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Vegetation Indices (VIs) obtained from remote sensing based canopies are quite simple and effective algorithms for quantitative and
qualitative evaluations of vegetation cover, vigor, and growth dynamics, among other applications. These indices have been widely
implemented within RS applications using different airborne and satellite platforms with recent advances using Unmanned Aerial
Vehicles (UAV). Up to date, there is no unified mathematical expression that defines all VIs due to the complexity of different light
spectra combinations, instrumentation, platforms, and resolutions used. Therefore, customized algorithms have been developed
and tested against a variety of applications according to specific mathematical expressions that combine visible light radiation,
mainly green spectra region, from vegetation, and nonvisible spectra to obtain proxy quantifications of the vegetation surface. In
the real-world applications, optimization VIs are usually tailored to the specific application requirements coupled with appropriate
validation tools and methodologies in the ground. The present study introduces the spectral characteristics of vegetation and
summarizes the development of VIs and the advantages and disadvantages from different indices developed. This paper reviews
more than 100VIs, discussing their specific applicability and representativeness according to the vegetation of interest, environment,
and implementation precision. Predictably, research, and development ofVIs, which are based onhyperspectral andUAVplatforms,
would have a wide applicability in different areas.

1. Introduction

Remote sensed information of growth, vigor, and their
dynamics from terrestrial vegetation can provide extremely
useful insights for applications in environmental monitoring,
biodiversity conservation, agriculture, forestry, urban green
infrastructures, and other related fields. Specifically, these
types of information applied to agriculture provide not only
an objective basis (depending on resolution) for the macro-
and micromanagement of agricultural production but also in
many occasions the necessary information for yield estima-
tion of crops [1]. These latter applications have been devel-
oped to be a well-known discipline category, precision agri-
culture, which could be tracked back to three decades ago [1].
However, the applicability of remote sensing and its different
VIs extracted from these techniques usually relies heavily on
the instruments and platforms to determine which solution
is best to get a particular issue.

1.1. Remote Sensing Platform Considerations. In terms of
platforms, the advantages of satellite based remote sensing
include high spatial resolution, which makes possible the
extraction of long time data series of consistent and compa-
rable data, which can be cost effective [2]. Furthermore, some
satellite platforms have free access to visible andmultispectral
data, such as Landsat 7-8. However, there are two main prob-
lems with these platforms for precision agriculture applica-
tions, which are related to the per pixel resolution (30m2 per
pixel for Landsat and 500m2 forMODIS) and the orbit period
(16 d for Landsat and 26 d for SPOT). More recently, pixel
resolution has been increased by newer satellites, such as
WorldView-2 and -3 (DigitalGlobe, Longmont, CO, USA).
WorldView-2 was the first commercial high resolution satel-
lite to provide eight spectral sensors in the visible to near
infrared range. Along with the four typical multispectral
bands: blue (450–510 nm), green (510–580 nm), red (630–
690 nm), and near infrared (NIR) (770–895 nm), each sensor
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is narrowly focused on a particular range of the electromag-
netic spectrum that is sensitive to a particular feature from
the ground or a property of the atmosphere. However, images
from this platform can be cost prohibitive for long time data
series studies.

The second problem with satellite based remote sensing
is the revisitation time, which is 16 days in average, which
makes the agricultural applications difficult, specifically those
related to water and nutrient management. Moreover, passive
sensors cannot penetrate clouds; therefore, there is no usable
data capture for overcast days.

To solve these two main problems, airborne and more
recently UAV platforms can be used. The former can also be
cost prohibitive due to the requirement of expensive aircrafts
and pilots. The latter has become almost of ubiquitous use in
the last five years with affordable aircrafts and camera pay-
loads ranging from visible, near and thermal infrared, and 3D
LIDAR, which has been referred to as Unmanned Aerial
System (UAS). Among UAS platforms, there are mainly fixed
wing andmultirotor options available.There is a compromise
using these UAS platforms in relation to payload weight
versus flying time. In general, longer flying time achieved
by fixed wing systems demands lighter weight payloads. For
example, small high definition visible cameras weighting less
than 300 grams as payload of a fixed wing UAS allow it to
fly for around two hours using currently available battery-
power [3]. On the contrary, battery-powered multirotor UAS
with higher payload capacity have reduced fly time that at the
moment is around 15- to 25-minute duration. Using these
UAS, higher spatial and temporal data resolution can be
achieved, which makes possible precision agriculture appli-
cations to the submeter resolution per pixel. This allows
research and practical applications applied to growth and
vigor dynamic assessment, plant water status sensing for
irrigation scheduling applications, and evapotranspiration
modelling, among others [4–9].

1.2. Remote Sensing and Vegetation Indices. Remote sensing
of vegetation is mainly performed by obtaining the electro-
magnetic wave reflectance information from canopies using
passive sensors. It is well known that the reflectance of light
spectra from plants changes with plant type, water content
within tissues, and other intrinsic factors [10].The reflectance
from vegetation to the electromagnetic spectrum (spectral
reflectance or emission characteristics of vegetation) is deter-
mined by chemical and morphological characteristics of the
surface of organs or leaves [3]. The main applications for
remote sensing of vegetation are based on the following light
spectra: (i) the ultraviolet region (UV), which goes from
10 to 380 nm; (ii) the visible spectra, which are composed
of the blue (450–495 nm), green (495−570 nm), and red
(620–750 nm) wavelength regions; and (iii) the near and mid
infrared band (850–1700 nm) [11, 12]. The emissivity rate of
the surface of leaves (equivalent to the absorptivity in the
thermal waveband) of a fully grown green plant without any
biotic or abiotic stress is generally in the range of 0.96–0.99
and ismore often between 0.97 and 0.98 [13]. On the contrary,
for dry plants, the emissivity rate generally has a larger range
going from 0.88 to 0.94 [13]. Vegetation emissivity in the near

andmid infrared regions has beenwidely studiedwithin plant
canopies. Indices extracted from this light spectra range can
be attributed to a range of characteristics beyond growth and
vigor quantification of plants related to water content, pig-
ments, sugar and carbohydrate content, protein content, and
aromatics, among others [2, 14]. Different applications are
dependent on the reflectivity peaks or overtones for specific
compounds within the visible and near/mid infrared regions
of light spectra [14, 15]. Plant reflectivity in the thermal infra-
red spectral range (8–14 𝜇m) follows the blackbody radiation
law [16], which allows interpreting plant emission as directly
related to plant temperature. Hence, indices obtained from
this spectra range can be used as a proxy to assess stomata
dynamics that regulates transpiration rate of plants. There-
fore, the later indices can be used as indicator of plant water
status [17–19] and abiotic/biotic stress levels [20, 21].

