to be as small as possible. This leads to
the minimization problem

min
c∈R𝑛

12 󵄩󵄩󵄩󵄩󵄩Ac − b𝛿󵄩󵄩󵄩󵄩󵄩2 + 𝛾2 ‖c‖2 (21)

with the regularization parameter 𝛾 ≥ 0. By differentiating
with respect to c, we see that any solution c∗ has to satisfy the
shifted normal equation

(A𝑇A + 𝛾I) c∗ = A𝑇b𝛿. (22)

Since the matrix A𝑇A + 𝛾I is invertible, there exists a unique
solution of (21) for all 𝛾 > 0. The nature of the given problem
encourages an additional penalty term.The secondparameter
of the basic parameters, that is, 𝑐20, has to be negative due to
the characteristic shape of the stress-strain relation. Positive
values of 𝑐20 are therefore penalized such that (21) becomes

min
c∈R𝑛

12 󵄩󵄩󵄩󵄩󵄩Ac − b𝛿󵄩󵄩󵄩󵄩󵄩2 + 𝛾2 ‖c‖2 + 𝛽𝑐20, (23)

where 𝛽 > 0 denotes a further regularization parameter. The
optimality condition for the minimizing c∗ is then given as

(A𝑇A + 𝛾I) c∗ = A𝑇b𝛿 − 𝛽e2 (24)

with (e2)𝑗 = 1 for 𝑗 = 2 and 0 otherwise. The multiparameter
setting as in (23) is closely related to elastic-net regularization
which originates from statistics, see [28], and has been
analyzed in [29].

4. Virtual Experiments

In the virtual experiments the three aforementioned regu-
larization methods are used. Method 1 is the unregularized
normal equation (17), method 2 is the regularized Tikhonov
equation (22), and method 3 is given by (24), which adds an
extra penalty term to guarantee the negativity of the basic
elastic parameter 𝑐20. Furthermore we divide the experiments
into three categories depending on the characteristics of the
reconstructed parameters. At first, set 1 with the basic elastic
parameters 𝑐10, 𝑐20, and 𝑐30 is reconstructed. Subsequently
the viscoelastic parameter set 2 with 𝑐101, 𝑐102, 𝑐103, and𝑐104 is computed using the elastic parameters as a priori
information. Lastly, all parameters from the previous sets are
put together in set 3 and reconstructed at the same time. As
long as viscoelastic parameters are involved, we additionally
consider a simplified model to work out additional depen-
dence on the used relaxation times.

To compare the different reconstruction methods, an
error measurement is introduced. The reconstruction error𝜎 is the normalized difference between the vector c0 with
the identified parameters from Table 1 and the vector c with
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Figure 4: Condition numbers for parameter set 1 in dependence of𝜆max.

the newly reconstructed parameters with this approach in the
Euclidean norm; that is,

𝜎 = 󵄩󵄩󵄩󵄩c0 − c󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩c0󵄩󵄩󵄩󵄩 . (25)

In our tests we choose a noise level 𝛿 varying in the range
of [0, 0.7] to display the results of our methods depending
on the noise level. The value 𝛿 = 0.0 corresponds to
exact (simulated) data. We perform 100 realizations for every
value of 𝛿 which are averaged afterwards in order to reduce
fluctuations in𝜎due to the added randomnoise.Note that the
type of material being tested may also affect the noise level.

4.1. Reconstruction of Parameter Set 1: Reconstructing the Basic
Elasticity Parameters. At first the basic elastic parameters are
reconstructed. As our investigations are based on uniaxial
tension tests, the tensorial constitutive equation is reduced to
the scalar-valued stress-response as a function of the stretch:

𝑇eq = [2𝑐10 + 4𝑐20 (𝜆2 + 2𝜆 − 3)
+ 6𝑐30 (𝜆2 + 2𝜆 − 3)2] (𝜆2 − 1𝜆) . (26)

By evaluating (26) 𝑚 times, one obtains the linear system of
equations

Ac = b𝛿 (27)

with A ∈ Mat𝑚,3(R), c = (𝑐10, 𝑐20, 𝑐30)𝑇, and the perturbed
stress vector b𝛿 ∈ R𝑚.

