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The emergence of genome manipulation methods promises a real revolution in biotechnology and genetic engineering. Targeted
editing of the genomes of living organisms not only permits investigations into the understanding of the fundamental basis of
biological systems but also allows addressing a wide range of goals towards improving productivity and quality of crops. This
includes the creation of plants with valuable compositional properties and with traits that confer resistance to various biotic and
abiotic stresses. During the past few years, several novel genome editing systems have been developed; these include zinc finger
nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic
repeats/Cas9 (CRISPR/Cas9).These exciting newmethods, briefly reviewed herein, have proved themselves as effective and reliable
tools for the genetic improvement of plants.

1. Introduction

Since the advent of recombinant DNA technology in Paul
Berg’s laboratory [1] in 1972, genetic engineering has come
a long way and achieved enormous success. Many molecular
and genetic mechanisms and phenomena have been discov-
ered and studied in detail and the knowledge accumulated
now permits researchers to reproduce experiments in vitro.
Several decades-long investigations inmolecular genetics and
biochemistry of bacteria and viruses have allowed researchers
to develop new methods of manipulating DNA through
creation of various vector systems and tools for their delivery
into the cell. All of these developments allow successful
creation of not only transgenic microorganisms but also
genetically modified higher organisms including various
plant and crop species. Creation of novel tools for breeding
and biotechnology, an application area of genetic engineer-
ing, has received significant focus resulting in accelerated
development of useful tools. However, conventional genetic

engineering strategy has several issues and limitations, one
of which is the complexity associated with the manipulation
of large genomes of higher plants [2].

Currently, several tools that help to solve the problems of
precise genome editing of plants are at scientists’ disposal. In
1996, for the first time, it was shown that protein domains
such as “zinc fingers” coupled with FokI endonuclease
domains act as site-specific nucleases (zinc finger nucleases
(ZFNs)), which cleave the DNA in vitro in strictly defined
regions [3]. Such a chimeric protein has a modular structure,
because each of the “zinc finger” domains recognizes one
triplet of nucleotides. This method became the basis for the
editing of cultured cells, including model and nonmodel
plants [4, 5].

Continued efforts and investigations led to the develop-
ment of new genome editing tools such as TALENs (tran-
scription activator-like effector nucleases) and CRISPR/Cas
(clustered regularly interspaced short palindromic repeats).
Designing TALENs requires reengineering of a new protein
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for each of the targets. However, the design process has
been streamlined recently by making the modules of repeat
combinations available that essentially reduces the cloning
required for the design. On the other hand, designing and
use of CRISPR are simple. Both TALEN and CRISPR systems
have been shown to work in human cells, animals, and plants.
Such editing systems when used for efficient manipulation
of genomes could solve complex problems including the
creation of mutant and transgenic plants [12, 41]. Moreover,
chimeric proteins containing zinc finger domains and acti-
vation domains of other proteins and those based on the
TALE DNA-binding domain and Cas9 nuclease were used
in experiments for regulation of gene transcription, study of
epigenomes, and the behavior of chromosome loci in cell
cycle [24, 42–44].

In this review, we briefly described the mechanisms of
different genome editing systems and their use for crop
improvement and also highlighted the multiple advantages
and applications of engineered nucleases as well as biosafety
and regulatory aspects of plants generated using engineered
nuclease based technologies.

2. Mechanisms of Genome Editing Systems

Novel genome editing tools, also referred to as genome
editingwith engineered nuclease (GEEN) technologies, allow
cleavage and rejoining of DNA molecules in specified sites
to successfully modify the hereditary material of cells. To
this end, special enzymes such as restriction endonucleases
and ligase can be used for cleaving and rejoining of DNA
molecules in small genomes like bacterial and viral genomes.
However, using restriction endonucleases and ligases, it is
extremely difficult to manipulate large and complex genomes
of higher organisms, including plant genomes.Theproblem is
that the restriction endonucleases can only “target” relatively
short DNA sequences. While such specificity is enough for
short DNA viruses and bacteria, it is not sufficient to work
with large plant genomes. The first efforts to create methods
for the editing of complex genomes were associated with the
designing of “artificial enzymes” as oligonucleotides (short
nucleotide sequences) that could selectively bind to specific
sequences in the structure of the target DNA and have
chemical groups capable of cleaving DNA [45].