The latter considerations demonstrate that the quantita-
tive interpretation of remote sensing information from vege-
tation is a complex task. Many studies have limited this inter-
pretation by extracting vegetation information using individ-
ual light spectra bands or a group of single bands for data
analysis. Thus, researchers often combine the data from near
infrared (0.7–1.1m) and red (0.6–0.7m) bands in different
ways according to their specific objectives [2]. These types
of combinations present many disadvantages (e.g., lack of
sensitivity) by using single or limited group of bands to detect,
for example, vegetation biomass. These limitations are par-
ticularly evident when trying to apply these types of VI on
heterogeneous canopies, such as horticultural tree planta-
tions. Amixed combination of soils, weeds, cover crops in the
interrow, and the plants of interest makes the discrimination
regions of interest and extraction of simple VI very difficult,
specifically, when the vegetation of interest has different
VIs due to spatial variability, or VIs corresponding to other
vegetation (weeds and cover crop), which can be similar to
those of interest. The later will complicate imaging denoising
and filtering processes. Several image analysis techniques and
algorithms have been developed to go around these issues,
which will be described later. Even though there are many
considerations as described before, the construction of simple
VI algorithm could many times render simple and effective
tools to measure vegetation status on the surface of the Earth
[6].

2. Vegetation Indices and Validation Process

With the use of high resolution spectral instrumentation, the
number of bands obtained by remote sensing is increasing,
and the bandwidth is getting narrower [7]. One of the most
used and implemented indices calculated from multispectral
information as normalized ratio between the red and near
infrared bands is theNormalizedDifferenceVegetation Index
(NDVI) [22]. A direct use of NDVI is to characterize canopy
growth or vigor; hence, many studies have compared it with
the Leaf Area Index (LAI) [23], where LAI is defined as the
area of single sided leaves per area of soil [24].

Vegetation information from remote sensed images is
mainly interpreted by differences and changes of the green
leaves from plants and canopy spectral characteristics. The
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most common validation process is through direct or indirect
correlations between VIs obtained and the vegetation charac-
teristics of interest measured in situ, such as vegetation cover,
LAI, biomass, growth, and vigor assessment. More estab-
lished methods are used to assess VIs using direct and geo-
referencedmethods bymonitoring sentinel plants to be com-
pared with VIs obtained from the same plants for calibration
purposes.

The later process is known as allometric measurements
and requires destructivemethods to scan specific area of total
leaves per plant or tree in the case of LAI [25]. Indirect vali-
dationmethods are based on proximal instrumentation using
the same or similar spectral instrumentation to assess georef-
erenced sentinel plants at the same angle as the aerial plat-
forms. The latter method is useful to compare VIs obtained
from satellite that are sensitive to atmospheric effects and
serve as amean to obtain correction factors.More recent indi-
rect methods based on cover photography to estimate canopy
cover, LAI, porosity, and clumping index have used auto-
mated analysis methods.

For this purpose, upward looking cover photogrammetry
at zero zenith angle is taken with visible cameras to obtain
canopy architecture parameters calculated using computer
vision algorithms. An automated image acquisition and cal-
culation method was proposed by Fuentes et al. 2008 applied
to Eucalyptus trees [26] and it has been successfully applied
for other crops such as grapevines compared to allometric
measurements and to validate NDVI calculated from satellite
information (WorldView-2) [27], apple trees with increased
accuracy by using a variable light extinction coefficient (𝑘)
[28], and cherry trees improving the method by extracting
nonleaf material such as branches for tall trees [29, 30]. In
late 2015, a computer application (App) for smartphones and
tablet PCs called VitiCanopy was released for free use to
assess canopy architecture parameters using the cover pho-
tography automated algorithms, which can be applied to any
other tree crop by changing to a specific 𝑘 value [31, 32]. Other
Apps using RGB photogrammetry to assess LAI have been
later developed such as PoketLAI [33–35].

2.1. Basic Vegetation Indices. Jordan [36] proposed in 1969
one of the first VIs named Ratio Vegetation Index (RVI),
which is based on the principle that leaves absorb relatively
more red than infrared light; RVI can be expressed mathe-
matically as

RVI = 𝑅
NIR

, (1)

where NIR is the near infrared band reflectance and 𝑅 is
red band reflectance. According to the spectral characteristics
of vegetation, bushy plants have low reflectance on the red
band and have shown a high correlation with LAI, Leaf Dry
Biomass Matter (LDBM), and chlorophyll content of leaves
[37]. The RVI is widely used for green biomass estimations
and monitoring, specifically, at high density vegetation cov-
erage, since this index is very sensitive to vegetation and has a
good correlation with plant biomass. However, when the veg-
etation cover is sparse (less than 50% cover), RVI is sensitive

to atmospheric effects, and their representation of biomass is
weak.

The Difference Vegetation Index (DVI) was proposed
later [38] and can be expressed as

DVI = NIR − 𝑅. (2)

The DVI is very sensitive to changes in soil background; it
can be applied to monitoring the vegetation ecological envi-
ronment. Thus, DVI is also called Environmental Vegetation
Index (EVI).

The Perpendicular Vegetation Index (PVI) [38] is a
simulation of theGreenVegetation Index (GVI) in𝑅, NIR 2D
data. In the NIR−𝑅 coordinate system, the spectral response
from soil is presented as a slash (soil brighten line).The latter
effect can be explained as the soil presents a high spectral
response in the NIR and 𝑅 bands. The distance between the
point of reflectivity (𝑅, NIR) and the soil line has been defined
as the Perpendicular VI, which can be expressed as follows:

PVI = √(𝜌soil − 𝜌veg)2𝑅 − (𝜌soil − 𝜌veg)2NIR, (3)

where 𝜌soil is the soil reflectance; 𝜌veg is the vegetation
reflectivity; PVI characterizes the vegetation biomass in 𝜌red
the soil background; the greater the distance, the greater the
biomass.