In a first step, the condition of matrix A has to be
considered. Figure 4 shows the condition for different values

Table 2: Reconstruction of parameter set 1 with regularization in
dependence of 𝜆max (𝛾 = 0.5, 𝛽 = 0.1).
𝜆 𝑐10 [MPa] 𝑐20 [MPa] 𝑐30 [MPa]
2 0.1960 −0.0495 0.0164
1.5 0.2080 −0.0777 0.0410

of the maximum stretch 𝜆max. For a doubled probe length𝜆max = 2, the condition number 𝜅 decays rapidly if more
data points are used until it is almost constant with 𝑚 ≥ 20.
In the other cases, similar observations can be made and
therefore𝑚 = 20 is constant for further considerations. Since𝑛 = 3 and the total time of observation 𝑏max are fixed, it is
quite natural that the condition of A saturates for growing𝑚 at a certain level. The reason is that for a fixed number of
columns 𝑛 and fixed observation time 𝑏max we do not expect
that 𝜎max(A) → +∞ or 𝜎min(A) → 0 as 𝑚 → ∞. Moreover,
we have that rank(A) = 3, independently of𝑚, and thus there
are at most 3 singular values which are not identical 0.

We discuss now the regularization for two different values
of the stretch, namely, 𝜆max = 2 and 𝜆max = 1.5. The results
are illustrated in Figure 5. A regularization for amaterial with
double the length and𝜆max = 2does not seem to be necessary.
Even the unregularized reconstruction gives reasonable low
errors 𝜎. For small derivations from the original stress vector
b, the results get even worse. For the smaller strain value the
advantages of the regularization become more pronounced.
The reconstruction error barely reaches a value of 𝜎 = 0.4 in
method 2, whereas we face larger errors for the unregularized
reconstruction. Additionally the advantages of the second
regularization term with 𝛽 in method 3 can be shown. For𝜆max = 1.5 the relative error 𝜎 may be small in method 2, but
by a closer look it is revealed that 50 percent of the values of 𝑐20
are positive and therefore the reconstruction is not satisfying.
With the additional regularization term, the percentage of
positive values can be reduced to 4 percent and the relative
error is even further reduced. For 𝜆max = 2 the number of
positive values for 𝑐20 is also reduced by half in method 3.

The quantitative reconstruction of the parameters is
shown in Table 2 for 𝛿 = 0.5. For both choices of 𝜆max a
sufficient reconstruction is possible with a worse result in the
smaller interval up to 𝜆max = 1.5.
4.2. Reconstruction of Parameter Set 2: Incorporating the Vis-
coelastic Parameters. Themodel is extended by incorporating
viscoelastic parameters. The constitutive equation has the
following form:

𝑇
= [2𝑐10 + 4𝑐20 (𝜆2 + 2𝜆 − 3) + 6𝑐30 (𝜆2 + 2𝜆 − 3)2] (𝜆2 − 1𝜆)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑇eq

+ 4∑
𝑗=1

2𝑐10𝑗( 𝜆2
(𝜆𝑗𝑖)2 − 𝜆𝑗𝑖𝜆 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇neq

.
(28)
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Figure 5: Reconstruction of parameter set 1 in dependence of 𝜆max.

Table 3: Condition numbers for the simplified model.

𝑚 𝑡max [s]
0.01 0.1 1 10

15 5.7297 7.1685 12.0725 19.2962
20 8.1053 6.5995 12.9576 19.5821
25 5.5608 7.0681 13.0173 19.7707
30 5.9307 6.6409 12.3669 19.1556

As the identified basic elastic parameters are kept fixed
in this step we only consider the viscoelastic parameter
reconstruction and the data is solely produced by 𝑇neq.

In the viscoelastic case the data points have to be dis-
tributed logarithmically on the interval [0, 𝑏max], such that
more weight is put onto the loading process of the deforma-
tion than the relaxation process.

4.2.1. Simplified Parameter Reconstruction. Due to the more
complex material behavior, the importance of the relaxation
times of the different Maxwell elements has to be considered
first. To test the influence of the relaxation times on the
reconstruction, simulated data with a simplified material
model in mind have to be constructed. Only two Maxwell
elements with relaxation times 𝑟1 = 1 s and 𝑟2 = 10 s are
used.With this simplifiedmodel the influence of the different
parameters can be studied.