Targeted approach to address this challenge was the
design of chimeric nucleases which are complex proteins
containing one or two structural units, one of which catalyzes
the cleavage of DNA, and the second is capable of selectively
binding to specific nucleotide sequences of target molecule,
providing the nuclease action to this site (Table 1) [46, 47].
These chimeric nucleases can be “produced” directly in the
cell: to this end, appropriately engineered vectors encoding
nucleases need to be introduced into cell. Such vectors are
also supplied with nuclear localization signal which enables
the nuclease to enter the cell nucleus thereby getting access to
genomic DNA.

2.1. Zinc Finger Nucleases (ZFNs). ZFNswere the first genera-
tion of genome editing tools that use chimerically engineered

nucleases which were developed after the discovery of the
working principles of the functional Cys2-His2 zinc finger
(ZF) domain [3, 4, 46, 48]. Each Cys2-His2 ZF domain
consists of 30 amino acid residues, which are folded up to𝛽𝛽𝛼
configuration [48–50]. Crystallographic structure analysis
showed that the Cys2-His2 ZF proteins bind to DNA by
inserting an 𝛼-helix of the protein into the major groove of
the DNA-double helix [51]. Each ZF protein has the ability
to recognize 3 tandem nucleotides in the DNA. Generalized
ZFN monomer consists of two different functional domains:
artificial ZF Cys2-His2 domain at the N-terminal region
and a nonspecific FokI DNA cleavage domain at the C-
terminal region. FokI domain dimerization is critical for ZFN
enzymatic activity [3]. The observation that the modular
recognition of zinc finger domains presents as a series to the
corresponding, consecutive three bp targets enabled the real-
ization that each of the individual zinc finger domains could
be interchangeable and that the manipulation of the order
of the domains would lead to unique binding specificities
to the proteins harboring them thereby enabling targeting
of specific, unique sequences in the genome. For example, a
ZFN dimer, consisting of two 3 or 4 ZF domains, recognizes a
target sequence of 18 or 24 base pairs, which statistically form
unique sites in the genomes of most organisms (Table 1).

The design and application of ZFNs involve modular
design, assembly, and optimization of zinc fingers against
specific target DNA sequences followed by linking of individ-
ual ZFs towards targeting larger sequences. Over the years,
zinc finger domains have been generated to recognize a large
number of triplet nucleotides. This enabled the selection
and linking of zinc fingers in a sequence that would permit
recognition of the target sequence of interest.

Since the first report on zinc fingers in 1996, they have
been successfully used in several organisms including plants
[4]. Examples include targeted inactivation of endogenous
genes in Arabidopsis [15, 16], high frequency modification
of tobacco genes [17], and precise targeted addition of a
herbicide-tolerance gene as well as insertional disruption of a
target locus in maize [18]. ZFNs have also been used for trait
stacking in maize [52, 53].

Zinc finger nucleases have revolutionized the field of
genome editing by demonstrating the ability to manipulate
genomic sites of interest and opened the gates for both basic
and applied research. ZFNs provide advantages over other
tools with respect to efficiency, high specificity, and minimal
nontarget effects and current efforts are focused on further
improving design and delivery as well as expanding their
applications in diverse crops of interest.