PVI can also be quantitatively expressed as

PVI = (DNNIR − 𝑏) cos 𝜃 − DN𝑅 ∗ sin 𝜃, (4)

where DNNIR and DN𝑅 are the radiation reflected luminance
values from the NIR and 𝑅, respectively; 𝑏 is the intercept
of the soil baseline and the vertical axis of NIR reflectivity;
and 𝜃 is the angle between the horizontal axis of 𝑅 reflectivity
and soil baseline. PVI filters out in this way the effects of
soil background in an efficient manner; PVI also has less
sensitivity to atmospheric effects and it is mainly used for
the inversion of surface vegetation parameter (grass yield,
chlorophyll content), the calculation of LAI, and vegetation
identification and classification [39, 40]. However, PVI is
sensitive to soil brightness and reflectivity, especially in the
case of low vegetation coverage and needs to be adjusted for
this effect [41].

As mentioned before, the Normalized Difference Vege-
tation Index (NDVI) is the most widely used as VI; it was
proposed by Rouse Jr. et al. [42], which can be expressed as

NDVI = (𝜌NIR − 𝜌𝑅)𝜌NIR
+ 𝜌𝑅. (5)

Since the index is calculated through a normalization proce-
dure, the range of NDVI values is between 0 and 1, having a
sensitive response to green vegetation even for low vegetation
covered areas. This index is often used in research related to
regional and global vegetation assessments and was shown to
be related not only to canopy structure and LAI but also to
canopy photosynthesis [43, 44]. However, NDVI is sensitive
to the effects of soil brightness, soil color, atmosphere, cloud
and cloud shadow, and leaf canopy shadow and requires
remote sensing calibration.
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2.2. Vegetation Indices considering Atmospheric Effects. Given
the limitations of NDVI under atmospheric effects, Kaufman
and Tanré [40] proposed the Atmospherically Resistant Veg-
etation Index (ARVI). This index is based on the knowledge
that the atmosphere affects significantly 𝑅 compared to the
NIR. Thus, Kaufman and Tanré modified the radiation value
of 𝑅 by the difference between the blue (𝐵) and 𝑅. Therefore,
ARVI can effectively reduce the dependence of this VI to
atmospheric effects, which can be expressed as

ARVI = (NIR − 𝑅𝐵)(NIR + 𝑅𝐵) ,
𝜌∗𝑟𝑏 = 𝜌∗𝜏 − 𝛾 (𝜌∗𝑏 − 𝜌∗𝜏 ) ,

(6)

where 𝑅𝐵 is the difference between 𝐵 and 𝑅, is the reflectivity
related to the molecular scattering and gaseous absorption
for ozone corrections, and represents the air conditioning
parameters.

The ARVI is commonly used to eliminate the effects of
atmospheric aerosols. The aerosols and ozone effects in the
atmosphere still need to be eliminated by the 5S atmospheric
transport model [45]. However, to implement the 5S atmo-
spheric transmission model, actual atmospheric parameters
must be considered, which are difficult to obtain. If the ARVI
index is not calculated using the 5S model, this index is not
expected to perform much better than NDVI considering
atmospheric effects or large dust particles in the atmosphere.
Thus, Zhang et al. [46] proposed a new atmospheric effect
resistant vegetation index, namely, IAVI, that can eliminate
atmospheric interference without the use of the 5S model.

IAVI = {𝜌nir − [𝜌𝑟 − 𝛾 (𝜌𝑏 − 𝜌𝑟)]}{𝜌nir + [𝜌𝑟 − 𝛾 (𝜌𝑏 − 𝜌𝑟)]} , (7)

where the range of 𝛾 values is between 0.65 and 1.12; a
significant value of 𝛾 is close to 1 for ARVI. After testing, the
error caused in IAVI by the atmosphere effect is between 0.4%
and 3.7%, which is less than those found when using NDVI
in the same conditions (14–31%).

2.3. Adjusted-Soil Vegetation Index. The distinction of veg-
etation from the soil background was originally proposed
by Richardson and Wiegand [47] by analyzing the soil line,
which can be considered as a linear relationship on the 2D
plane of the soil spectral reflectance values between the NIR
and 𝑅. Therefore, it can be considered as a comprehensive
description of a large number of soil spectral information
from a number of environments [48]. Many VIs that take
into account the effect of soil background have been based
on this principle. In addition to PVI ((3)-(4)), the Soil Line
Atmospheric Resistance Index (SLRA) was developed based
on the improvement of the soil line principle. The SLRA was
then combined with the Transformed Soil-Adjusted Vegeta-
tion Index (TSAVI) to develop the Type Soil Atmospheric
Impedance Vegetation Index (TSARVI) [49], which will be
discussed later.

As shown before, NDVI (5) is very sensitive to back-
ground factors, such as the brightness and shade of the veg-
etation canopies and soil background brightness. Researches

have shown thatwhen the backgroundbrightness is increased,
NDVI also increases systematically. Given the effect of soil
background,𝑅 radiation increases significantly when the veg-
etation cover is sparse; conversely NIR radiation is reduced
to make the relationship between vegetation and soil more
sensible. Many VIs have been developed to adjust to the soil
effect.

