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Speech enhancement in wireless acoustic sensor networks requires the exchange of audio signals. Since the wireless communication
often dominates the nodes’ energy budget, techniques for data exchange reduction are crucial. Adaptive quantization aims to
optimize the bit depth of each exchanged signal according to its contribution to the speech enhancement performance.This enables
the network to scale its energy and communication bandwidth requirements according to the current operating environment.
The impact metric was previously proposed to predict the effect of quantization in linear minimum mean squared error (MMSE)
estimation. We provide new insights into greedy adaptive quantization based on this impact metric. We achieve this by expanding
the mathematical framework to include a new metric based on the gradient of the MMSE as a function of the quantization noise
power. Using these tools, we show how the MMSE gradient naturally leads to a greedy algorithm and how the impact metric
is a generalization of the gradient metric and a previously proposed metric. Besides, we validate the impact metric for adaptive
quantization both in a simulated and in a real wireless acoustic sensor network deployed in a home environment, showing the
energy savings achievable through greedy adaptive quantization.

1. Introduction

A wireless acoustic sensor network (WASN) is a collection of
battery-powered sensor nodes where each node is equipped
with a microphone or microphone array, a processing unit,
and a wireless communicationmodule [1].The nodes are dis-
tributed over an area of interest with the goal of performing
a signal processing task such as noise reduction or acoustic
localization. The main advantage of a WASN over a single
stand-alonemicrophone array is its extended coverage, which
is made possible by placing many microphones over the area
of interest.This typically translates into a better performance,
as microphone array algorithms benefit from enhanced spa-
tial diversity. Furthermore, the deployment of a WASN often
yields a higher probability to have microphones close to a
sound source, which is advantageous since these micro-
phones will record signals with high signal-to-noise ratio
(SNR).

Nevertheless, WASNs pose several technical challenges
that are not present in stand-alone microphone arrays, such
as internode synchronization, delay management, commu-
nication bandwidth usage, and energy efficiency. The latter,
energy efficiency, is crucial to allow the network to perform
its task for a reasonable period of time, since nodes aremostly
powered by batteries and hence have a tight energy budget.
A significant effort has been made to classify the different
approaches to improve energy efficiency in wireless sensor
networks (WSNs), as the optimal techniques depend on the
intended WSN application. A comprehensive taxonomy of
these approaches can be found in [2], and a more recent
survey in [3] also considers the importance of the different
techniques for specific classes of applications of WSNs.

In this paper we focus on a speech enhancement appli-
cation for a WASN, where the goal is to estimate a desired
speech signal while suppressing interfering sound sources
and noise. In particular we focus on the multichannel

Hindawi
Wireless Communications and Mobile Computing
Volume 2017, Article ID 3173196, 15 pages
https://doi.org/10.1155/2017/3173196

https://doi.org/10.1155/2017/3173196


2 Wireless Communications and Mobile Computing

Wiener filter (MWF) [4–6], which is a multimicrophone
noise reduction algorithm that produces a linear minimum
mean squared error (MMSE) estimate of the desired speech
component in the signal captured by one of themicrophones.
The algorithm does not rely on a priori knowledge of the
microphone or sound source locations, which makes it suit-
able for a WASN since nodes are usually randomly deployed
andmay even be mobile (e.g., if a node is carried by a person,
such as a mobile phone or a hearing aid).

1.1. Sensor Subset Selection. A substantial part of previous
research on energy efficiency in WSNs has been focused on
the sensor subset selection problem, which is aimed at using
only the signals from those sensors (microphones, in the
case of WASNs) that provide a significant contribution to the
signal processing task at hand, while putting other sensors
to sleep. This saves energy by avoiding the transmission
of signals from sensors with low relevance and allows the
communication bandwidth resources to be allocated to the
transmission of the signals from the most useful sensors.
The sensor subset selection problem is combinatorial and
thus difficult to solve in general. Due to its importance,
it has been the focus of extensive research, and several
techniques have been proposed to tackle it. For an overview
of these techniques, the reader is directed to [7]. Recent work
on sensor selection can be found in [8, 9] and references
therein. In [8] the authors investigate the sensor selection
problem for parameter estimation in aWSNwhere the sensor
measurements follow a nonlinear model, assuming that the
measurements are independent random variables. The prob-
lem is formulated as a nonconvex optimization problem and
solved through convex relaxation. In [9] the authors develop
a more general framework where they consider correlated
measurement noise and propose a greedy algorithm to solve
the sensor selection problem based on the Fisher information
matrix.

A different approach has been proposed to solve the sen-
sor selection problem for signal estimation based on a greedy
algorithm using the utility metric [10, 11]. The utility of a sen-
sor signal is defined as the change in estimation performance
when the sensor is removed from the estimation process and
the corresponding estimator is subsequently reoptimized.
Themotivation is that the utility can be computed and tracked
at a very low computational cost, which combined with the
greedy approach allows performing sensor subset selection
swiftly and at low complexity, even though the solution will
generally be suboptimal. Besides, the algorithm is fully data-
driven and does not require any prior knowledge of the
underlyingmeasurementmodel, such as themicrophone and
source positions or the acoustic transfer functions, which
indeed is generally not available in WASN applications. This
priority on speed and low complexity is crucial for adaptive
signal estimation, since the network needs to rapidly react to
the changing signal conditions (e.g., sound sources moving
in the case of a WASN) and has to avoid investing too much
energy from the already limited budget of the nodes. This
approach has been specifically applied to WASNs [12], and
it has been extended to a distributed implementation of the
MWF [13].

1.2. Adaptive Quantization. While sensor subset selection
does indeed help to save energy and communication band-
width, it forces the nodes into a binary behaviour; that is, they
either transmit their signals at full resolution or they are put to
sleep. One technique to provide a more flexible scaling of the
estimation performance and the energy consumption of the
network is adaptive quantization, where each sensor signal
is assigned a variable bit depth to encode its signal samples
according to its contribution to the estimation performance.
By using this technique, nodes are able to spend more or
less energy on data transmission according to the estimation
performance required. From the point of view of information
theory, this problem can be tackled using source coding
techniques. A comprehensive overview of source coding for
WASNs can be found in [14, 15], where the focus is directed
towards theoretical results based on rate-distortion theory.

In [16], a pragmatic approach is taken, in which a
generalized version of the utility metric referred to as the
impact metric is introduced to predict the MMSE increase
in the estimation due to the quantization noise. This allows
modeling the effect of the quantization noise resulting from
changing the bit depth of each sensor signal’s samples on the
estimation performance. The impact metric can be used by a
heuristic algorithm to gradually decrease the bit depth in each
sensor signal until a target MMSE (or corresponding SNR) is
met.

1.3. Contributions and Outline of the Paper. The goal of this
paper is twofold. Our first goal is to provide some new
insights on greedy adaptive quantization based on the impact
metric from [16]. To this end, we expand the mathematical
framework for adaptive quantization in linearMMSE estima-
tion and we apply it in aWASN with a centralized processing
architecture. We consider the MMSE as a function of the
quantization noise power in each sensor signal, and based
on this we define a new metric for adaptive quantization
based on the gradient of theMMSE.Wedemonstrate how this
MMSE gradient naturally gives rise to a greedy algorithm.We
then show how the impact metric is in fact a generalization
of this gradient metric, which then also motivates the use
of a greedy algorithm using the impact metric. Besides, we
explain how the utility metric for sensor subset selection
[10, 11] can be viewed as another limit case of the impact
metric. Finally, we discuss the theoretical advantages and
disadvantages of each metric and propose a correction to
improve the gradient metric.

The second goal of the paper is to validate the impact
metric for adaptive quantization in a speech enhancement
task in a simulated as well as in a real life WASN in a home
environment. We compare the behaviour of the four metrics
and show the superiority of the impact and the corrected
gradient metrics over the gradient and utility metrics due
to their inherent adaptation to the significance of each
quantization bit. To conclude, we provide an estimation of
the savings in transmission energy achievable through the use
of the greedy adaptive quantization algorithm based on the
aforementioned metrics.

The paper is structured as follows. In Section 2, we
formulate the problem statement and signalmodel, we briefly
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review the multichannel Wiener filter for speech enhance-
ment, and we introduce the quantization error model that is
used throughout the paper. In Section 3 we model the effect
of quantization noise in linear MMSE estimation and show
how adaptive quantization can be performed based on four
metrics derived from this model (utility, impact, gradient,
and corrected gradient). In Section 4 we show experimental
results of adaptive quantization for speech enhancement
performed on real recordings from a WASN. Finally, we
present the conclusions in Section 5.