The condition only differs slightly if the values for 𝜆max,𝑏max or the number of data points 𝑚 is changed. On the other
side, different values for 𝑡max have a big effect on the condition
as can be seen in Table 3. Physically, for a given 𝜆max the
parameter 𝑡max stays in direct relationship to the deformation

Table 4: Reconstruction of the viscoelasticity parameters 𝑐101 and𝑐102.
(a) 𝑐101 = 1, 𝑐102 = 1, 𝛾 = 0.5

𝑡max [s] 𝑐101 [MPa] 𝑐102 [MPa]10 > 𝑟2 0.0163 0.13511 = 𝑟2 0.1541 0.92270.1 = 𝑟1 0.6251 1.06610.01 < 𝑟1 0.9175 1.0349

(b) 𝑐101 = 1, 𝑐102 = 1, 𝛾 = 1.5

𝑡max [s] 𝑐101 [MPa] 𝑐102 [MPa]10 > 𝑟2 0.0058 0.04771 = 𝑟2 0.0993 0.70990.1 = 𝑟1 0.4209 1.06590.01 < 𝑟1 0.8091 1.0604

velocity of the material. Slower deformation rates correspond
to greater values of 𝑡max, whereas small values belong to faster
deformations.

Table 4 shows the reconstruction of the simplified model
if the parameters 𝑐101, 𝑐102 are chosen as 1MPa. A bigger value
for the choice of the regularization parameter 𝛾 penalizes
the norm of c too much and should therefore be chosen
accordingly. For further investigations a value of 𝛾 = 0.5 is
chosen. It can be recognized that the reconstructed value of
parameter 𝑐10𝑗 is within a tolerance as soon as 𝑡max is smaller
than 𝑟𝑗.

Further observations can be made if the parameters are
chosen similar to the relaxation times in decades. Table 5
shows the reconstruction for 𝑐101 = 1MPa and 𝑐102 = 10MPa
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Table 5: Reconstruction of the viscoelasticity parameters with
different values.

(a) 𝑐101 = 1, 𝑐102 = 10

𝑡max [s] 𝑐101 [MPa] 𝑐102 [MPa]10 > 𝑟2 0.1473 1.23161 = 𝑟2 1.0612 8.30390.1 = 𝑟1 1.5237 9.78040.01 < 𝑟1 1.3703 9.9070

(b) 𝑐101 = 10, 𝑐102 = 1

𝑡max [s] 𝑐101 [MPa] 𝑐102 [MPa]10 > 𝑟2 0.0353 0.26511 = 𝑟2 0.5581 1.82670.1 = 𝑟1 5.3249 1.95830.01 < 𝑟1 8.7564 1.4773
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Figure 6: Condition numbers for parameter set 2 in dependence of𝑡max.

and vice versa. In addition to the prior observations, it is also
noted that the reconstruction of the parameters belonging to
small relaxation times is not as good as the ones belonging to
the bigger relaxation times.

4.2.2. Original Parameter Reconstruction. For the reconstruc-
tion of the exact parameters of the original model, the
condition can be observed in Figure 6 for different values
of 𝑡max. The number of samples is chosen as 𝑚 = 15 in
these experiments. The actual reconstruction is shown in
Figure 7 with different values for 𝑡max. According to earlier
observation the regularization is not necessary for 𝑡max =0.01 s. The error for the unregularized solution is as low as
the error for the regularized one. The reconstruction error𝜎 is small in either method though. A small 𝑡max means

Table 6: Reconstruction of the viscoelasticity parameters in depen-
dence of 𝑡max.

𝑡max [s] 𝑐101 [MPa] 𝑐102 [MPa] 𝑐103 [MPa] 𝑐104 [MPa]0.01 0.0492 0.0447 0.1408 3.33961 0.0116 −0.3493 0.1814 3.3289

at the same time a relatively fast deformation rate. These
rates cannot be obtained in current experiments. Therefore a
more realistic value of 𝑡max = 1 s is also tested. In this case,
regularization leads to better results again. The regularized
reconstruction error never exceeds 𝜎 = 0.06, whereas the
unregularized one increases for bigger noise levels.

The quantitative reconstruction in Table 6 shows the
characteristics of the simplified tests. For 𝑡max = 0.01 s,
the parameter 𝑐104 is reconstructed well, whereas the others
show overshooting values. The smaller the relaxation time,
the bigger the error gets. For 𝑡max = 1 s, which is closer to real
experiments, the parameters get reconstructed appropriately,
but a negative value for 𝑐102 is observed. This behavior is
according to the choice of 𝑡max as 𝑟2 > 𝑡max.