SinceNDVI and PVI have some deficiencies in describing
the spectral behavior of vegetation and soil background,
Huete [50] established the Soil-Adjusted Vegetation Index
(SAVI), which can be expressed as follows:

SAVI = (𝜌𝑛 − 𝜌𝑟) (1 + 𝐿)(𝜌𝑛 + 𝜌𝑟 + 𝐿) . (8)

The above model of a soil vegetation system was estab-
lished to improve the sensitivity ofNDVI to soil backgrounds,
where 𝐿 is the soil conditioning index, which improves the
sensitivity of NDVI to soil background.The range of 𝐿 is from
0 to 1. In practical applications, the values of 𝐿 are determined
according to the specific environmental conditions.When the
degree of vegetation coverage is high, 𝐿 is close to 1, showing
that the soil background has no effect on the extraction of
vegetation information.This kind of ideal conditions is rarely
found in natural environments and can be applicable only in
the case of a large canopy density and coverage [40].The value
of 𝐿 is around 0.5 undermost common environmental condi-
tions.When𝐿 is close to 0, the value of SAVI is equal toNDVI.
However, 𝐿 factor should vary inversely with the amount of
vegetation present to obtain the optimal adjustment for the
soil effect. Thus, a modified SAVI (MSAVI) replaces 𝐿 factor
in the SAVI equation (8) with a variable 𝐿 function. In this
way, MSAVI [51] reduces the influence of bare soil on SAVI,
which can be expressed as follows:

MSAVI = 0.5 ∗ {2𝑅800 + 1
− SQRT [(2𝑅800 + 1)2 − 8 (𝑅800 − 𝑅670)]} .

(9)

The SAVI is much less sensitive than the RVI (1) to
changes in the background caused by soil color or surface
soil moisture content. Three new versions of SAVI (SAVI2,
SAVI3, and SAVI4) were developed based on the theoretical
considerations of the effects of wet and dry soils [41]. SAVI2,
SAVI3, and SAVI4 reduce the effect of background soil
brightness, by taking into account the effect of the variation
of the solar incidence angle and changes in the soil physical
structure.

Based on the implementation of the MSAVI, Richardson
and Wiegand (1977) proposed a Modified Secondary Soil-
Adjusted Vegetation Index (MSAVI2) [47], which can be
expressed as

MSAVI2
= 0.5
∗ [(2NIR + 1) − √(2NIR + 1)2 − 8 (NIR − 𝑅)] .

(10)
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MSAVI2 does not rely on the soil line principle and has a
simpler algorithm; it is mainly used in the analysis of plant
growth, desertification research, grassland yield estimation,
LAI assessment, analysis of soil organic matter, drought
monitoring, and the analysis of soil erosion [39].

Baret et al. studied the sensitivity of fiveVIs (NDVI, SAVI,
Transformed Soil-Adjusted Vegetation Index (TSAVI), Mod-
ified Soil-Adjusted Vegetation Index (MSAVI), and Global
Environment Monitoring Index (GEMI)) to the soil back-
ground.They simulated the performance of the VIs for differ-
ent soil textures, moisture levels, and roughness by using the
Scattering from Arbitrarily Inclined Leaves (SAIL) model.
They determined an optimum value of SAIL = 0.16 to reduce
the effects of soil background and then proposed an Opti-
mized Soil-Adjusted Vegetation Index (OSAVI) [48] that can
be expressed as follows:

OSAVI = (NIR − 𝑅)(NIR + 𝑅 + 𝑋) , (11)

where SAIL is 0.16 and OSAVI does not depend on the soil
line and can eliminate the influence of the soil background
effectively. However, the applications of OSAVI are not
extensive; it ismainly used for the calculation of aboveground
biomass, leaf nitrogen content, and chlorophyll content,
among others [52].

2.4. Tasseled Cap Transformation of Greenness Vegetation
Index (GVI, YVI, and SBI). Kauth and Thomas studied the
spectral pattern of the vegetation growth process and called it
the “spike cap” pattern, including the soil background reflec-
tivity and brightness line.TheTasseled Cap Transformation is
a conversion of the original bands of an image into a new set
of bands with defined interpretations that are useful for vege-
tationmapping. ATasseled CapTransformation is performed
by taking “linear combinations” of the original image bands,
which is similar in concept to the multivariate data analysis
technique called principal components analysis (PCA) [53].

The Tasseled Cap can convert Landsat MSS, Landsat TM,
and Landsat 7 ETMdata. For LandsatMSS data, furthermore,
the Tasseled Cap performs orthogonal transformation on the
original data, which converts it into a 4D space. This con-
version includes the Soil Brightness Index (SBI) (14), degree
of Green Vegetation Index (GVI) (12), and the degree of
Yellow Vegetation Index (YVI) (13). It also includes Nonsuch
Index (NSI) mainly for noise reduction. The NSI is closely
related to atmospheric effects. For the Landsat 5 TM data,
the Tasseled Cap results consist of three factors: brightness,
greenness, and a third component related to soil. Among
them, the brightness and the greenness are equivalent to SBI
and GVI in the MSS Tasseled Cap. The third component is
related to soil characteristics and humidity. For Landsat 7
ETM data, the Tasseled Cap Transformation generates six
bands, namely, brightness, greenness, humidity, the fourth
component (noise), a fifth component, and a sixth compo-
nent.

GVI = −0.290MSS4 − 0.562MSS5 + 0.600MSS6

+ 0.491MSS7, (12)

YVI = −0.829MSS4 − 0.522MSS5 + 0.039MSS6

+ 0.149MSS7, (13)

SBI = +0.433MSS4 − 0.632MSS5 + 0.586MSS6

+ 0.264MSS7. (14)

The GVI, YVI, and SBI ignore the interaction and effects of
the atmosphere, soil, and vegetation. SBI andGVI can be used
to evaluate the behavior of vegetation and bare soil [54]. The
GVI has a strong correlation with different vegetation covers.
Thus, GVI increases the processing of atmospheric effects.
Jackson et al. (1980) proposed the Adjust Soil Brightness
Index (ASBI) and Adjust Green Degree Vegetation Index
(AGVI) [55], which can be expressed as follows:

ASBI = 2.0YVI,
AGVI = GVI − (1 + 0.018GVI)YVI − NSI2 . (15)

Misra and Wheeler (1977) performed PCA of Landsat
images and computed the multiple factors of these indexes.
This analysis was the basis of the development of the Misra
Soil Brightness Index (MSBI), Misra Green Degree Vege-
tation Index (MGVI), and Misra Yellow Degree Vegetation
Index (MYVI) [56], which can be expressed as follows:

MSBI = 0.406MSS4 + 0.60MSS5 + 0.645MSS6

+ 0.243MSS7,
MGVI = −0.386MSS4 − 0.53MSS5 + 0.535MSS6

+ 0.532MSS7,
MYVI = 0.723MSS4 − 0.597MSS5 + 0.206MSS6

− 0.278MSS7.