2. Problem Statement

Weconsider aWASNcomposed of several nodes, each having
one or more microphones, with 𝐾microphones in total. The
signal samples of the 𝑘th microphone signal are encoded,
upon acquisition by the analog-to-digital converter, with a
certain bit depth dictated by the hardware in use.We consider
a centralized scheme for the network, where each node trans-
mits its microphone signals to a fusion centre, which could
be one of the nodes in the WASN or an external node with
access tomore computational power or energy resources.The
fusion centre’s task is to obtain an estimate of the desired
speech component present in one of the microphone signals,
which will be referred to as the reference microphone signal
(the reference microphone does not necessarily belong to the
fusion centre; the microphone of any node can be selected
to be the reference). This speech enhancement task is solved
in the fusion centre through the use of a multichannel
Wiener filter [4–6], which produces a linear MMSE estimate
of the desired speech signal component in the reference
microphone signal. We will give a brief review of the MWF
in Section 2.2.

Our main focus will be the problem of reducing the bit
depth of each individual microphone signal in the WASN
according to its contribution to the speech enhancement
performance. The bit depth reduction leads to a reduc-
tion in the required communication bandwidth and in the
node’s required energy budget for wireless transmission, but
it will also have an impact on the speech enhancement
performance. Besides, the contribution of each node to
the enhancement performance is subject to changes in the
acoustic scenario, so we will focus on strategies with low
computational complexity that allow the fusion centre to per-
form a quick decision on the desired bit depth assignment for
each individual microphone. This enables each node at run-
time to scale down the energy spent in wireless transmission
according to the current operating environment.

An illustration of the problem is given in Figure 1, where a
small network with two nodes and a fusion centre is depicted.
Thenodes quantize the signals of each individualmicrophone𝑘 with the corresponding bit depth 𝑏𝑘 before transmission.
The fusion centre performs the speech enhancement task
using the transmitted quantized microphone signals (dotted
lines) and takes a decision on the optimal bit depth for each
communicated microphone signal (dashed lines).

In the remaining part of this section we introduce
formally the signalmodel for theWASN,we briefly review the
multichannel Wiener filter for speech enhancement, and we
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Figure 1: Example of a small WASN with adaptive quantization.

explain the quantization error model we will use throughout
the rest of the paper.

2.1. Signal Model. We denote the set of microphones byK ={1, . . . , 𝐾}. The signal 𝑦𝑘 captured by the 𝑘th microphone
can be described in the short-time Fourier transform domain
(STFT) as

𝑦𝑘 (𝑡, 𝜔) = 𝑥𝑘 (𝑡, 𝜔) + V𝑘 (𝑡, 𝜔) , 𝑘 ∈ K, (1)

where 𝑡 is the frame index, 𝜔 represents frequency, 𝑥𝑘(𝑡, 𝜔)
is the desired speech signal component, and V𝑘(𝑡, 𝜔) is the
undesired noise signal component. We assume that 𝑥𝑘(𝑡, 𝜔)
and V𝑘(𝑡, 𝜔) are uncorrelated. We note here that V𝑘(𝑡, 𝜔)
contains all undesired sound signals, which may include
speech from undesired speakers besides acoustic noise. For
the sake of simplicity, we will omit the indices 𝑡 and 𝜔
throughout the rest of the paper, keeping in mind that all
operations take place in the STFT domain unless explicitly
stated otherwise.

The fusion centre stacks all signals in the 𝐾 × 1 vector
y = [𝑦1, 𝑦2, . . . , 𝑦𝐾]𝑇 . (2)

The vectors x and k are defined in a similar manner, so the
relationship y = x + k is satisfied.

2.2. Multichannel Wiener Filter. In speech enhancement, the
goal is to obtain an estimate of the speech component𝑥ref present in the microphone signal 𝑦ref selected as the
reference. We will focus on the multichannel Wiener filter to
perform the speech enhancement task, and we will provide
a brief summary in this section. For more information the
reader is directed to [4–6].

The multichannel Wiener filter is the linear estimator ŵ
that minimizes the mean squared error (MSE)

𝐽 (w) = 𝐸 {󵄨󵄨󵄨󵄨󵄨𝑥ref − w𝐻y󵄨󵄨󵄨󵄨󵄨2} , (3)

where 𝐸{⋅} is the expectation operator and the superscript 𝐻
denotes conjugate transpose. When the microphone signal
correlation matrix R𝑦𝑦 = 𝐸{yy𝐻} is full rank (in practice,
this assumption is usually satisfied because of the presence
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of a noise signal component in each microphone signal that
is independent of other microphone signals, such as thermal
noise. If this is not the case, matrix pseudoinverses have
to be used instead of matrix inverses), the solution to the
minimization problem is given by

ŵ = R−1𝑦𝑦r𝑦𝑥ref , (4)

where r𝑦𝑥ref = 𝐸{y𝑥∗ref } and the superscript∗ denotes complex
conjugation. Since we assume that x and k are uncorrelated,
r𝑦𝑥ref is given by r𝑦𝑥ref = R𝑥𝑥cref , where R𝑥𝑥 = 𝐸{xx𝐻} is the
desired speech correlation matrix and cref is the𝐾 × 1 vector
c1 = [0, 0, . . . , 1, . . . , 0]𝑇, where the entry corresponding to
the reference microphone signal is equal to one.

The matrix R𝑦𝑦 can be estimated by temporal averaging,
for instance, using a forgetting factor or a sliding window.
Temporal averaging is not possible for R𝑥𝑥 since the desired
speech signal components x are not observable. In practice,
the noise correlation matrix RVV = 𝐸{kk𝐻} can be estimated
during periods when the desired speech source is not active,
as indicated by a voice activity detection (VAD) module.
Since we assume that x and k are uncorrelated, it is then
possible to use the relationship R𝑥𝑥 = R𝑦𝑦 − RVV to obtain an
estimate of R𝑥𝑥. However, this is prone to robustness issues,
created by oversubstraction, leading to the estimated desired
speech correlation matrix not being positive semidefinite.
These issues arise often in high frequencies, where the desired
speech component may have very low power. To improve
robustness in low SNR and nonstationary conditions, an
implementation based on the generalized eigenvalue decom-
position (GEVD) can be employed [17, 18].

The minimum mean squared error (MMSE) can be
obtained by plugging (4) into (3) to obtain

𝐽 (ŵ) = 𝑃ref − r𝐻𝑦𝑥refR
−1
𝑦𝑦r𝑦𝑥ref = 𝑃ref − r𝐻𝑦𝑥ref ŵ, (5)

where 𝑃ref = 𝐸{|𝑥ref |2} is the power of the desired speech
signal.

2.3. Quantization Error Model. We will consider uniform
quantization of the time domain samples of eachmicrophone
signal 𝑦𝑘(𝑡), prior to the transformation to the STFT domain.
In practice, this means that the nodes transmit their time
domain samples and the STFT is performed in the fusion
centre. We discuss the possibility of quantizing the STFT
coefficients directly prior to transmission in Section 3.4. This
configuration would require each node to perform the STFT
over its own microphone signals and transmit the frequency
domain coefficients to the fusion centre.

The quantization of a real number 𝑑 ∈ [−𝐷/2,𝐷/2] with𝑏 bits can be expressed as

𝑄 (𝑑) = Δ 𝑏 (⌊ 𝑑
Δ 𝑏 ⌋ + 1

2) , (6)

where

Δ 𝑏 = 𝐷
2𝑏 . (7)

In practice, the parameter𝐷 is given by the dynamic range of
the analog-to-digital converter of the corresponding micro-
phone. The quantization error, or noise, is then defined as

𝑒𝑏 = 𝑄 (𝑑) − 𝑑. (8)

The mathematical properties of the quantization noise 𝑒𝑏
have been the subject of extensive study [19–21], where it has
been shown that the input signal and the quantization noise
are uncorrelated under certain technical conditions on the
characteristic function of the input signal. Under the same
conditions, the mean squared error due to quantization is
given by

𝐸 {󵄨󵄨󵄨󵄨𝑒𝑏󵄨󵄨󵄨󵄨2} = Δ2𝑏12 . (9)

We consider that, for the 𝑘th microphone signal, the time
domain samples of 𝑦𝑘 are quantized with 𝑏𝑘 bits according
to (6) before being transmitted to the fusion centre. The
quantization error can be expressed as

𝑒𝑘 (𝑛) = 𝑄 (𝑦𝑘 (𝑛)) − 𝑦𝑘 (𝑛) , (10)

where 𝑛 indexes the samples of frame 𝑡. The fusion centre
performs the STFT and collects the results for each frequency𝜔 and frame 𝑡 in the𝐾 × 1 vector y𝑒 given by

y𝑒 = y + e, (11)

where e = [𝑒1, . . . , 𝑒𝐾]𝑇 is the 𝐾 × 1 vector whose 𝑘th
element is the quantization error corresponding to the 𝑘th
microphone signal at frequency 𝜔. Note that all 𝐾 signals
have been included in the quantization process. However, if
the fusion centre is also equipped with microphones (e.g.,
it is a node of the WASN), these signals do not need to be
transmitted and hence have a fixed quantization. In this case,
the microphone signals from the fusion centre are removed
from the adaptive quantization process, but they are still
included in the estimation process.