4.3. Reconstruction of Parameter Set 3: All-at-Once Com-
putation of the Parameters. At last, the question arises if
it is necessary to do the time-consuming identification of
basic elasticity parameters beforehand. In case of highly filled
rubbers the relaxation of the specimen can be observed for
very long times. Therefore, the experiments are really time-
consuming if the basic elasticity should be observed; see,
for example [22]. In this case the sequential identification
presented above is not possible. A simultaneous identification
bymeans of ourmethods is proposed in the next step. For the
following experiments the data vector b𝛿 consists of values of
(28).The parameters 𝜆max = 2 and 𝑏max = 500 s are fixed.The
regularization parameters are chosen as 𝛾 = 0.5 and 𝛽 = 0.1.
4.3.1. Simplified Parameter Reconstruction. In the first step
the simplified model from Section 4.2.1 is extended. Next to
the parameters 𝑐101 and 𝑐102 for the viscoelasticity, the basic
elasticity parameters 𝑐10, 𝑐20, and 𝑐30 can be chosen freely.
The condition of the 𝑚 × 5-matrix is shown in Table 7. For
values of 𝑡max as 0.1 s or 1 s, we still obtain a reasonable
condition whereas we observe an exponentially increasing
condition number as 𝑡max → 0. To restrict the workload
on the experimentator, the number of samples is chosen as𝑚 = 30. The values of the exact parameters have been chosen
as in Table 8.

Table 9 shows reconstructions for different values of 𝑡max.
It has to be distinguished between two types of parameters.
On the one hand the viscoelastic parameters show the same
patterns with respect to 𝑡max and the relaxation times 𝑟𝑗
as before. On the other hand an insufficient reconstruction
of the basic parameters for a small choice of 𝑡max can be
observed.Therefore the choice for 𝑡max builds a contradiction.
One explanation can be found in the unusually high condi-
tion in the range of 1018.
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Figure 7: Reconstruction of parameter set 2 in dependence of 𝑡max.

Table 7: Condition numbers for the simplified model.

𝑚 𝑡max [s]
0.01 0.1 1 10

15 9.24 ⋅ 1018 2.684 ⋅ 103 2.99 ⋅ 103 1.85 ⋅ 104
20 8.49 ⋅ 1018 2.77 ⋅ 103 3.08 ⋅ 103 1.77 ⋅ 104
25 4.82 ⋅ 1018 1.83 ⋅ 103 3.35 ⋅ 103 1.76 ⋅ 104
30 2.35 ⋅ 1019 1.74 ⋅ 103 3.09 ⋅ 103 1.65 ⋅ 104
35 6.94 ⋅ 1019 1.52 ⋅ 103 2.95 ⋅ 103 1.71 ⋅ 104

Table 8: Values of the exact parameters in the simplified model.

𝑐10 [MPa] 𝑐20 [MPa] 𝑐30 [MPa] 𝑐101 [MPa] 𝑐102 [MPa]
1 −1 1 1 1

Furthermore, similar observations as before can be made
if one of the viscoelastic parameters gets multiplied by
10, as seen in Table 10. By the Tikhonov regularization a
simultaneous reconstruction of all parameters is performed
since the minimization of (23) averages the norm of the
penalty term. This leads to over- and underestimations
in the reconstructed solution c. A possible remedy could
be a separate regularization with ceq containing the basic
elasticity parameters and cneq containing the viscoelasticity
parameters.

4.3.2. Original Parameter Reconstruction. In a last step the
quality of the reconstruction of the actual parameters is
tested.The range in which the condition lies does not change.
For 𝑡max = 0.01 s the values lie in the range of 1018 going
afterwards down to 103 for larger values of 𝑡max. Due to

this ill-posed problem a reasonable reconstruction without
regularization is impossible for 𝑡max = 0.01. With our two
methods of regularization, however, sufficient results with an
error measurement 𝜎 < 0.12 are reached.

Figure 8 shows the reconstruction of the parameter for𝑡max = 1 s. Without regularization the error is increasing for
higher values of 𝛿. The regularized solutions never exceed𝜎 = 0.04. The importance of the regularization parameter 𝛽
is again shown. Even though the error is minimally larger for
method 3, only 10 percent of the values for 𝑐20 are positive
whereas we have 53 percent positive values in method 2.

Table 11 shows the actual reconstructed values for two
values of 𝑡max. We see the contradicting influence of 𝑡max. For
a small value we reconstruct the viscoelastic parameters well
but suffer a massive undershoot for the basic parameter 𝑐10.
For the bigger value of 𝑡max the basic elasticity parameters
can be reconstructed while the viscoelastic ones are slightly
undershot.

Remark 1. Knowing the ground truth as in our simulations
the regularization parameters 𝛾 and 𝛽 can easily be adjusted
by trial and error. Of course, this is no longer possible in case
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Table 9: Reconstruction of parameters in the simplified model.