2.2. Transcription Activator-Like Effector Nucleases (TALENs).
The quest for efficient and selective manipulation of target
genomic DNA led to the identification of unique transcrip-
tion activator-like effector (TALE) proteins that recognize
and activate specific plant promoters through a set of tandem
repeats that formed the basis for the creation of a new genome
editing system consisting of chimeric nucleases called TALE
nucleases (TALENs) [47]. TALE proteins consist of a central
domain responsible for DNA binding, nuclear localization
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signal, and a domain that serves as activator of transcription
of the target gene (Table 1) [54]. For the first time, the DNA-
binding ability of these proteins was described in 2007 [55],
and a year later, two scientific groups have decoded the recog-
nition code of target DNA sequence by TALE proteins [56].

It is shown that the DNA-binding domain in TALE
monomers in turn consists of a central repeat domain (CRD)
that confers DNA binding and host specificity. The CRD
consists of tandem repeats of 34 amino acid residues and
each 34-amino acid long repeat in the CRD binds to one
nucleotide in the target nucleotide sequence. Two of the
amino acids of the repeat, located at positions 12 and 13,
are highly variable (repeat variable diresidue (RVD)) and are
responsible for the recognition of specific nucleotide with
degeneracy of binding several nucleotides with differential
efficiency. The last tandem repeat binding to nucleotide at
the 3󸀠-end of the recognition site consists of 20 amino acid
residues only and, therefore, it is named as half-repeat. While
TALE proteins, in general, can be designed to bind any
DNA sequence of interest, studies have demonstrated that
the 5󸀠-most nucleotide base of the DNA sequence bound
by a TALE protein should always be a Thymidine and that
a deviation from this requirement can affect the efficacy of
TALE transcription factors (TALE-TF), TALE recombinases
(TALE-R), and TALENs [57].

After the DNA code recognition requirements by TALE
proteins have been cracked, the very first effort undertaken
was the creation of chimeric TALEN nucleases [5]. For this
purpose, the sequence encoding the DNA-binding TALE
domain was inserted into a plasmid vector previously used
to create ZFN [58]. This resulted in the creation of a
synthetic, chimeric sequence-specific nuclease genetic con-
struct containing the DNA-binding domain of TALEs and
the catalytic domain of FokI restriction endonuclease. This
construct helped to create artificial nucleases with DNA-
binding domain and different RVDs that can target any
nucleotide sequence of interest [2, 4].

In most studies, the monomers with RVDs Asn and Ile
(NI), Asn and Gly (NG), two Asn (NN), and His and Asp
(HD) bind to nucleotides A, T, G, and C, respectively. NN,
the most common RVD that specifies G, was also found
to bind to A. This suboptimal or lack of specificity is a
concern for the use of engineered TALEs for targeting DNA.
Another RVD NK has less functional efficiency compared to
NN, although it has demonstrated guanine specificity. Several
studies have also shown that the use of NH or NK RVDs
for specific binding of guanine reduces the risk of nontarget
effects [19, 59, 60]. It has been shown that in RVD (NI, NG,
NN, or HD) the first amino acid residue, whether it is N or
H, is responsible for the stabilization of spatial conformation
although it does not directly bind to a nucleotide, whereas
the second amino acid residue binds to a nucleotide either
through hydrogen bonding with nitrogenous bases (in case
of D and N amino acids) or through van der Waals forces (in
case of I and G) [61].

Based on the mode of action and specificity of TALENs,
it should be possible to introduce double strand breaks in
any location of the genome as long as that location harbors
the recognition sequence corresponding to the DNA-binding

domains of TALENs. There is another condition that also
needs to be met, that is, the requirement of the presence of
Thymidine before the 5󸀠 end of the intended target sequence
since it has been demonstrated that the W232 residue in the
N-terminal portion of the DNA-binding domain interacts
with the Thymidine and influences the binding efficiency
[62]. It is also possible to overcome this 5󸀠 Thymidine
constraint by developing mutant variants of TALEN N-
terminal domain which can bind other nucleotides [57].
Considering the ease of site-directed manipulation using
TALEN system, within a short period of time after the
unraveling of the TALENmode of action, the genes modified
by this system have been used successfully in several animal
and plant species and the plant examples include rice, wheat,
Arabidopsis, potato, and tomato (Table 2) [63].