(16)

Since NDVI has been found to be affected only by soil
brightness, it presents a negative correlation between NDVI
and soil brightness. A positive correlation is found when only
atmospheric effects affect NDVI. Under natural conditions,
the soil and atmosphere influence NDVI in a complex
manner, which interacts with the vegetation cover influence.
Therefore, atmosphere and vegetation have a collective effect
on NDVI based on the soil characteristics and exposure. Liu
and Huete comprehensively analyzed multiple soil types and
atmospheric enhanced VIs. They developed the Atmosphere
Antivegetation Index (ARVI) and Soil-Adjusted Vegetation
Index (SAVI) for a comprehensive analysis of vegetation in
these conditions.They found that, as a result of the interaction
between the soil and the atmosphere, reducing one of them
may increase the other. They introduced a feedback mecha-
nism by building a parameter to simultaneously correct soil
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and atmospheric effects.This parameter is the EnhancedVeg-
etation Index (EVI) [57] that can be expressed as follows:

EVI = (TM4 − TM3) (1 + 𝐿)
TM4 − 𝐶1TM3 + 𝐶2TM + 𝐿,

EVI = 2.5 ∗ 𝜌∗𝑛 − 𝜌∗𝑟𝜌∗𝑛 + 𝐶1𝜌∗𝑟 − 𝐶2𝜌∗𝑏 + 𝐿,
(17)

which includes the values of NIR, R, and B, which are
corrected by the atmosphere; L represents soil adjustment
parameters, and its value is equal to 1; and parameters corre-
spond to constant values equivalent to 6 and 7.5, respectively.

2.5. Vegetation Indices Based on UAS Remote Sensing in the
Visible Spectra Region. UAS remote sensing is a low altitude
remote sensing technology (50–100m), which is less affected
by atmospheric factors during the data acquisition process.
It has the advantages of affordability, simple operation, fast
imaging speed, and high spatial and temporal resolutions,
which is unparalleled compared with traditional [58] remote
sensing technologies based on satellites. At present, the UAS
remote sensing technology plays a crucial role in the field of
aerial remote sensingwith increased interest in applying these
platforms on different studies of vegetation assessment [59].
Thepractical applications ofUAS aremainly related to images
acquisition in the visible bands (RGB) due to easy access of
ubiquitous high resolution cameras at low price and weight.
However, due to rapid advances in technology, multispectral
and infrared thermal cameras are becoming increasingly
cheaper and miniaturized.

As previously shown through different VIs, most of them
are based on the mixture of visible light bands and NIR to
generate algorithms and those based only on the visible light
spectra are not common. However, weightless high definition
cameras are appearing in the market that includes the NIR
band, which will enhance the practical applicability of UAS
in the near future. These types of reflectance are commonly
measured using visible, multispectral, and hyperspectral
cameras [5]. According to Gago et al. (2015), NDVI is one
of the most employed indices for UAS applications and is
defined specifically as

NDVI = (𝑅800 − 𝑅680)(𝑅800 + 𝑅680) , (18)

where 𝑅800 is the reflectance at 800 nm and 𝑅680 at 680 nm.
Due to the high NIR reflectance of chlorophyll, this index is
used to detect plants greenness [60]. Some studies described
the use of UAS with multispectral cameras and high resolu-
tionmultispectral satellites to estimate LAI (Leaf Area Index)
through NDVI [27, 61].

The optimized index transformed chlorophyll absorp-
tion in reflectance Transformed Chlorophyll Absorption in
Reflectance Index/Optimized Soil-AdjustedVegetation Index
(TCARI/OSAVI) was proposed as more sensitive VI to chlo-
rophyll content. In this way, avoiding other factors that could
affect the reflectance values such as canopy reflectance and
soil reflectance among others [5]. Another index evaluated

by Zarco-Tejada et al. (2013) was the PRInorm, which is an
improvement of the Photochemical Reflectance Index (PRI).
This index considers xanthophyll changes related to water
stress but also generates a normalization considering chloro-
phyll content and canopy leaf area reduction which is mainly
affected by water stress [62]. However, by obtaining a quick
and effective method to extract vegetation information based
on UAS visible images, it will enhance and popularize the
scope of application of UAS immediately [63]. In this sense,
Wang et al. (2015) comprehensively considered the spectral
characteristics of healthy green vegetation and the spectral
characteristics of typical features of UAS imagery [63]. They
use green (𝐺) band instead of the NIR band to calculate
NDVI, (𝜌red + 𝜌blue) compared to 𝑅 for NDVI, and the 𝐺
band multiplied by 2 for (𝜌red + 𝜌blue). Thus, a Visible-Band
Difference Vegetation Index (VDVI) is created based on the
three bands of visible light, which can be expressed as follows:

VDVI = (2 ∗ 𝜌green − 𝜌red − 𝜌blue)
(2 ∗ 𝜌green + 𝜌red + 𝜌blue) . (19)

The values of VDVI are within [−1, 1] and the accuracy of
the vegetation extraction based on VDVI is higher than other
visible light band-based VIs and 𝐺 band. Furthermore, the
accuracy of VDVI has been reported to be over 90% [63].

2.6. Vegetation Indices Related to Vegetation Status. The
NDVI, as shown previously, enhances the contrast of the
reflectivity of the NIR and 𝑅 channels (5). Therefore, it is
a nonlinear extension of NIR and 𝑅 ratios, resulting in the
enhancement of the lower part of these values (higher values
are suppressed). Hence, NDVI reaches saturation in this way
more easily.Thus, Gitelson [64] proposed theWide Dynamic
Range Vegetation Index (WDRVI), which can be expressed
as follows:

WDRVI = (𝛼𝜌nir − 𝜌red)(𝛼𝜌nir + 𝜌red) . (20)

WDRVI enhances the dynamic range of NDVI by applying
a weighting parameter to the NIR reflectance. If 𝛼 equals 1,
WDRVI is equivalent to NDVI. If 𝛼 is equal to the ratio(𝜌red/𝜌NIR), WDRVI is zero. After validation procedures, a
coefficient value of 0.20 for appears to be generally effective
for the WDRVI calculations. According to Gitelson (2004)
[64], WDRVI offers a simple way to enhance the dynamic
range for high biomass environments (LAI > 2). However,
when biomass is low (LAI < 1), NDVI is still the best choice
for the plant classification.