Using the statistical properties of the quantization error
[19–21], wewill assume that every element of e is uncorrelated
with every element of y. Again, under certain technical condi-
tions, the power spectrum of the quantization noise is white;
that is, its power is evenly distributed across all frequencies
[19]. Although these conditions are not always satisfied in
practice, particularly for quantization with only a few bits,
we will combine this property with (9) to approximate the
quantization noise power at each frequency as

𝑝𝑒𝑘 = 𝐿Δ2𝑏𝑘12 , (12)

where 𝐿 is the length of the discrete Fourier transform (DFT)
used to implement the STFT in practice. The factor 𝐿 in
(12) appears as a consequence of the application to 𝑒𝑘(𝑛) of
Parseval’s theorem for the nonunitary DFT, given by

𝐿−1∑
𝑛=0

󵄨󵄨󵄨󵄨𝑒𝑘 (𝑛)󵄨󵄨󵄨󵄨2 = 1
𝐿
𝐿−1∑
𝑚=0

󵄨󵄨󵄨󵄨𝑒𝑘 (𝜔𝑚)󵄨󵄨󵄨󵄨2 , (13)
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where 𝑒𝑘(𝜔𝑚) is the 𝐿-point DFT corresponding to 𝑒𝑘(𝑛). The
nonunitary definition of the DFT is given by

𝑍𝑚 = 𝐿−1∑
𝑙=0

𝑧𝑙𝑒−𝑖𝑚(2𝜋/𝐿)𝑙, (14)

where 𝑧𝑙 is the input sequence, 𝑖 is the imaginary unit, and
𝑍𝑚 is the resulting transformed sequence. If a factor of 1/√𝐿
is applied to the right-hand side of (14) the DFT becomes a
unitary transformation and the factor 𝐿 is no longer needed
in (12). In the rest of the paper we assume that the nonunitary
DFT is used to implement the STFT, keeping inmind that the
unitary DFT can be employed simply by rescaling (12).

3. Adaptive Quantization for the Multichannel
Wiener Filter in a WASN

We now consider the effect of quantization noise on the
estimation process described in the previous section. Our
interest here is to study how changing the bit depth for
the transmission of the microphone signal samples affects
the operation of the MWF, in particular, how it affects the
MMSE. The analysis of this effect will lead to a metric
based on the gradient of the MMSE which, as we will show,
naturally leads to a greedy adaptive quantization algorithm.
We will then demonstrate how this gradient metric is a limit
case of a recently proposed impact metric [16], which was
already known to also generalize the utility metric proposed
in [10, 11]. Besides, based on this reasoning, we propose
a correction to improve the gradient metric for adaptive
quantization.This analysis provides amotivation for applying
a greedy algorithm based on any of these metrics, which
allows dynamically changing, at any moment in time, the bit
depth assigned to each microphone signal. In Section 4, we
will demonstrate experimentally that the impact and the cor-
rected gradient metrics outperform the gradient and utility
metrics, due to their inherent adaptation to the difference in
quantization levels corresponding to different bit depths.

3.1. Effect of Quantization on the Minimum Mean Squared
Error. The MWF ŵ𝑒 based on the quantized microphone
signal samples is obtained following (4) as

ŵ𝑒 = R−1𝑦𝑒𝑦𝑒r𝑦𝑒𝑥ref , (15)

whereR𝑦𝑒𝑦𝑒 = 𝐸{y𝑒y𝐻𝑒 }. Using (11) and the assumptions stated
in Section 2.3, we express R𝑦𝑒𝑦𝑒 as

R𝑦𝑒𝑦𝑒 = 𝐸 {(y + e) (y + e)𝐻} = R𝑦𝑦 + R𝑒𝑒. (16)

The quantization error correlationmatrixR𝑒𝑒 is diagonal (one
could intuitively expect quantization to reduce the cross-
correlation between themicrophone signals. In the Appendix
we consider a quantizationmodel that includes this reduction
and show that its effect on the MWF is equivalent to the one
presented in Section 3.1), with the 𝑘th element of the diagonal
being 𝐸{|𝑒𝑘|2} = 𝑝𝑒𝑘 , where 𝑝𝑒𝑘 is defined in (12). As e is

assumed to be uncorrelated with 𝑥ref , the cross-correlation
remains unchanged; that is,

r𝑦𝑒𝑥ref = r𝑦𝑥ref . (17)

As explained in Section 2.2, r𝑦𝑒𝑥ref can be computed as

(R𝑦𝑒𝑦𝑒 − RV𝑒V𝑒) cref = (R𝑦𝑦 + R𝑒𝑒 − RVV − R𝑒𝑒) cref
= (R𝑦𝑦 − RVV) cref ,

(18)

whereRV𝑒V𝑒 = 𝐸{k𝑒k𝐻𝑒 }, which indeed confirms (17). Similarly
to (5), we can now find theMMSE corresponding to ŵ𝑒, given
by

𝐽𝑒 (ŵ𝑒) = 𝑃ref − r𝐻𝑦𝑥ref (R𝑦𝑦 + R𝑒𝑒)−1 r𝑦𝑥ref . (19)

We highlight that 𝐽𝑒(ŵ𝑒) is a function of the quantization
error powers 𝑝𝑒𝑘 , which can be made explicit by rewriting the
function as

𝐽𝑒 (p𝑒) = 𝑃ref − r𝐻𝑦𝑥ref (R𝑦𝑦 + R𝑒𝑒)−1 r𝑦𝑥ref (20)

= 𝑃ref − r𝐻𝑦𝑥ref (R𝑦𝑦 + diag (p𝑒))−1 r𝑦𝑥ref , (21)

where p𝑒 = [𝑝𝑒1 , . . . , 𝑝𝑒𝐾]𝑇 is the vector of quantization error
powers and where diag(⋅) is the operator that generates a
diagonalmatrix with diagonal elements equal to the entries of
the vector in its argument. Equation (21) is important because
it defines the cost function that we will use as the basis for
adaptive quantization, since it is theminimummean squared
error that can be obtained with a linear estimator (i.e., the
MWF) after adding quantization noise to each microphone
signal. We emphasize that (21) gives the MMSE when the
MWF is first reoptimized using the quantized microphone
signals, that is, based on (15), and not the mean squared
error resulting from applying the original (optimized for the
nonquantized signals) MWF ŵ to the quantized microphone
signals.

3.2. Gradient-Based Approach to Adaptive Quantization. The
goal of adaptive quantization is to allocate a bit depth to
each sensor which is smaller than (or at most equal to) an
initial maximum bit depth. Since each bit depth reduction
also reduces the speech enhancement performance, the goal
becomes to find the bit depth allocation which uses the
minimum total number of bits ∑𝑘 𝑏𝑘 given a maximum
tolerated MMSE. Equivalently, the problem could be stated
as finding the lowest MMSE with a given total number of bits∑𝑘 𝑏𝑘.

The gradient of the function 𝐽𝑒(p𝑒) gives the direction of
maximal increase of the MMSE for a given p𝑒, that is, for a
given bit depth allocation. To further reduce the total number
of bits beyond the bit depth allocation corresponding to p𝑒, p𝑒
has to be changed top𝑒+Δp𝑒, whereΔp𝑒 is constrained to have
nonnegative entries. The corresponding MMSE increase for
an infinitesimally smallΔp𝑒 is then given by the inner product
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of Δp𝑒 and the gradient of 𝐽𝑒(p𝑒). In order to compute this
gradient, we will use the intermediate step

𝜕𝐽𝑒 (p𝑒)𝜕R𝑒𝑒 = (R𝑦𝑦 + R𝑒𝑒)−1 r𝑦𝑥ref r𝐻𝑦𝑥ref (R𝑦𝑦 + R𝑒𝑒)−1 , (22)

which follows from applying the identity [22]

𝜕a𝐻X−1a
𝜕X = −X−𝐻aa𝐻X−𝐻 (23)

together with the fact that (R𝑦𝑦+R𝑒𝑒)−1 is aHermitianmatrix.
Equation (22) can be simplified using (15)–(17) to obtain

𝜕𝐽𝑒 (p𝑒)𝜕R𝑒𝑒 = ŵ𝑒ŵ
𝐻
𝑒 . (24)

Since thematrixR𝑒𝑒 is diagonal, we can now find the gradient
g𝑒 as the diagonal of the right-hand side term in (24); that is,

g𝑒 = ∇𝐽𝑒 (p𝑒) = 󵄨󵄨󵄨󵄨ŵ𝑒󵄨󵄨󵄨󵄨2 , (25)

where the operator |⋅| is applied element-wise to its argument.
To minimize the MMSE increase for an infinitesimally

small Δp𝑒, the inner product Δp𝑇𝑒 g𝑒 has to be minimized.
However, every component of g𝑒 is nonnegative and the vec-
tor Δp𝑒 is also constrained to have nonnegative components.
Hence the best choice for Δp𝑒 is a vector whose components
are all zero except the one corresponding to the minimum
element of g𝑒.