2.3. Oligonucleotide-Directed Mutagenesis (ODM). After first
successful exploitation in mammalian systems, oligonucle-
otide-directed mutagenesis (ODM) has become another
novel gene editing tool for plants [7, 64]. ODM, a tool for
targeted mutagenesis, uses a specific 20- to 100-base long
oligonucleotide, the sequence of which is identical to the
target sequence in the genome except that it contains a
single base pair change (intended mutation to be inserted
in the genome) towards achieving site-directed editing of
gene/sequence of interest (Table 1) [65].When these synthetic
oligonucleotides or repair templates with homology to a
specific region of the target gene are transiently exposed to
the plant cells by using a variety of specific delivery methods,
they bind to the targets and activate cell’s natural repair
machinery which recognizes the single mismatch in the
template and then copies that mismatch or mutation into the
target sequence through repair process [7, 65]. This produces
the desired targeted single nucleotide or base editing in
the plant genome that confers novel function or trait while
the plant cell degrades the repair template oligonucleotide.
Using tissue culture methods, cells with edited sequences are
subsequently regenerated and genome edited novel varieties
with improved traits/characteristics are developed through
traditional breeding (Table 2) [7, 64, 65].

2.4. Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR). Another novel genome editing system that has
emerged recently and has become widely popular is the
clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR associated (Cas) protein system with the
most prominent being the CRISPR/Cas9 (based on Cas9
protein). This is a method that utilizes adaptive bacterial and
archaeal immune system, the mechanism of which relies on
the presence of special sites in the bacterial genome called
CRISPR loci. These loci are composed of operons encoding
the Cas9 protein and a repeated array of repeat spacer
sequences.The spacers in the repeat array are short fragments
that are derived from foreign DNA (viral or plasmid) that
have become integrated into bacterial genome following
recombination [41, 66].
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Unlike the chimeric TALEN proteins, target site recog-
nition by CRISPR/Cas9 system is accomplished by the com-
plementary sequence based interaction between the guide
(noncoding) RNA and DNA of the target site and the guide
RNA and Cas protein complex has the nuclease activity
for exact cleavage of double-stranded DNA using Cas9
endonuclease (Table 1) [9, 24, 67].

Several types of CRISPR protective systems functioning
in cells of various bacteria are described in detail elsewhere
[68, 69]. The most “popular” system is the CRISPR/Cas
type II-A system found in the bacterium Streptococcus
pyogenes and composed of three genes encoding CRISPR
RNA (crRNA), trans-activating crRNA (tracrRNA), andCas9
protein. Based on this system, universal genetic constructs
encoding artificial elements of CRISPR/Cas “genome editor”
have been created [70]. Also, a simplified version of the
system, functioning as a complex of Cas9 protein and a
single guide RNA, consisting of CRISPR tracrRNA and short,
mature crRNAwas created.The guide sequence identifies the
targetDNA site and binds to it based on complementarity and
Cas9 cleaves the DNA in target point [71].

CRISPR system can be used for the creation of genetically
modified cells grown in culture and living organisms [11]. In
the first case, plasmids or viral vectors which provide high
and stable synthesis of CRISPR/Cas9 system elements are
introduced into cells. In the second case, cultured protoplasts
and a plasmid coding CRISPR/Cas elements are used to
obtain genetically modified plants [32]. Another approach,
applied for plants, is the use of Agrobacterium, the natural
“genetic engineer,” that contains a special plasmid harboring
CRISPR/Cas9 system [41, 44].

Thus, due to its simplicity, efficiency, and wide capabili-
ties, in a short time CRISPR/Cas9 system has already found
use in various fields of fundamental and applied biology,
biotechnology, and genetic engineering.