According to the spectral reflectance of plant leaves
(between 550 nm and 700 nm) it can be considered constant
even if the chlorophyll content of leaves is variable. Based
on this relationship, Kim et al. (1994) measured the level of
absorption at 670 nmand linked the reflection peak at 700 nm
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and 550 nm; the Chlorophyll Absorption Ratio Index (CARI)
was then developed [65] and can be expressed as

CAR ∗ (𝑅700𝑅670) ,
CAR = 󵄨󵄨󵄨󵄨(𝑎 ∗ 670 + 𝑅670 + 𝑏)󵄨󵄨󵄨󵄨(𝑎2 + 1)0.5 ,

𝑎 = (𝑅700 − 𝑅500)150 ,
𝑏 = 𝑅550 − (𝑎 ∗ 550) .

(21)

Later, Daughtry et al. improved the CARI by proposing a
modified CARI (MCARI) [66], which can be expressed as

MCARI

= 1.5 ∗ [2.5 (𝑅800 − 𝑅670) − 1.3 (𝑅800 − 𝑅550)]
√(2𝑅800 + 1)2 − (6𝑅800 − 5𝑅670) − 0.5

. (22)

The MCARI is more sensitive to leaf chlorophyll concentra-
tions. Daughtry et al. (2000) found that LAI, chlorophyll, and
the chlorophyll-LAI interaction accounted for 60, 27, and 13%
of the MCARI variation. Even though the MCARI formula
is not related to the NIR bands, good predictions were still
found.

In agriculture, crop growth is directly linked to water
supply and plant water status. When the soil water supply
is insufficient, plants will be under water stress, which leads
to reduced crop yield and even crop failures under extreme
drought conditions. So it is very important to evaluate the
crop water status in a timely and accurate manner, which
has direct implications on crop growth, yield, and quality of
produce [67]. In recent years, the development of infrared
thermal remote sensing technology made it possible to mea-
sure canopy temperature changes and dynamics from crop
populations. These changes are related to the transpiration
rate of plants and stomatal conductance. Hence, crop leaf and
canopy temperature have been used for the determination of
crop water status [68]. In order to make the canopy temper-
ature measurements consistent, Idso et al. (1981) established
the Crop Water Stress Index (CWSI) to monitor crop water
status [69].

CWSI = (𝑇canopy − 𝑇nws)
(𝑇dry − 𝑇nws) , (23)

where 𝑇canopy is the temperature of fully sunlit canopy leaves
(∘C), 𝑇nws is the temperature of fully sunlit canopy leaves (∘C)
when the crop is non-water-stressed (well-watered); 𝑇dry is
the temperature of fully sunlit canopy leaves (∘C) when the
crop is severely water stressed due to low soil water availabil-
ity. 𝑇nws and 𝑇dry are the lower and upper baselines used to
normalize CWSI for the effects of environmental conditions
(air temperature, relative humidity, solar radiation, and wind

speed) on 𝑇canopy. The CWSI has two models, an empirical
model and a theoretical model; however, the theoretical
model involves too many parameters, and these parameters
are not easy to obtain. Therefore, the theoretical model is
only used for research purposes [70–72].The empiricalmodel
can be obtained only by using crop canopy temperature, air
temperature, and air saturation difference, so the empirical
model has been further studied and used in many crop
applications [73].

Besides the use of infrared thermal radiation to detect
plant water stress detection, the visible part of the spectrum
has also been useful for early water stress detection. This
involves using indices focused on bands at specific wave-
lengths where photosynthetic pigments are affected by water
stress conditions such as chlorophyll. The Photochemical
Reflectance Index (PRI) has been used as a stress index of
stress based on this principle, with initial developments to
be applied to disease symptoms detection, which can be
expressed as

PRI = (𝑅531 − 𝑅570)(𝑅531 − 𝑅570) . (24)

It has been shown that the Light Use Efficiency (LUE) is a
key variable to estimate Net Primary Productivity (NPP) [74,
75].When obtaining reliable accuracy in LUEmeasurements,
it is possible to study the distribution of energy and global
climate change. The PRI is a normalized difference VI of
reflectivity at 531 nm and 570 nm and the reflectance of these
two bands is affected by the xanthophyll cycle and is closely
related to LUE of leaves. Therefore, PRI provides a good
estimation of leaf LUE.

2.7. Summary of Vegetation Indices. A summary of the main
VIs discussed in this paper can be found in Table 1 with their
respective citations.

3. Conclusions

Simple VIs combining visible and NIR bands have signif-
icantly improved the sensitivity of the detection of green
vegetation. Different environments have their own variable
and complex characteristics, which needs to be accounted
when using different VIs. Therefore, each VI has its specific
expression of green vegetation, its own suitability for specific
uses, and some limiting factors. Therefore, for practical
applications, the choice of a specific VI needs to bemade with
caution by comprehensively considering and analyzing the
advantages and limitations of existing VIs and then combine
them to be applied in a specific environment. In this way, the
usage of VIs can be tailored to specific applications, instru-
mentation used, and platforms. With the development of
hyperspectral and multispectral remote sensing technology,
newVIs can be developed, which will broaden research areas.
It is envisioned that these new developments will be readily
applied and adopted by UAS platforms and will become one
of the most important research areas in aerospace remote
sensing in the near future.
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Table 1: Summary of vegetation index expression.