This result shows that when adding a small amount of
quantization noise, it should be added to a singlemicrophone
signal instead of dividing it overmultiplemicrophone signals.
This naturally leads to a greedy algorithm, where at each step
the gradient g𝑒 is computed from the MWF ŵ𝑒 using (25),
after which its minimum element is identified and the bit
depth for the corresponding microphone signal is reduced
by 𝑞 bits. Note that the above reasoning has assumed the
vector p𝑒 to be a continuous variable; that is, each element
of the vector can take any real value. However, the bit depth
is a discrete variable and it determines the quantization
noise power added to a signal. Hence, the smallest possible
quantization power that can be added to a signal corresponds
to reducing its bit depth by 1 bit, which is the recommended
value for 𝑞 in order to avoid taking a too large step. This
also avoids reducing the bit depth of one signal too quickly,
which may be a poor choice compared to distributing the𝑞 bit reduction over several signals. After removing a bit
from the microphone signal with the smallest entry in the
gradient vector, theMWF is reoptimized to the new bit depth
assignment, and the gradient is recomputed. This process is
continued until the MMSE exceeds a predefined threshold.

3.3. Alternative Metrics for Adaptive Quantization. In this
section, we will show how the gradient metric used in the
previous section is a limit case of the impact metric, which
has been used in [16] for adaptive quantization.This provides
an intuitive explanation of why the greedy approach, which
follows naturally from the gradient metric, also works well

when using this impact metric, as will be demonstrated in
Section 4.

The impact metric from [16] was initially proposed as a
generalization of the utility metric defined in [10, 11]. The
utility of the 𝑘th microphone signal 𝑦𝑘 is defined as the
increase in MMSE when 𝑦𝑘 is removed from the estimation
[10]. The mathematical expression of this definition is given
by

𝑢𝑘 = 𝐽−𝑘 (ŵ−𝑘) − 𝐽 (ŵ) , (26)

where ŵ−𝑘 is the reoptimized MWF obtained with all signals
except 𝑦𝑘. Assuming theMWF ŵ is known, then the utility of𝑦𝑘 is shown [10] to be equal to

𝑢𝑘 = 1
𝛼𝑘

󵄨󵄨󵄨󵄨𝑤𝑘󵄨󵄨󵄨󵄨2 , (27)

where 𝛼𝑘 is the 𝑘th element in the diagonal of R−1𝑦𝑦 and 𝑤𝑘 is
the 𝑘th element of ŵ.

The impact of the noise 𝑒𝑘 is defined as the increase in
MMSE when the uncorrelated noise signal 𝑒𝑘 is added to 𝑦𝑘,
while other microphone signals remain unchanged [16]. In
mathematical terms the definition can be expressed as

𝐼𝑒𝑘 = 𝐽𝑒 (ŵ𝑒) − 𝐽 (ŵ) , (28)

where ŵ𝑒 is the reoptimized MWF for y𝑒, as in (15), with e =
[0, . . . , 𝑒𝑘, . . . , 0]𝑇. In [16] the impact is shown to be equal to

𝐼𝑒𝑘 = 𝑝𝑒𝑘1 + 𝛼𝑘𝑝𝑒𝑘
󵄨󵄨󵄨󵄨𝑤𝑘󵄨󵄨󵄨󵄨2 , (29)

where 𝛼𝑘 is again the 𝑘th element in the diagonal of R−1𝑦𝑦, 𝑤𝑘
is the 𝑘th element of ŵ, and 𝑝𝑒𝑘 represents the power of the
noise added to 𝑦𝑘, given by (12) for the case of quantization
noise.

To simplify further notation and the comparison between
differentmetrics, we consider the gradient for the case p𝑒 = 0,
where 0 is the zero vector, such that (25) is rephrased as g =|ŵ|2, where (the comparison is valid for any p𝑒; we choose this
case purely to simplify the notation) each element is given by

𝑔𝑘 = 󵄨󵄨󵄨󵄨𝑤𝑘󵄨󵄨󵄨󵄨2 . (30)

Despite the fact that the impact (29), utility (27), and
gradient (30) metrics predict a change in theminimummean
squared error, which implicitly requires to reoptimize the
MWF, all three metrics can be calculated from the current
MWF coefficients at almost no additional computational cost
compared to the computation of ŵ itself.

By comparing (29)with (27) and (30), we see that both the
gradient 𝑔𝑘 and the utility 𝑢𝑘 are limit cases of the impact 𝐼𝑒𝑘
when 𝑝𝑒𝑘 → 0 and 𝑝𝑒𝑘 → ∞, respectively. Although 𝑝𝑒𝑘 →0 would obviously give an impact equal to zero, the relative
differences between the impact metric for different 𝑘 become
equal to those of the gradient metric.

These two limit cases can be interpreted as follows. For
the utility, the interpretation is that removing themicrophone
signal 𝑦𝑘 from the estimation process is similar to adding
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an infinite amount of noise on 𝑦𝑘 (𝑝𝑒𝑘 → ∞), making
it completely useless, which corresponds to a removal of
that channel. For the gradient, the distinction between the
gradient and the impact is that the gradient characterizes
the best linear approximation of the function 𝐽𝑒(p𝑒), while
the impact computes the actual MMSE increase produced
by adding the error 𝑒𝑘 with power 𝑝𝑒𝑘 . Since the gradient
approximation is only valid in an infinitesimally small neigh-
bourhood, it is only able to accurately capture the influence
of 𝑒𝑘 on the MMSE for small values of 𝑝𝑒𝑘 . Besides, note that
the quantization noise power𝑝𝑒𝑘 increases exponentially with
each bit reduced, so the gradient becomes less accurate as
the microphone signals are quantized with lower resolution.
On the other hand, the impact metric accounts directly for𝑝𝑒𝑘 , which makes it inherently adaptive to the significance of
each bit considered for removal. For low significance bits, the
impact is close to the gradient. However, as the significance
of a bit increases, the impact behaves more like the utility.
By contrast, the gradient assumes that 𝑝𝑒𝑘 corresponding to
a bit removal is the same for all 𝑘, or in other words it
assumes that the search space is isotropic, which only holds
true when all microphone signals have the same bit depth.
This can be adjusted by making 𝑝𝑒𝑘 in (21) a linear function
of the resolution corresponding to the least significant bit, for
example, 𝛽𝑘Δ 𝑏𝑘 , and taking the derivative with respect to 𝛽𝑘.
This would then provide a warped gradient vector

gwarped = D ⋅ |ŵ|2 , (31)

whereD = diag(Δ 𝑏1 , . . . , Δ 𝑏𝐾). Note that this warped gradient
is again an asymptotic case of the impact measure, if 𝑝𝑒𝑘 is
substituted with 𝛽𝑘Δ 𝑏𝑘 in (29) and letting 𝛽𝑘 → 0.
3.4. FrequencyDomainConsiderations. To conclude, wemust
turn our attention to the fact that all of the above is valid
at each frequency 𝜔. This opens the possibility to assign a
different bit depth to each frequency component of each
microphone signal 𝑦𝑘.

In Section 2.3 we took the approach of performing quan-
tization in the time domain. In order to select the signal
from which a bit is to be removed, we need to choose a rule
to combine each metric across all frequencies. We propose
to perform a sum of the metrics across all frequencies. For
instance, for the impact the combined metric would be given
by

𝐼𝑘 =
𝐿−1∑
𝑚=0

𝐼𝑒𝑘 (𝜔𝑚) . (32)

For the utility, gradient, and warped gradient the combined
metric is defined in a similar way. It is noted that one could as
well use a weighted sum in (32), for example, based on speech
intelligibility weights. We provide a summary of the greedy
quantization algorithm based on any of the four metrics
described so far in Algorithm 1.