2.5. Repair of Cleaved Genomic Sites. An important step
in the genome editing process is the repair of the DNA
break created by the nucleases. DNA break gets repaired by
the endogenous cellular mechanisms: nonhomologous end-
joining (NHEJ) or homology-dependent (or directed) repair
(HDR) [14]. NHEJ is the simplest mechanism where the ends
of the cleaved DNA are joined together, often resulting in the
insertion or deletion of nucleotides (indels) thereby shifting
the gene reading frame, resulting in a gene “knockout”
[72]. If indels are not observed, the DNA is recovered, and
there are no noticeable changes. On the other hand, HDR
is a mechanism where a sequence containing homology
to target is used as a template for repairing the break or
the DNA lesion. Therefore, by providing a template that
contains a desired sequence of interest flanked by sequences
homologous to both sides of the break point, one can force
the insertion of that desired sequence into the target site.
When HDR occurs, a homologous recombination is used to
enable new sequences for gene recovery or insertion [72].This
method is simple, provides the exact impact on DNA target,
and can be used at almost any modern molecular biology
laboratory.

3. Practical Applications of
Genome Editing Systems

3.1. Application of “Genome Editors” for Functional Genomics.
Several different types of genome modifications can be
achieved by utilizing ZFN, TALEN, ODM, and CRISPR/Cas
genome editing systems (Table 2). These include creation of
point mutations, insertion of new genes in specific locations
or deletion of large regions of the nucleotide sequences, and
correction or substitution of individual genetic elements and
gene fragments [4, 6, 10, 20, 23, 44, 73].

While introducing modifications to various genomic
elements in plant cells and examining the results, scientists
were able to investigate the role of individual genes in the
functioning of individual cells and the organism as a whole.
For example, the unique ability of CRISPR/Cas9 system to
selectively bind to specific DNA sites has helped to regulate
gene activity [24, 41, 44]. For this purpose, proteins activating
or repressing the activity of promoters that control the gene
function can be attached to the catalytically inactive mutant
Cas9 protein. In one example, it was shown that complex
binding to the target DNA can inhibit or stimulate the
function of the target gene [44].

Furthermore, using CRISPR/Cas9 system, several genetic
constructs targeted to different genome sites can simul-
taneously be introduced into cells [8, 24, 43]. This is a
welcome feature in investigating intergenic interaction, if
any, because several genes are simultaneously affected by the
CRISPR/Cas9 system [44]. For example, using this approach,
it was possible to identify genes involved in crop domestica-
tion process [74].

3.2. Application of Genome Editing Systems in Crop Improve-
ment. Genome editing technologies have wide practical
applications for solving one of the most important tasks
of modern biotechnology—the creation of new varieties of
crops, which are high-yielding and resistant to abiotic and
biotic stresses and also have high nutritional value (Table 2)
[31, 63, 75–80]. To this end, genome editing system has been
used in plant breeding (1) to insert point mutations similar to
natural SNPs [26, 27], (2) tomake smallmodifications to gene
function [13], (3) for integration of foreign genes, (4) for gene
pyramiding and knockout, and (5) for the repression or acti-
vation of gene expression, as well as (6) epigenetic editing [6].

For example, the use of ZFN in Arabidopsis thaliana [15–
17] andZeamays [18] has led to the successful development of
herbicide tolerant genotypes through insertion of herbicide-
resistance genes into targeted sites in the genome [18]. ZFN
was also used for the targeted modification of an endogenous
malate dehydrogenase (MDH) gene in plants and the plants
containing modified MDH have shown increased yield [81].
ODM technique has been significantly advanced through
Cibus Rapid Trait Development System (RTDS) [7] and this
technology has been successfully applied in several crops.
Applications include but are not limited to the generation
of herbicide tolerance, insect resistance, enhanced disease
resistance (bacterial and viral), improved nutritional value,
and enhanced yield without the introduction of foreign genes
as has been used in traditional genetic engineering approach
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for crop development [7, 65]. A precise editing of CAC to
TAC using ODM RTDS technology has been demonstrated
that converts BEP to GFP by changing Histidine (H66) to
Tyrosine (Y66) in GFP protein. This approach has offered a
nontransgenic breeding tool for crops [7, 64].