Index Definition Reference

AGVI GVI − (1 + 0.018GVI) ∗ YVI − NSI2 [76]

ARI ( 1𝑅550 ) − (
1𝑅700 ) [76]

ARI2 𝑅800 [( 1𝑅550 ) − (
1𝑅700 )] [76]

ARVI (NIR − 𝑅𝐵)(NIR + 𝑅𝐵) [40]

ASBI 0.2YVI [77]

ATSAVI
[𝑎 (NIR − 𝑎Red − 𝑏)][𝑎NIR + Red − 𝑎𝑏 + 𝑋 (1 + 𝑎2)] [78]

AVI 2.0MSS7 −MSS5 [79]

AVI tan−1 {[(𝜆3 − 𝜆2)𝜆2 ] (NIR − 𝑅)−1} + tan−1 {[(𝜆2 − 𝜆1)𝜆2 ] (𝐺 − 𝑅)−1} [80]

BGI1
𝑅400𝑅550 [81]

BGI2
𝑅450𝑅550 [81]

BRI1
𝑅400𝑅690 [60]

BRI2
𝑅450𝑅690 [60]

CAI 0.5 (𝑅2000 + 𝑅2200) − 𝑅2100 [82]

CARI CAR ∗ (𝑅700𝑅670 ) [65]

CCCI
(NDRE −NDREmin)(NDREmax −NDREmin) [83]

CRCWD 1 − 𝜌𝑟min [84]

CRI500
(1/𝑅515)(1/𝑅550) [85]

CRI700
(1/𝑅515)(1/𝑅700) [85]

CWSI
((𝑇𝑐 − 𝑇𝑎) − (𝑇𝑐 − 𝑇𝑎)𝑙𝑙)((𝑇𝑐 − 𝑇𝑎)𝑢𝑙 − (𝑇𝑐 − 𝑇𝑎)𝑙𝑙) [69]

DI1 𝑅800 − 𝑅550 [86]

DVI ∫𝜆1
𝜆1

(𝑑𝜌𝑑𝜆)𝑑𝜆 [87]

DVI 2.4MSS7 −MSS5 [38]

EVI
[(TM4 − TM3) (1 + 𝐿)](TM4 − 𝐶1TM3 + 𝐶2TM + 𝐿) [88]

EXG 2 ∗ 𝜌green − 𝜌red − 𝜌blue [89, 90]

GARI
{NIR − [Green − 𝛾 (Blue − Red)]}
{NIR + [Green − 𝛾 (Blue − Red)]} [24]

GDVI NIR − Green [23]
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Table 1: Continued.

Index Definition Reference

GEMI
𝜂(1 − 0.25𝜂) − (𝑅 − 0.125)(1 − 𝑅)

𝜂 = [2(NIR2 − 𝑅2) + 1.5NIR + 0.5𝑅](NIR + 𝑅 + 0.5)
[90]

GLI
(2𝑅𝑔 − 𝑅𝑟 − 𝑅𝑏)
(2𝑅𝑔 + 𝑅𝑟 + 𝑅𝑏) [91]

GM1
𝑅750𝑅550 [92]

GM2
𝑅750𝑅700 [92]

GNDVI
(𝜌NIR − 𝜌𝐺)(𝜌NIR + 𝜌𝐺) [91]

GRABS GVI − 0.09178SBI + 5.58959 [93]

GRVI NIR
Green

[23]

Greenness index (𝐺) 𝑅554𝑅677 [94]

GVI (−0.283MSS4 − 0.66MSS5 + 0.577MSS6 + 0.388MSS7) [53]

GVSB GVI
SBI

[95]

LIC3
𝑅400𝑅740 [96]

HJVI
[2 (𝜌nir − 𝜌red)](𝜌nir + 6𝜌red − 7.5𝜌blue + 1) [97]

HI
(𝑅534 − 𝑅698)(𝑅534 + 𝑅698) − 0.5𝑅704 [98]

IAVI
{𝜌nir − [𝜌𝑟 − 𝛾 (𝜌𝑏 − 𝜌𝑟)]}{𝜌nir + [𝜌𝑟 − 𝛾 (𝜌𝑏 − 𝜌𝑟)]} [46]

II
TM5
TM7

[99]

IPVI
TM4(TM4 + TM3) [100]

MCARI [(𝑅700 − 𝑅670) − 0.2 (𝑅700 − 𝑅550)] (𝑅700𝑅670 ) [66]

MCARI
1.5 ∗ [2.5 (𝑅800 − 𝑅670) − 1.3 (𝑅800 − 𝑅550)]
√(2𝑅800 + 1)2 − (6𝑅800 − 5𝑅670) − 0.5 [101]

MGVI (−0.386MSS4 − 0.53MSS5 + 0.535MSS6 + 0.532MSS7) [102]

MNLI
[(NIR2 − Red) (1 + 𝐿)]
(NIR2 + Red + 𝐿) [103]

MNSI (0.404MSS4 − 0.039MSS5 − 0.505MSS6 + 0.762MSS7) [102]

MRENDVI
(𝜌750 − 𝜌705)(𝜌750 + 𝜌705 − 2 ∗ 𝜌445) [104, 105]
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Table 1: Continued.

Index Definition Reference

MRESR
(𝜌750 − 𝜌445)(𝜌705 − 𝜌445) [104, 105]

MSAVI2 0.5 ∗ [(2NIR + 1) − √(2NIR + 1)2 − 8 (NIR − 𝑅)] [106]

MSBI (0.406MSS4 + 0.60MSS5 + 0.645MSS6 + 0.243MSS7) [102]

MSAVI 0.5 ∗ {2𝑅800 + 1 − SQRT [(2𝑅800 + 1)2 − 8 (𝑅800 − 𝑅670)]} [51]

MSR
[(𝑅800/𝑅670) − 1][SQRT (𝑅800/𝑅670 + 1)] [106]

MSI
𝜌1599𝜌819 [107]

MTVI 1.2 ∗ [1.2 (𝑅800 − 𝑅550) − 2.5 (𝑅670 − 𝑅550)] [101]

MTVI2
1.5 ∗ [1.2 (𝑅800 − 𝑅550) − 2.5 (𝑅670 − 𝑅550)]

√(2 ∗ 𝑅800 + 1)2 − (6 ∗ 𝑅800 − 5 ∗ √𝑅670) − 0.5 [101]

MYVI (0.723MSS4 − 0.597MSS5 + 0.206MSS6 − 0.278MSS7) [102]

NDGI (𝐺 − 𝑅)(𝐺 + 𝑅) [78]