However, strategies to allow the assignment of a different
bit depth to each frequency component can be considered,
as is commonly done in audio coding, to represent the most
relevant frequency components with higher accuracy. Instead

of assigning a different bit depth to every single frequency bin,
frequency bins can also be grouped in a set of 𝑅 frequency
bands Ω = Ω1 ∪ ⋅ ⋅ ⋅ ∪ Ω𝑅, where Ω comprises all frequency
bins such that |Ω| = 𝐿.Thismeans that every STFT coefficient
of each microphone signal 𝑦𝑘 at the frequency band Ω𝑟 is
quantized following (6) with 𝑏𝑘,𝑟 bits. The real and imaginary
parts of each STFT coefficient are quantized independently.
The corresponding metric can be computed in a similar way
to (32) as

𝐼𝑘,𝑟 = ∑
𝜔𝑚∈Ω𝑟

𝐼𝑒𝑘 (𝜔𝑚) , (33)

where 𝐼𝑘,𝑟 is the impact corresponding to the 𝑘thmicrophone
signal in the 𝑟th frequency band. For the utility, gradient, and
warped gradient the combined metric is again defined in a
similar way.

This configuration opens up several strategies to decide
which frequency band and microphone signal will have its
bit depth reduced in each iteration of the algorithm. For
our discussion we consider the strategy of removing, in
each iteration, one bit in each frequency bin assigned to the
frequency band Ω𝑟min

of the microphone signal 𝑦𝑘min
with

minimum 𝐼𝑘,𝑟. This is the most conservative greedy strategy,
which can be viewed as a limit case that will generally provide
a better performance compared to greedier strategies where
the bit depth is reduced in multiple channels and frequency
bands simultaneously. It is noted that a more conservative
greedy strategy comes with the cost of a larger number of
required iterations to reach a predefined total number of
bits. In Sections 4.1 and 4.2 we show the performance of this
particular strategy applied to a speech enhancement scenario.

Note that, in every iteration, the bit depth in |Ω𝑟| (out
of 𝐿) frequency bins is reduced, which corresponds to a
reduction of |Ω𝑟|/𝐿 bits per time domain sample. This is less
than the full bit per sample reduction achieved through time
domain quantization, which shows that the proposed strategy
for frequency domain quantization is more conservative than
the strategy for time domain quantization.

Besides, it is important to mention that frequency bands
do not influence each other in the sense that the bit depth
reduction in one band will not affect the decision in the rest
of the bands. In the case of nonuniform bands, where each
frequency band spans a different number of frequency bins, a
trade-off with the transmission energy has to be considered,
that is, removing a bit from a wider frequency band will
introduce more quantization noise but will result in less
energy spent in transmission since the total number of bits
will be lower.

4. Experimental Results

In this section we discuss the results obtained from several
experiments to observe and characterize the performance of
the greedy adaptive quantization algorithm based on the four
metrics described in Section 3. We will discuss experiments
on two different audio datasets. In the first one the audio sig-
nals captured by the microphones are obtained by simulating
the acoustics of a room with the image method [23]. In the
second one, the audio signals were recorded using a wireless
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(1) Choose a metric𝑚𝑘 from 𝐼𝑘, 𝑔𝑘, 𝑔warped,𝑘 or 𝑢𝑘.
(2) Initialize𝐷𝑘 ∀𝑘 ∈ K to the dynamic range of each sensor.
(3) Initialize the bit depth assignment 𝑏𝑘 ∀𝑘 ∈ K to the maximum bit depth allowed by the hardware.
(4) Initialize 𝑝𝑒𝑘 ∀𝑘 ∈ K using equation (12).
(5) while MMSEcurrent < MMSEthreshold do
(6) Each signal 𝑦𝑘 is quantized in time domain with 𝑏𝑘 bits using (6).
(7) Receive𝑁fr signal frames from 𝑦𝑘 ∀𝑘 ∈ K.
(8) Apply STFT to the received frames.
(9) Compute ŵ(𝜔𝑚) ∀𝜔𝑚 based on the quantized microphone signals using equation (15).
(10) Update 𝑝𝑒𝑘 using 𝑏𝑘 − 1 and equation (12) ∀𝑘 ∈ K (The update is done with 𝑏𝑘 − 1 in order for the metric to predict

what would happen if the bit depth of the 𝑘thsignal is reduced by 1 bit. However only one signal gets its 𝑏𝑘 actually reduced
in step (14)).

(11) Compute the selected metric𝑚𝑘(𝜔𝑚) ∀𝜔𝑚 according to equation (29), (30), (31) or (27) respectively.
(12) Combine𝑚𝑘(𝜔𝑚) using equation (32).
(13) Find the index 𝑘min of the signal with minimal𝑚𝑘.
(14) Reduce 𝑏𝑘min

by 1 bit.
(15) If 𝑏𝑘min

equals 0 after the reduction, remove the 𝑘minth signal for subsequent iterations.
(16) end while

Algorithm 1: Greedy adaptive quantization for MWF in WASN.

acoustic sensor network set up in a real home environment in
a house inMol, Belgium, using nodes designed by researchers
from theMICAS group of the Department of Electrical Engi-
neering (ESAT) inKULeuven.Thedetails of each experiment
will be discussed in Sections 4.1 and 4.2. In all experiments
the desired speaker audio consists of three sentences, spoken
by a female speaker, from the TIMIT database [24].The noise
characteristics will be described in the section corresponding
to each experiment. The sampling frequency is 𝑓𝑠 = 16 kHz.
The audio processing is implemented in batch mode, where
the correlation matrices R𝑦𝑦(𝜔𝑚) and RVV(𝜔𝑚) are estimated
using samples over the entire length of the microphone
signals. An ideal VAD is used to exclude the influence of
speech detection errors. The audio signals are divided into
frames using aHannwindowwith 50%overlap, and the STFT
is implemented using a discrete Fourier transform (DFT) of
length 𝐿 = 512. The multichannel Wiener filter is computed
based on a GEVD of R𝑦𝑦(𝜔𝑚) and RVV(𝜔𝑚) as in [17] since, as
we mentioned in Section 2.2, this method is superior to the
subtraction-based implementation.

In order to assess the changes in noise reduction and
speech distortion due to the bit depth reduction we will use
two figures ofmerit, the speech intelligibility weighted signal-
to-noise ratio (SI-SNR) [25] and the speech intelligibility
weighted spectral distortion (SI-SD) [6]. They are based
on the band importance function 𝐵𝑖, which expresses the
importance for intelligibility of the 𝑖th one-third octave band
with centre frequency 𝑓𝑐,𝑖. The values for 𝑓𝑐,𝑖 and 𝐵𝑖 are
defined in [26].The definitions of the two figures of merit are
given by

SNRSI = ∑
𝑖

𝐵𝑖SNR𝑖
SDSI = ∑

𝑖

𝐵𝑖SD𝑖.
(34)

The quantity SNR𝑖 is the SNR (in dB) in the one-third
octave band with centre frequency 𝑓𝑐,𝑖. In order to account
for quantization, the quantization noise in the input signals
can be obtained by subtracting the clean input signal and
its corresponding quantized version. The quantization error
obtained is added to the noise component of each micro-
phone, and they are filtered to obtain the noise component
in the output signal, which is then used to compute the noise
power at each one-third octave frequency band.

For the SI-SD, SD𝑖 is the average spectral distortion in the
one-third octave band with centre frequency 𝑓𝑐,𝑖, given by

SD𝑖 = ∫2
1/6𝑓𝑐,𝑖

2−1/6𝑓𝑐,𝑖

󵄨󵄨󵄨󵄨10 log10𝐺𝑠 (𝑓)󵄨󵄨󵄨󵄨(21/6 − 2−1/6) 𝑓𝑐,𝑖 𝑑𝑓. (35)

The function 𝐺𝑠(𝑓) is given by

𝐺𝑠 (𝑓) = 𝐸 {𝑋out (𝑓)𝑋∗out (𝑓)}𝐸 {𝑋in (𝑓)𝑋∗in (𝑓)} , (36)

where 𝑋out(𝑓) is the speech component at the output of
the MWF, and 𝑋in(𝑓) is the frequency domain speech
component at the reference microphone signal. A distortion
value of 0 indicates undistorted speech, while larger values
correspond to increased speech distortion. To account for
quantization, 𝑋out(𝑓) is computed by first quantizing the
speech component at each microphone with the correspond-
ing bit depth and then applying the filter to the quantized
speech components.

4.1. Simulated Room Acoustics. Our first experiment is a
study of the behaviour of the greedy algorithm for adaptive
quantization using simulated room acoustics. The scenario
consists of a room of dimensions 5 × 5 × 3m, with a
reverberation time of 0.2 s. In the room there are two babble
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Figure 2: Acoustic scenario for the simulated room acoustic
experiment.

noise sources [27] and one desired speech source. The
WASN consists of four nodes, where each node is equipped
with three omnidirectional microphones, such that the total
number of microphone signals is 𝐾 = 12. Independent
white Gaussian noise was added to each microphone signal
with a power of 2.5 ⋅ 10−5, about 1% of the power of the
babble noise impinging on themicrophones. A 2Ddiagramof
the acoustic scenario is depicted in Figure 2. All sources are
located at a height of 1.8m, while the nodes are placed 2m
high.The intermicrophone distance at each node is 4 cm and
the sampling rate is 16 kHz. The maximum bit depth was set
to 16 bits. The broadband input SNR for every microphone
lies between 0 dB and 5 dB. The acoustics of the room are
modeled using a room impulse response generator, which
allows simulating the impulse response between each source
and eachmicrophone using the imagemethod [23].The code
is available online (https://www.audiolabs-erlangen.de/fau/
professor/habets/software/rir-generator). The total duration
of the signals is 20 seconds.