Using the CRISPR/Cas9 technology, Jiang et al. [28] have
obtained “a biotech” oil from Camelina sativa seeds with
an improved fatty acid composition, which makes it more
beneficial to human health, more resistant to oxidation, and
more appropriate for the production of certain commercial
chemicals including biofuels [28]. Soyk et al. [29] used
targeted mutagenesis of SP5G gene of tomato to create plants
with rapid flowering and more compact bush, which in turn
resulted in earlier harvest. In another effort, Osakabe et al.
[31], using the CRISPR-induced mutagenesis of OST2 gene
in Arabidopsis, were able to obtain new alleles that confer salt
stress resistance to plants [31].

Modulation of the gibberellin biosynthesis by genome
editing methods has allowed creation of dwarf fruit trees
[30], which have great potential for increasing productivity
through higher density plantings and reduced labor costs.
This results in a reduction of land, water, pesticide, and
fertilizer use [82]. In addition, genome editing for inhibition
of ethylene biosynthesis, which plays a very important role in
fruit ripening process [82] or its signaling pathways, enables
creation of new varieties with extended shelf life [63].

Amajor area of application of genome editing approaches
in plant breeding is to create varieties resistant to various
pathogens and/or pests. These methods have been used
for the modification of the key plant immunity stages at
different levels in several crops. This goal can be achieved
by modifying (1) susceptibility genes (S-genes), (2) resistance
genes (R-genes), (3) genes regulating the interaction between
the effector and target, and (4) the genes regulating plant
hormonal balance [78]. For example, wheat genotypes resis-
tant to powdery mildew disease were obtained by TALEN-
and CRISPR/Cas9-mediated genome editing on mildew-
resistance locus O (MLO) [34]. Genome editing technologies
have also been used to produce plants resistant to bacterial
leaf blight, caused by Xanthomonas oryzae pv. oryzae [21].

The CRISPR/Cas9 system has been investigated for
its efficacy in providing interference against geminiviruses
by using a transient transformation system such that N.
benthamiana degradation/suppression of curly top virus
genome by single guide RNA/Cas9 (sgRNA/Cas9) has been
demonstrated [35]. In other efforts, where sgRNAs specific
for tomato yellow leaf curl virus (TYLCV) or bean yellow
dwarf virus (BeYDV) sequences were introduced into N.
benthamiana plants expressing Cas9 endonuclease and chal-
lenged with the corresponding viruses, it was demonstrated
that the CRISPR/Cas9 system not only targeted viruses for
degradation but also introduced mutations at the target
sequences [36, 37] due to interference with the copy number
of freely replicating viruses [78].

Metabolic pathways that regulate hormonal balance can
also be modified using the genome editing technologies to
enhance the immunomodulatory component of the plants
immune system. This can be achieved by deactivating the

ethylene-responsive factor (ERF). In particular, ethylene-
dependent pathway in rice has been successfully modified
by CRISPR/Cas9-mediated target OsERF922 genemutations,
resulting in increased resistance to Magnaporthe oryzae [38,
39].

CRISPR/Cas9 has been used to knock out eIF4E gene that
encodes the eukaryotic translation initiation factor essential
for translation of viruses, in Cucumis sativus, and that
knockout confers resistance to viruses such as cucumber
vein yellowing virus (CVYV), zucchini yellow mosaic virus
(ZYMV), and papaya ring spot mosaic virus-W (PRSV-W)
[83]. In addition, CRISPR/Cas9 was demonstrated to be an
efficient system for rapid and efficient genome editing in
Phytophthora sojae, an oomycete pathogen of Soybean, by
modifying the pathogenicity gene (Avr4/6), thereby opening
up an avenue for the much needed functional genomics work
in Phytophthora sojae towards the ultimate goal of controlling
this pathogen [83].