𝑡max [s] 𝑐10 [MPa] 𝑐20 [MPa] 𝑐30 [MPa] 𝑐101 [MPa] 𝑐102 [MPa]10 > 𝑟2 0.9470 −0.9166 0.9766 0.0300 0.24481 = 𝑟2 1.0030 −0.9247 0.9821 0.2310 0.86820.1 = 𝑟1 0.9648 −0.8849 0.9722 0.6960 1.01350.01 < 𝑟1 0.0705 0.0346 0.7402 0.9455 1.0240

Table 10: Reconstruction of parameters with different values.

(a) 𝑐101 = 1, 𝑐102 = 10

𝑡max [s] 𝑐10 [MPa] 𝑐20 [MPa] 𝑐30 [MPa] 𝑐101 [MPa] 𝑐102 [MPa]10 > 𝑟2 1.7450 −1.3238 1.0459 0.1638 1.17931 = 𝑟2 3.4953 −1.5015 0.9680 1.1327 4.86260.1 > 𝑟1 0.9354 −0.7622 0.9348 1.2218 9.80110.01 < 𝑟1 0.0703 0.0361 0.7406 1.2255 9.9818

(b) 𝑐101 = 10, 𝑐102 = 1

𝑡max [s] 𝑐10 [MPa] 𝑐20 [MPa] 𝑐30 [MPa] 𝑐101 [MPa] 𝑐102 [MPa]10 > 𝑟2 1.0231 −0.9556 0.9832 0.0570 0.38531 = 𝑟2 1.3213 −1.1901 1.0440 0.8043 1.77080.1 = 𝑟1 3.5345 −1.6759 1.0208 3.1867 1.53960.01 < 𝑟1 0.0961 0.0264 0.7397 9.1108 1.3099
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Figure 8: Reconstruction of parameter set 3 with 𝑡max = 1 s.

of real, measured data. The most popular parameter choice
rule in this case is Morozov’s discrepancy principle, which
works as follows: Choosing null sequences {𝛾𝑘} and {𝛽𝑘} as
well as a tolerance parameter 𝜏 > 1, we define 𝑘∗ ∈ N by

𝑘∗ fl min {𝑘 ∈ N : 󵄩󵄩󵄩󵄩󵄩Ac∗𝑘 − b𝛿󵄩󵄩󵄩󵄩󵄩 < 𝜏𝛿} , (29)

where c∗𝑘 solves (24) with parameters 𝛾𝑘, 𝛽𝑘. Finally we set𝛾 fl 𝛾𝑘∗ , 𝛽 fl 𝛽𝑘∗ . In this way it is guaranteed that the noise
in the residuum is of the same order as the noise in the data.
Heuristic methods for choosing 𝛾, 𝛽 depending only on the
measured data b𝛿, which is of relevance if the noise level 𝛿 is
not known and cannot be estimated, are the L-curve criterion
or generalized cross validation.We refer the interested reader
to the standard textbook [18] for more details on parameter
choice rules.

5. Conclusion

In this article we introduced a method for identifying
material parameters from constitutive equations by means
of a Tikhonov regularization. An extra penalty term which
is directly inspired from the stress-strain relationship for
the chosen material is added to expect reasonable results.
Overall, this method ensures a fast and convenient way to
identify both the basic elastic and the viscoelastic parame-
ters at the same time without a time-consuming separated
identification. Maybe better reconstruction results can be
achieved by using more sophisticated penalty terms. We
furthermore mention some shortcomings that are intrinsic
to Tikhonov regularization. The first one is the fact that in
general 𝜅(A𝑇A) = 𝜅(A)2 yielding a much worse condition
number for A𝑇A, the matrix that appears in systems (22)
and (24). A second one must be seen in the determination of
appropriate regularization parameters 𝛾 and 𝛽 in case of real
data which might be time-consuming and data-dependent.
Furthermore, better results can be achieved by correlating the
relaxation times with the actual deformation process.
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Table 11: Reconstruction of parameter set 3 in dependence of 𝑡max.

𝑡max [s] 𝑐10 [MPa] 𝑐20 [MPa] 𝑐30 [MPa] 𝑐101 [MPa] 𝑐102 [MPa] 𝑐103 [MPa] 𝑐104 [MPa]
0.01 0.0063 −0.1749 0.0754 0.0616 0.0239 0.1704 3.3067
1 0.2130 −0.0823 0.0273 0.0153 −0.0156 0.2089 3.2952

Finally we note that the methodology is also applicable to
alternative constitutive equations like plasticity models. This
will be subject of future research.
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