In Figures 3 and 4 we can see the SI-SNR and SI-SD at
each iteration of the greedy adaptive quantization algorithm
presented inAlgorithm 1 based on the fourmetrics discussed.
In this experiment the quantization is performed in the time
domain, as explained in Section 2.3, such that each time
domain sample of the microphone signal 𝑦𝑘 is quantized
using its allocated bit depth 𝑏𝑘. Note that both the SI-SNR
and the SI-SD are plotted versus the average bit depth per
sample and channel at each iteration, given by ∑𝑘 𝑏𝑘/𝐾. In
terms of SI-SNR, the impactmetric performs better than both
the utility and the gradient, as we expected due to its inherent
adaptability to the significance of each bit for different bit
depths. The same can be said about the warped gradient,
which performs better than the uncorrected gradient and
close to the impact due to the correction to account for the
significance of each bit. In terms of distortion, there is no clear
winner when the total number of bits is high. However, the
impact and thewarped gradient introduce the least distortion
as the number of bits decreases.
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Figure 3: SI-SNR at each step of the greedy quantization algorithm
using time domain quantization for the simulated room acoustic
experiment.
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Figure 4: SI-SD at each step of the greedy quantization algorithm
using time domain quantization for the simulated room acoustic
experiment.

We now turn our attention to quantization in the fre-
quency domain, where each microphone signal 𝑦𝑘 has a bit
depth 𝑏𝑘,𝑟 allocated to its frequency band Ω𝑟, as explained
in Section 3.4. The STFT coefficient at each frequency bin𝜔𝑚 ∈ Ω𝑟 is quantized using 𝑏𝑘,𝑟 bits. In each iteration, one
frequency band at one microphone signal has its bit depth𝑏𝑘min ,𝑟min

reduced by one. The pair (𝑘min, 𝑟min) is given by the
channel and band with minimum impact (or corresponding
metric). For this experiment we considered 𝑅 = 4 uniform
frequency bands, each spanning 𝐿/4 frequency bins. The bit
allocation 𝑏𝑘,𝑟 of any band can be reduced to a minimum of
2 bits. If all bands of a microphone signal 𝑦𝑘 are assigned

https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
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Figure 5: SI-SNR at each step of the greedy quantization algorithm
with frequency domain quantization for the simulated room acous-
tic experiment.
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Figure 6: SI-SD at each step of the greedy quantization algorithm
with frequency domain quantization for the simulated room acous-
tic experiment.

2 bits, the signal is removed from the estimation process
for subsequent iterations. In Figures 5 and 6 we can again
see the SI-SNR and SI-SD at each iteration of the greedy
adaptive quantization algorithm.The two figures of merit are
plotted versus the average bit depth per sample and channel
∑𝑘 𝑏𝑘/𝐾, where 𝑏𝑘 = (1/𝑅)∑𝑟 𝑏𝑘,𝑟. We can observe again the
impact and the warped gradient performing better in terms
SI-SNR, which is consistent with our previous experiment.
However, the decay in SI-SNR for the utility and the gradient
is less pronounced, and the region where their performance
is similar to the impact and the warped gradient is larger. In
terms of speech distortion the results are also consistent with

the previous experiment in the sense that there is no clear
winner, although the impact seems to perform better as the
number of bits decreases for this particular experiment.

4.2. Experiments on Real Recordings. In order to further
compare the four metrics for greedy adaptive quantization,
we turn our attention to an audio scenario where the signals
are recorded using a real life wireless acoustic sensor network
set up in a house in Mol, Belgium, consisting of 6 nodes with
4 microphones per node. A 2D schematic of the whole house
can be seen in Figure 7, although only the living room was
used for this experiment. The acoustic scenario consisted of
one loudspeaker acting as the desired speaker (represented
by the blue circle) and a kitchen fan (located in the top right
corner of the living room in the 2D schematic) acting as
the noise source. Only the nodes marked 1, 2, 3, 6, 7, and
8 were used for this experiment. The speech signal for the
loudspeaker consisted of three sentences from the TIMIT
[24] database, spoken by a female speaker. The total duration
of the recording was 23 seconds.

The microphones employed were Sonion N8AC03 (ana-
log), and the intermicrophone distance at each node was
5 cm. A picture of one node with the location of the micro-
phones indicated is shown in Figure 8. The sampling fre-
quency was 𝑓𝑠 = 16 kHz, and the analog-to-digital converter
of every node was configured to use a bit depth of 12 bits
for acquisition. The microcontroller unit in each node is the
Wonder Gecko EFM32WG980 from Silicon Labs [28], which
is used for sampling and sending data to a Raspberry Pi 3 [29]
via USB. The Raspberry Pi at each node is used to upload
the audio samples to a USB drive. A picture of one node
can be seen in Figure 8. The nodes were synchronized once
every second using a pulse that was sent through coaxial
cable and triggered by a GPS/DCF receiver. The recorded
audio signals were stored and subsequently processed using
the MATLAB software as described at the beginning of
Section 4. We implemented the processing offline to focus
on the characterization of the performance of the bit depth
reduction algorithm and the comparison of the different
metrics using real audio data.

In Figure 9 we can see the results of the SI-SNR of the
output signal estimated from the MWF using the recorded
audio signals. In this case, quantization was performed in
the time domain. The SI-SNR of the input microphone
signals lied between −16 and −7 dB. The noise power for
the SI-SNR calculation was computed using the nonspeech
segments. The greedy adaptive quantization algorithm was
stopped when the total number of bits used was 20 bits. It
can be observed that the impactmetric again outperforms the
gradient and the utility metrics and provides a smoother way
of downscaling the WASN performance, in agreement with
the results from Section 4.1. Besides, the warped gradient
performs very close to the impact due to the correction to
account for the significance of each bit, again in agreement
with the results from Section 4.1. We would like to note
that the impact and the warped gradient outperforming the
gradient and the utility, as we can observe in both Figures
3 and 9, agree with the theoretical discussion of Section 3.3,
where we describe the limitations of each metric. The four
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Figure 7: Schematic in 2D of the house used for the WASN recordings, with the desired speaker in blue and the WASN nodes in red.

Figure 8: One node of the WASN used to make the recordings.
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Figure 9: SI-SNR achieved at each step of the greedy quantization
algorithm for the real recordings.
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Figure 10: SI-SNR at each step of the greedy quantization algorithm
using frequency domain quantization for the real recordings.

metrics achieve a similar performance only in the high
resolution regime, where the samples from every signal are
encoded with a high bit depth and the bits removed have low
significance.

Finally, we turn again our attention to quantization in the
frequency domain, as explained in Section 3.4. We followed
the same strategy as in the previous section, where we
consider 𝑅 = 4 uniform frequency bands, each spanning𝐿/4 frequency bins. In Figure 10 we can see the behaviour
of the SI-SNR for this experiment, where a slower decay
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compared to the evolution in Figure 9 is observed. Although
the impact outperforms the rest of the metrics, the four
metrics diverge less from each other compared to the time
domain quantization as seen in Figure 9. We note that for
this experiment the warped gradient performsworse than the
utility and the gradient.

4.3. Analysis of Energy Consumption. To conclude, we focus
on estimating the energy savings that can be achieved in
communication by reducing the bit depth assignment of the
microphone signals using the greedy adaptive quantization
algorithm. This estimation is based on the power consump-
tion of theWASNhardware nodesweused to record the audio
signals. We employ a simplified model for the average energy
ERF required to transmit 𝐿RF bits fromone node to the fusion
centre given by

ERF = 𝑃RF𝑑RF
𝐿RF, (37)

where 𝑑RF is the data rate in bits per second and 𝑃RF is the
average power consumed by the radiomodule in active status.
We note that (37) provides only an approximation of the
required transmission energy since it ignores some factors
such as the retransmission of lost packets. However, a detailed
model for the transmission energy is outside the scope of this
paper.The interested reader can findmore advancedmethods
in [30].

We will first discuss the case where quantization is
performed in the time domain; that is, the bit depth assigned
to the microphone signal 𝑦𝑘 is equal for every frequency.