Similarly, existing genome editingmethods, in particular,
CRISPR/Cas9 method, have been successfully used to obtain
plants resistant to herbicides [33]. For example, editing of
ALS2 gene in maize (acetolactate synthase or ALS is a key
enzyme in the biosynthesis of amino acids in plants and
has been inhibited by sulfonylurea herbicides) allowed the
creation of amutant corn plant resistant to chlorsulfuron [33].

Another interesting area of biotechnology where
CRISPR/Cas9 system has significant application is the
development of plants capable of synthesizing human
proteins such as insulin, necessary for patients with diabetes
mellitus, or albumin, which is used in the treatment of
hemorrhagic shock, burns, hypoproteinemia, and cirrhosis
[84]. At present, albumin is prepared from human plasma
which is in a very limited supply; however, global demand for
albumin is constantly growing and currently is equal to 500
tons per year. To meet the growing needs human albumin
gene is already introduced into rice genome using genomic
engineering techniques [85]. Such expressed proteins can be
isolated fromplant and animal tissues, where it is synthesized,
and after clarification, it can be used for medical purposes.

Thus, as described above and extensively referenced
herein, these novel genome editing techniques are being
widely used for the purpose of crop improvement including
new bioenergy crop developments [86]. However, the use
of tissue culture with these GEEN methods may also create
complexities that could slow the process of genome editing.

4. Safety Assessment Aspects of Genome
Editing Systems

4.1. Nontarget Effects. Genome editing techniques, in
essence, preserve the native genomic structure and, therefore,
are considered as a safe technology for crop improvement.
Despite this general understanding, there are some concerns
related to the biosafety of crops created using these methods.
One main concern in terms of its biosafety is the possibility
of nontarget effects of synthetic nucleases during genome
editing.

During the biotechnological application of genome edit-
ing methods, efficiency and specificity of the engineered
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nucleases are the two most important functional require-
ments and are closely related to the choice of the target
site. For each endogenous genomic locus, efficiency of DNA
cleavage (both target and nontarget) depends not only on the
nuclease activity (such as FokI domains and Ruv domains of
the Cas9 proteins), but also on the availability of a target site
and affinity of the DNA-binding domain (e.g., TAL effector
domains and guide RNA, gRNA) to the target sequence.
Specificity of engineered nucleases largely depends on the
binding affinity of nuclease-DNA, including the binding of
zinc finger to DNA (ZFNs), TAL effector to DNA (TALENs),
and hybridization of gRNA with DNA (CRISPR), although
dimerization of FokI domain (ZFNs and TALENs) and Cas9
interactionwith themotif contiguous to protospacer adjacent
motif (PAM) may also play an important role [87]. In case
of ZFNs, while examples abound with respect to the binding
efficiency of canonical C2H2 binding domain containing
ZFNs, investigations on the utility of noncanonical ZFNs such
as those containingC3H1 binding domain have demonstrated
high levels of binding efficiency [88].

Tominimize nontarget effects of genome editing systems,
a crucial aspect is the careful selection of sites for the intro-
duction of the double-stranded breaks by performing a prior
bioinformatics analysis [89].When choosing the desired sites,
sites of repeated sequences and sites having a high homology
with other regions of the genome should be avoided. In
this regard, to facilitate the selection of the target sites for
nucleases and experimental verification of the presence of
nontarget effects, several software packages were developed
that enable nuclease design and validation [79, 87, 90].