NDI (NIR −MIR)(NIR +MIR) [108]

NDI1
(𝑅780 − 𝑅710)(𝑅780 − 𝑅680) [109]

NDI2
(𝑅850 − 𝑅710)(𝑅850 − 𝑅680) [109]

NDI3
(𝑅734 − 𝑅747)(𝑅715 − 𝑅726) [110]

NDNI
[log (1/𝜌1510) − log (1/𝜌1680)][log (1/𝜌1510) + log (1/𝜌1680)] [111]

NDLI
[log (1/𝜌1754) − log (1/𝜌1680)][log (1/𝜌1754) + log (1/𝜌1680)] [111]

NDVI
(𝑅800 − 𝑅680)(𝑅800 + 𝑅680) [96]

NDVI
(𝜌NIR − 𝜌𝑅)(𝜌NIR + 𝜌𝑅) [42]

NDWI (Green − NIR)(Green + NIR) [112]

NGBDI (𝐺 − 𝑅)(𝐺 + 𝐵) [113]

NGRDI (𝐺 − 𝑅)(𝐺 + 𝑅) [114]

NMDI
[𝜌860 − (𝜌1640 − 𝜌2130)][𝜌860 + (𝜌1640 − 𝜌2130)] [115]

NLI
(NIR2 − Red)
(NIR2 + Red) [116]
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Table 1: Continued.

Index Definition Reference

OSAVI
(1 + 0.16) (𝑅800 − 𝑅670)(𝑅800 + 𝑅670 + 0.61) [117]

PRI
(𝑅531 − 𝑅570)(𝑅531 + 𝑅570) [118]

PSRI
(𝑅680 − 𝑅500)𝑅750 [119]

PSNDc
(𝑅800 − 𝑅470)(𝑅800 + 𝑅470) [120]

PSSRa
𝑅800𝑅680 [120]

PSSRb
𝑅800𝑅635 [120]

PSSRc
𝑅800𝑅470 [120]

PVI √(𝜌soil − 𝜌veg)2𝑅 − (𝜌soil − 𝜌veg)2NIR
[38]

PVI (NIR − 𝑎𝑅 − 𝑏)√𝑎2 + 1 [121]

RARS
𝑅746𝑅513 [85]

RDVI
(𝑅800 − 𝑅670)[SQRT (𝑅800 + 𝑅670)] [121]

RDVI √NDIVI ⋅ DVI [121]

RENDVI
(𝑅750 − 𝑅705)(𝑅750 + 𝑅705) [122]

RGRI
(∑690𝐼=600 𝑅𝐼)
(∑599𝐼=500 𝑅𝐽) [123]

RI (𝑅 − 𝐺)(𝑅 + 𝐺) [124]

RVI 𝑅
NIR

[125]

SAVI
(𝜌NIR − 𝜌𝐺)(𝜌NIR + 𝜌𝐺 + 𝐿) + (1 + 𝐿) [50]

SIPI
(𝑅800 − 𝑅445)(𝑅800 + 𝑅680) [126]

SBI (−0.283MSS4 − 0.66MSS5 + 0.577MSS6 + 0.388MSS7) [53]

SBL MSS7 − 2.4MSS5 [38]

SDr ∑
𝑁

𝜌󸀠 (𝜆𝑖) [127]

SGI NIR
Red

[128]

SR
𝑅800𝑅670 [36]

SR2
𝑅800𝑅550 [86]
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Table 1: Continued.

Index Definition Reference

SR3
𝑅700𝑅670 [129]

SR4
𝑅740𝑅720 [110]

SR5
𝑅675(𝑅700𝑅650) [130]

SR6
𝑅672(𝑅550𝑅708) [126]

SR7
𝑅860(𝑅550𝑅708) [131]

TCARI 3 ∗ [(𝑅700 − 𝑅670) − 0.2 ∗ (𝑅700 − 𝑅550) (𝑅700𝑅670 )] [126]

TDVI √0.5 + [ (NIR − Red)(NIR + Red) ] [132]

TSARVI
[𝑎𝑟𝑏 (NIR − 𝑎𝑟𝑏𝑅𝐵 − 𝑏𝑟𝑏)][𝑅𝐵 + 𝑎𝑟𝑏NIR − 𝑎𝑟𝑏𝐵𝑟𝑏 + 𝑋 (1 + 𝑎𝑟𝑏2)] [49]

TSAVI [𝑎 (NIR − 𝑎𝑅 − 𝐵)][𝑅 + 𝑎NIR − 𝑎𝑏] [133]

TVI √NDVI + 0.5𝐿 [134]

VARI (𝐺 − 𝑅) (𝐺 + 𝑅 − 𝐵) [135]

VCI
(NDVI𝑖 −NDVImin)(NDVImax −NDVImin) [136]

VDVI
(2 ∗ 𝜌green − 𝜌red − 𝜌blue)
(2 ∗ 𝜌green + 𝜌red + 𝜌blue) [63]

VHI 𝑎 ∗ VCI + (1 − 𝑎) ∗ TCI [136]

VREI1
𝑅740𝑅720 [110]

VREI2
(𝑅734 − 𝑅747)(𝑅715 + 𝑅726) [110]

YVI (−0.283MSS4 − 0.66MSS5 + 0.577MSS6 + 0.388MSS7) [53]

WBI
𝑅970𝑅900 [115]

WDRVI
(𝛼𝜌nir − 𝜌red)(𝛼𝜌nir + 𝜌red) [64]

WV-VI (NIR2 − Red)(NIR2 + Red) [137]

ZM
𝑅750𝑅710 [81]

1DZ -DGVI
𝜆𝑛∑
𝜆1

󵄨󵄨󵄨󵄨󵄨𝜌󸀠 (𝜆𝑖)󵄨󵄨󵄨󵄨󵄨 Δ𝜆𝑖 [138]

2DZ -DGVI
𝜆𝑛∑
𝜆1

󵄨󵄨󵄨󵄨󵄨𝜌󸀠󸀠 (𝜆𝑖)󵄨󵄨󵄨󵄨󵄨 Δ𝜆𝑖 [138]
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