The number of bits 𝐿RF needed for the transmission of an
audio frame of length 𝐿 samples from microphone signal 𝑦𝑘
can be calculated as follows:

𝐿RF,𝑘 = 𝑏𝑘𝐿 + 𝑛pkt,𝑘𝐿overhead, (38)

where 𝑏𝑘 is the bit depth assigned to the microphone signal𝑦𝑘, 𝐿overhead is the length in bits of the headers containing
protocol information, and 𝑛pkt,𝑘 is the number of packets
necessary to fit 𝐿 samples from 𝑦𝑘 according to the network
protocol rules.

The radio module of the nodes we used to acquire
our audio recordings consists of an IEEE 802.15.4 standard
compliant radio from Atmel (AT86RF233) in combination
with anARMCortexM4microcontroller. In activemode, the
power consumption is 𝑃RF = 41.8mW at 𝑑RF = 1Mbps. The
packet in the IEEE 802.15.4 standard consists of 127 payload
bytes and 6 header bytes [31]. The 127 bytes include 2 CRC
bytes and 125 bytes of actual data plus headers originating
from higher layers (such as, e.g., IPv6 for the network layer
andUDP for the transport layer).Wewill assume that 25 bytes
correspond to headers from higher layers. This leads to each
packet carrying 33 bytes of overhead and a maximum of 100
bytes of data corresponding to audio samples.The number of
packets necessary to transmit 𝐿 audio samples encoded with
bit depth 𝑏𝑘 is then given by

𝑛pkt,𝑘 = ⌈ 𝑏𝑘𝐿8 ⋅ 100⌉ . (39)

As we have explained in Algorithm 1, when a signal is
assigned 0 bits, it gets removed from the estimation process
for subsequent iterations. We are interested in calculating
the total energy spent in the transmission of 𝐿 samples per
microphone signal included in the estimation process, which
is given by

E𝑇,frame = ∑
𝑘∈K𝑎

ERF,𝑘, (40)

where ERF,𝑘 is computed using (37) and (38) and K𝑎 is the
subset ofK containing the indexes of themicrophone signals
included in the estimation process. However, we also have to
consider the messages the fusion centre needs to send to the
nodes every iteration to inform them of which microphone
signal 𝑦𝑘 will have its bit depth 𝑏𝑘 reduced. These messages
are limited in size since only the index of the signal whose
bit depth needs to be reduced has to be communicated to the
nodes. The length of one fusion centre packet in bits is given
by

𝐿FC = 𝐿overhead + 8, (41)

where we assume that the message contains one byte of
payload. The energy spent in the transmission of these
packages is related to the speed of refreshment of the bit depth
allocation algorithm, that is, the rate at which the network
performs the iterations required by the algorithm. We will
denote this rate by 𝑟refr ∈ (0, 1], which is given by the inverse
of the number of frames the network waits between two
consecutive iterations of the bit depth allocation algorithm.
A value of 1 means that we change the bit depth allocation
every frame and a value of 0.5 every two frames. Following
(37) the average energy per frame required to transmit the
fusion centre packet is given by

EFC = 𝑃RF𝑑RF
𝐿FC𝑟refr. (42)

We can then modify (40) to include EFC so that the total
energy spent by the network in the duration of one frame is

E𝑇 = ∑
𝑘∈K𝑎

ERF,𝑘 + (𝑁nodes + 1)EFC, (43)

where 𝑁nodes is the number of nodes in the network, which
is included to account for the energy spent by the nodes in
the reception of the packet. Note that it is implicitly assumed
here that the energy spent in the reception of a packet is
on the same order of magnitude of the energy spent for its
transmission.This assumption is valid in short distances [32],
which can be expected in the context of a WASN. A quick
calculation of the ratio between EFC and ERF,𝑘 for 𝐿 = 512,𝑏𝑘 = 8, 𝐿overhead = 264 bits (corresponding to 33 bytes), and𝑟refr = 1 yields roughly 5%. While this is only an approximate
energy model and other concerns related to communications
may arise due to the speed of refreshment, such as the use of
bandwidth or the need for retransmissions, from the point
of view of energy we can conclude that even for fast rates,
that is, one iteration per frame, the reduction of transmission
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energy is not jeopardized by the refreshment rate in most
situations. In practice, deciding on a value for the refreshment
rate 𝑟refr depends on the dynamics of the acoustic scenario;
for example, in a scenario with moving sources it may be
interesting to have a high rate to be able to track the sources,
while in a static scenario a lower rate can be sufficient.

We turn our attentionnow to quantizationwith a different
bit depth in each of the 𝑅 frequency bands. This leads to
each microphone signal 𝑦𝑘 having a bit depth 𝑏𝑘,𝑟 assigned
for each frequency band Ω𝑟. The number of bits 𝐿RF needed
for the transmission of 𝐿/2 complex STFT coefficients from
microphone signal 𝑦𝑘 can be calculated following (38) as

𝐿RF,𝑘 =
𝑅∑
𝑟=1

𝑏𝑘,𝑟𝐿𝑟 + 𝑛pkt,𝑘𝐿overhead

= 𝑏𝑘𝐿 + 𝑛pkt,𝑘𝐿overhead,
(44)

where𝐿𝑟 is the number of frequency bins included in bandΩ𝑟
and 𝑏𝑘 is the average number of bits assigned to microphone
signal 𝑦𝑘, which is given by

𝑏𝑘 = ∑𝑅𝑟=1 𝑏𝑘,𝑟𝐿𝑟𝐿 (45)

The number of packets necessary is now given by

𝑛pkt,𝑘 = ⌈ 𝑏𝑘𝐿8 ⋅ 100⌉ . (46)

We note that since each payload byte allows the fusion centre
256 combinations of channel and frequency band indexes,
a packet of very similar length to the one we considered in
(41) can be used in this case to let the fusion centre inform
the nodes of where to remove bits. While the quantization
in several frequency bands allows for extra granularity, the
energy analysis shown above applies in a straightforward
manner by considering the average number of bits 𝑏𝑘 in place
of 𝑏𝑘.

Finally, in Figure 11 the resulting SI-SNR (the same as in
Figure 9) is plotted versus the total energy spent in transmis-
sion calculated from (43). Similarly, in Figure 12 we show the
resulting SI-SNR (the same as in Figure 10) plotted versus
the total energy spent in transmission calculated following
the energy analysis for frequency domain quantization shown
above. These graphs illustrate the estimated transmission
energy savings which can be achieved through the use of
the greedy adaptive quantization algorithm. For time domain
quantization, from Figure 11 it can be observed that the total
transmission energy can be reduced roughly by half without
a meaningful loss in performance and cut by four for a small
loss of 1 dB. For frequency domain quantization the savings
are potentially higher since the total transmission energy can
be reduced roughly to one-third without meaningful loss in
performance.

5. Conclusions

We have provided a better understanding of adaptive quan-
tization for speech enhancement in wireless acoustic sensor
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Figure 11: SI-SNR versus total transmission energy spent in the
duration of one frame in the case of time domain quantization.
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Figure 12: SI-SNR versus total transmission energy spent in the
duration of one frame in the case of frequency domain quantization.

networks based on the previously proposed impact metric.
We have done so by extending the mathematical framework
of adaptive quantization in linear MMSE estimation, where
we have proposed a metric based on the gradient of the
MMSE and demonstrated how this metric naturally leads
to a greedy approach. Moreover, we have shown that the
impact metric is a generalization of the gradient metric,
where the gradient is a limit case of the impact. We also
propose a correction to improve the gradient metric by
considering the significance of each quantization bit for
different bit depths. Besides, the impact also generalizes a
utilitymetric previously proposed for sensor subset selection.
Through the use of a simulated and a real life environment
we have assessed the superiority of the impact and the
corrected gradient metrics over the gradient and the utility
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metrics due to their adaptability to the significance of each
quantization bit. Besides, we have provided an estimation
of the possible energy savings achievable through the use
of the greedy adaptive quantization algorithm based on any
of the studied metrics. In future work, an extension of this
approach to a distributed speech enhancement algorithm
will be explored, hence going beyond the centralized setting
targeted in this work. Another important research direction
will be the incorporation of psychoacoustic characteristics of
human hearing to the bit depth allocation algorithm in order
to improve the allocation in different frequency bands.

Appendix

The model for the effect of quantization noise on the MWF
developed in Section 3.1 relies on the quantization noise being
uncorrelated with the input microphone signals y and with
the desired speech signal components x to establish equations
(16) and (17). However, one might intuitively expect the
quantization of microphone signal 𝑦𝑘 to reduce the cross-
correlation with the other microphone signals 𝑦𝑚 ∈ K \ {𝑘}.
This would lead to a decrease in the off-diagonal elements in
R𝑦𝑒𝑦𝑒 compared to the off-diagonal elements in R𝑦𝑦.