4.2. Regulation of Plants Created by Genome Editing. The
novel genome editing systems help to introduce stably inher-
ited point modifications into the plant genome, and trans-
genic region can be easily removed after editing a target gene.
This allows creation of nontransgenic plants and improved
crop varieties [22, 91–93]. These technologies are faster com-
pared to traditional breeding methods and help to obtain the
null segregant lines that have lost the transgene insertion [94–
97]. Plants with targeted mutations developed by genome
editing technology are nearly identical to plants obtained by
classical breeding, and their safety must be assessed taking
into account the resulting product rather than the process
used to create them [98–100]. In this context, ODM-derived
products are in many cases indistinguishable from conven-
tionally bred or traditional mutagenesis products; therefore,
such products should not be regulated in the same way as the
products generated by genetic engineering methods [7, 65].
Using CRISPR-Cas9 system, it becomes possible to obtain
marker-free genetically engineered crops, that is, without
marker genes of antibiotic resistance [6, 100]. Thus, in the
case of new varieties with targeted mutations, developed
using genome editing systems, the existing operating rules for
the regulation of genetically modified plants should not be
applied [92, 95, 99, 100]. Currently genome editing technolo-
gies are being discussed by various advisory and regulatory
authorities in the context of GMO legislation. Cultures and

plants obtained using genome editing techniques are consid-
ered as nongenetically modified [95, 99, 101]. The European
Commission is expected to publish a report on regulatory
uncertainty of genome editing methods [100, 102, 103].

5. Multitude of Advantages and
Perspectives of GEENs

Tools of genome editing have a significant impact on basic
and applied research in plant biology [24, 43, 44, 73]. The
simplified approach to gene/genome editing represents a
valuable tool for plant researchers in functional analysis of
gene(s) and for breeders in the integration of key genes in the
genomes of agriculturally important crops. Genome editing
systems have several attractive features including simplicity,
efficiency, high specificity, minimal nontarget effects, and
amenability to multiplexing and thus are very promising for
use in plant breeding [6].

Site-directed mutagenesis of different genes can provide
important information about their functions. Simultaneous
targeting of multiple genes/loci by applying multiplex strate-
gies can promote research to identify the role of individual
genes in the intracellular signaling pathways and aid in
the engineering of complex, multigenic agronomic traits
in crops. The preferred use of CRISPR-Cas9 system can
be exemplified in completely knockout gene function [6,
64], microRNA knockdown screening [6], and programmed
editing of certain loci by genome editing systems that can
provide a functional separation of cis- and trans-regulatory
elements/factors with high accuracy [6]. Another prospec-
tive application of CRISPR-Cas9 system may be its use in
the formation of conditional alleles, providing spatial and
temporal control of gene expression to study the function of
lethal genes. Use of inducible or tissue-specific promoters for
expression of Cas9 and/or sgRNA can be instrumental for
gene expression regulation in a specific tissue, in development
stage, or in different environmental conditions [6].

CRISPR-Cas system opens up wide possibilities for label-
ing endogenous genes with fluorescent proteins to visualize
their expression in vivo. Using fluorescent labeled dCas9,
changes of genome dynamics/chromosome architectural
changes during plant development and their response to
environmental stimuli can be learned.These technologies can
also be used for the selection of the specific cell types that
greatly facilitate the study of various functional aspects [6].
Use of dCas9 can provide a new platform for the selection
of activation/repression effector domains to specific genomic
loci for regulating endogenous gene expression.

In addition, these technologies can be successfully used in
the work on epigenome editing via the selection of proteins
responsible for histone modification and DNA methylation,
which has emerged as a new way of regulating cellular
functions in plants [25]. For the purpose of understanding
epigenetic regulation, CRISPR-Cas9 system can also be used
for the enrichment of chromatin target sites for the identifi-
cation of proteins attached to enriched chromatin. Likewise,
CRISPR-Cas9 can be used as a tool to identify regulatory
proteins binding to specific DNA sequences controlling the
expression of genes.
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6. Conclusion

Genome editing tools are becoming popular molecular tools
of choice for functional genomics as well as crop improve-
ment. Many examples exist currently where these editing
systems are being harnessed for unprecedented understand-
ing of plant biology and crop yield improvement through
rapid and targeted mutagenesis and associated breeding
[102, 104]. Because of their several attractive features such
as simplicity, efficiency, high specificity, and amenability to
multiplexing, genome editing technologies described here are
revolutionizing the way crop breeding is done and paving the
way for the next generation breeding.
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