This can be considered by using an alternative model for
quantization such that (11) is substituted by

y𝑞 = A (y + e) , (A.1)

where A is the𝐾 × 𝐾 diagonal matrix

A = diag (√𝜌1, . . . , √𝜌𝐾) (A.2)

with elements given by

𝜌𝑘 = 𝑝𝑘𝑝𝑘 + 𝑝𝑒𝑘 , (A.3)

where 𝑝𝑘 = 𝐸{|𝑦𝑘|2}. Note that this factor rescales each
quantized microphone signal to its original power, since
quantization might be expected not to increase the micro-
phone signal power. The corresponding microphone signal
correlation matrix R𝑦𝑞𝑦𝑞 is then given by

R𝑦𝑞𝑦𝑞 = 𝐸 {A (y + e) (y + e)𝐻A𝐻} (A.4)

= A (R𝑦𝑦 + R𝑒𝑒)A𝐻 (A.5)

= A (R𝑦𝑦 + diag (p𝑒))A𝐻. (A.6)

As we can observe from (A.3) and (A.4), the off-diagonal
elements of the 𝑘th column of R𝑦𝑞𝑦𝑞 are the off-diagonal
elements of the 𝑘th column ofR𝑦𝑦 multiplied by 𝜌𝑘, while the
elements in the main diagonal of R𝑦𝑞𝑦𝑞 are equal to those of
R𝑦𝑦. In summary, R𝑦𝑞𝑦𝑞 models the effect of quantization as
a decrease in the cross-correlation between the microphone
signals (hence the decrease in the off-diagonal elements),
while their powers (given by the main diagonal elements)
remain unchanged.

The cross-correlation r𝑦𝑞𝑥ref can be obtained by using (A.1)
as

r𝑦𝑞𝑥ref = 𝐸 {y𝑞𝑥∗ref} = 𝐸 {A (y + e) 𝑥∗ref} (A.7)

= A𝐸 {y𝑥∗ref} + A𝐸 {e𝑥∗ref} = Ar𝑦𝑥ref , (A.8)

where we have assumed that e and 𝑥ref are uncorrelated.
Following (5) and (19) we can express the MMSE 𝐽𝑞(ŵ𝑞)
obtained from the MWF computed based on y𝑞 as

𝐽𝑞 (ŵ𝑞) = 𝑃ref − r𝐻𝑦𝑞𝑥refR
−1
𝑦𝑞𝑦𝑞

r𝑦𝑞𝑥ref . (A.9)

Using (A.4) and (A.7) we find

𝐽𝑞 (ŵ𝑞) = 𝑃ref − r𝐻𝑦𝑞𝑥refR
−1
𝑦𝑞𝑦𝑞

r𝑦𝑞𝑥ref

= 𝑃ref
− r𝐻𝑦𝑥refA

𝐻A−𝐻 (R𝑦𝑦 + R𝑒𝑒)−1 A−1Ar𝑦𝑥ref
= 𝑃ref − r𝐻𝑦𝑥ref (R𝑦𝑦 + R𝑒𝑒)−1 r𝑦𝑥ref

(A.10)

which coincides with (19), proving that

𝐽𝑞 (ŵ𝑞) = 𝐽𝑒 (ŵ𝑒) . (A.11)

We can then conclude from the derivation presented above
that modeling the effect of quantization noise through (11) or
(A.1) leads to the same MMSE and thus to the same impact
and gradient metric. Therefore, there is no dilemma between
the two models regarding the effect of the quantization of the
microphone signals on the MWF.
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K. Varshney, “Sensor selection for estimation with correlated
measurement noise,” IEEE Transactions on Signal Processing,
vol. 64, no. 13, pp. 3509–3522, 2016.

[10] A. Bertrand and M. Moonen, “Efficient sensor subset selection
and link failure response for linear MMSE signal estimation in
wireless sensor networks,” in Proceedings of the 18th European
Signal Processing Conference, EUSIPCO 2010, pp. 1092–1096,
Aalborg, Denmark, August 2010.

[11] A. Bertrand, J. Szurley, P. Ruckebusch, I. Moerman, and M.
Moonen, “Efficient calculation of sensor utility and sensor
removal in wireless sensor networks for adaptive signal estima-
tion and beamforming,” IEEE Transactions on Signal Processing,
vol. 60, no. 11, pp. 5857–5869, 2012.

[12] J. Szurley, A. Bertrand, M. Moonen, P. Ruckebusch, and I.
Moerman, “Utility based cross-layer collaboration for speech
enhancement in wireless acoustic sensor networks,” in Proceed-
ings of the 19th European Signal ProcessingConference, EUSIPCO
2011, pp. 235–239, Barcelona, Spain, September 2011.

[13] J. Szurley, A. Bertrand, P. Ruckebusch, I. Moerman, and M.
Moonen, “Greedy distributed node selection for node-specific
signal estimation inwireless sensor networks,” Signal Processing,
vol. 94, no. 1, pp. 57–73, 2014.

[14] A. Zahedi, J. Østergaard, S. H. Jensen, S. Bech, and P. Naylor,
“Audio coding in wireless acoustic sensor networks,” Signal
Processing, vol. 107, pp. 141–152, 2015.

[15] A. Zahedi, Source coding for wireless distributed microphones
in reverberant environments [Ph.D. Thesis], Aalborg University,
2016.

[16] F. De La Hucha Arce, F. Rosas, M. Moonen, M. Verhelst, and A.
Bertrand, “Generalized signal utility for LMMSE signal estima-
tion with application to greedy quantization in wireless sensor
networks,” IEEE Signal Processing Letters, vol. 23, no. 9, pp. 1202–
1206, 2016.

[17] R. Serizel, M. Moonen, B. Van Dijk, and J. Wouters, “Low-rank
approximation based multichannel wiener filter algorithms for
noise reduction with application in cochlear implants,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 22,
no. 4, pp. 785–799, 2014.

[18] A. Hassani, A. Bertrand, and M. Moonen, “GEVD-based low-
rank approximation for distributed adaptive node-specific sig-
nal estimation in wireless sensor networks,” IEEE Transactions
on Signal Processing, vol. 64, no. 10, pp. 2557–2572, 2016.

[19] A. B. Sripad and D. L. Snyder, “A necessary and sufficient
condition for quantization errors to be uniform and white,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 25, no. 5, pp. 442–448, 1977.

[20] R. M. Gray, “Quantization Noise Spectra,” IEEE Transactions on
Information Theory, vol. 36, no. 6, pp. 1220–1244, 1990.

[21] R. M. Gray and D. L. Neuhoff, “Quantization,” Institute of
Electrical and Electronics Engineers. Transactions on Information
Theory, vol. 44, no. 6, pp. 2325–2383, 1998.

[22] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook,
Technical University of Denmark, Denmark, 2012, http://www2
.imm.dtu.dk/pubdb/p.php?3274.

[23] J. B. Allen and D. A. Berkley, “Image method for efficiently
simulating small-room acoustics,”The Journal of the Acoustical
Society of America, vol. 65, no. 4, pp. 943–950, 1979.

[24] J. S. Garofolo, L. F. Lamel, W. M. Fisher et al., “TIMIT acoustic-
phonetic continuous speech corpus,” Tech. Rep., LinguisticData
Consortium, 1993.

[25] J. E. Greenberg, P. M. Peterson, and P. M. Zurek, “Intelligibility-
weighted measures of speech-to-interference ratio and speech
system performance,” Journal of the Acoustical Society of Amer-
ica, vol. 94, no. 5, pp. 3009-3010, 1993.

[26] ANSI, “American national standard methods for calculation of
the speech intelligibility index,” Acoustical Society of America
ANSI S.3.5-1997, June 1997.

[27] Auditec, “Auditory tests (revised), compact disc,” St. Louis, Mo,
USA, 1997.

[28] Silicon Labs, “EFM32 Wonder Gecko 32-bit ARM Cortex-M4
microcontroller,” 2017, http://www.silabs.com/products/mcu/
32-bit/efm32-wonder-gecko.

[29] Raspberry Pi Foundation, “Raspberry Pi 3,” 2017, https://www
.raspberrypi.org/products/raspberry-pi-3-model-b/.

[30] F. Rosas, R. D. Souza, M. E. Pellenz et al., “Optimizing the
Code Rate of Energy-Constrained Wireless Communications
with HARQ,” IEEE Transactions on Wireless Communications,
vol. 15, no. 1, pp. 191–205, 2016.

[31] “IEEE standard for low-rate wireless networks,” IEEE Std
802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709,
2016.

[32] F. Rosas and C. Oberli, “Modulation and SNR optimization for
achieving energy-efficient communications over short-range
fading channels,” IEEE Transactions on Wireless Communica-
tions, vol. 11, no. 12, pp. 4286–4295, 2012.

http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www.silabs.com/products/mcu/32-bit/efm32-wonder-gecko
http://www.silabs.com/products/mcu/32-bit/efm32-wonder-gecko
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/


Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


