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Cell type, morphology, and functioning are key variables in the construction of efficient “drug-vehicle” hybrids in magnetic drug
delivery. Iron-encapsulated multiwall carbon nanotubes (Fe@MWCNTs) appear as promising candidates for theranostics due to
in situ chemical catalytic vapor deposition (c-CVD) synthesis, straightforward organic functionalization, and nanoneedle (1D)
behavior. Here, model hybrids were synthesized by exploring C-sp2 chemistry ((1+2)-cycloaddition of nitrenes and amidation) of
the outer MWCNT walls combined with anticancer agents, that is, 5-fluorouracil (5FU), purpurin (Purp), and 1,8-naphthalimide
DNA intercalators (NIDIs), via linkers. Analyses of the Fe@MWCNT vehicles by SEM, TEM, and Raman spectroscopy revealed
their morphology while Mössbauer spectroscopy confirmed the presence of encapsulated ferromagnetic iron-based nanodomains.
Cytotoxicity of the hybrids was studied using a 24 h MTS assay combined with the apoptosis and life cycle assays against human
melanoma (Me45), colon carcinoma (HCT116+), and colon adenocarcinoma (Caco-2). The cells had different sensitivity to the
vehicles themselves as well as to the hybrids. MWCNT-based covalent hybrids of 5FU and Purp emerged as the most promising
systems against Me45 and HCT116+ cell lines with the highest in vitro cytotoxicity and proapoptotic activity. Furthermore,
nanotubes bearing 4-nitro- and 4-(N-morpholinyl)-1,8-naphthalimide DNA intercalators appear as a promising candidate for the
treatment of Caco-2.

1. Introduction

With the constantly growing number of new casesworldwide,
cancer diseases continue to require more selective and more
efficient therapies [1, 2]. Among a variety of types, colorectal
cancer is the thirdmost frequent cancer accounting for 10%of
all cases worldwide while melanomas develop with the high-
est rate of new incidents [3]. A recent rise of nanotechnology

has poured new hopes to conquering cancer and the research
with the “nano” descriptor yielded numerous successful
implementations of nanomedicine to medical practice [4].
Nanomedicine exploits therapeutic and/or diagnostic (or
combined “theranostic”) agents as the key field of com-
mercialization of anticancer products [5]. And here, locore-
gional therapy using magnetic drug delivery systems (DDSs)
emerges as one of the most promising approaches to cure
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cancer [6].DDSs are composed of therapeutic agents attached
to the surface of magnetic nanoparticles or encapsulated
within a nanocomposite mixture of a polymer and magnetic
nanoparticle. Ideal properties for DDSs cover full biocom-
patibility, high magnetization, and minimal magnetic rema-
nence at the removal of magnetic field (reducing aggregation
and enabling fast excretion). This approach with numerous
in vivo studies exploits, for example, various polymer-drug
conjugates based, for example, on polyethylene glycol (PEG),
N-(2-hydroxypropyl)methacrylamide (HPMA), polymeric
micelles, and nanoparticle carriers which can be designed
with respect to absorption, distribution, metabolism, and
excretion (ADME scheme) of numerous anticancer drugs.
And so, in one of the more distinguished examples, a
doxorubicin-Fe

3
O
4
complex was prepared by coordination

chemistry in which an “interconnecting” Fe2+ cation served
as a bridge between phenolic -OH groups of the drug
molecule and superparamagnetic surface of Fe

3
O
4
, and the

hybrid was covered by PEGylated surface-OH group [7]. In
another variant, silica-coated Fe

3
O
4
nanospheres were coated

with redox-responsive cyclodextrinmolecules and, after their
uptake by cells, high intracellular glutathione concentration
caused the pores to become unblocked, liberating the drug
[8]. In another example of magnetically targeted therapy, Liu
and coworkers have developed Fe3O4 nanoparticles encapsu-
lated within a poly[aniline-co-N-(1-one-butyric acid)] outer
shell and epirubicinwas immobilized on the polymer coating.
The hybrid was then targeted to the brain using focused
ultrasound and magnetic targeting as a synergistic delivery
system [9].

Colon carcinomas [10] andmelanomas [11] are composed
of cells of variousmorphologies and frequently undergo dan-
gerous metastasis [12]. While response to chemotherapeutics
can strongly vary, rapid growth of the cells typically corre-
sponds to drug sensitivity [13]. Hence, on the one hand, when
designing targeted therapy systems, both chemical structure
of a drug and parameters of its loadable vehicle (frequently
forming amultifunctional hybrid)must be addressed. On the
other hand, morphology, functioning, and proliferation rate
of the cells are a highly changeable drug target. Such a set of
variables requires enhanced uptake of “drug-vehicle” hybrids
as quickly maneuverable “Trojan horses,” by definition fully
loaded with cleavable chemotherapeutic agents and safely
excretable after unloading.

In the midst of many magnetic nanoparticles applicable
in medicine, iron-encapsulated multiwall carbon nanotubes
(Fe@MWCNTs) emerge as powerful drug vehicles mainly
due to convenient functionalization and needle-like per-
meation of cells [14]. Nevertheless, continuously disputable
concerns in pulmonary toxicity of long, nonfunctionalized,
and nonindividualizedMWCNTs [15] led to delays in clinical
trials of systems based on nanotubes. On the other hand,
today, there is no doubt that short, functionalized with polar
moieties, and individualized MWCNTs offer a hope to be
tested clinically [16]. But earlier in vitro [17] and in vivo [18]
reports confirmed that, after functionalization, even >40 𝜇m
long Fe@MWCNTs, providing individualized (i.e., not aggre-
gated) nanotubes, could be considered as enzymatically
degradable [19, 20] and hence excretable drug vehicles [21].

Although significant progress in the field of “nanotube
against cancer” has been alreadymade and extensive research
continues, some of the key challenges remain [22]. And,
apart from mechanisms of in vivo cytotoxicity, biodistribu-
tion, effective targeting issues, and routes of the MWCNT
excretion, the most critical of them is to (1) design new
routes of mild and efficient “drug-to-nanotube” tethering,
(2) identify selective anticancer “drug-nanotube” hybrids
towards specific cells, and (3) reveal their potential in short
period therapies [23].

Pure MWCNTs are diamagnetic [24] and their magnetic
steerability must be achieved by combining with ferro- or
superparamagnetic components [25–27], for example, by
decoration with Fe3O4 [28] or Fe encapsulation (at the stage
of c-CVD synthesis or via capillary forces as a posttreatment)
[29]. Indeed, as c-CVD is a convenient and tunable one-step
synthesis of Fe@MWCNTs, we decided to focus on effective
loading of Fe@MWCNTs with chemotherapeutics represent-
ing various mechanisms of cytotoxicity and to anchor the
drugs using different chemical routes. In “nonmagnetic” but
otherwise targeted delivery,MWCNTshave served as vehicles
for strong cytostatic drugs, for example, cisplatin [30, 31].
E.g. Bhirde et al. have shown that MWCNTs-EGF-cisplatin
quickly reached the squamous carcinoma cells and signifi-
cantly reduced their proliferation [32]. However, as cisplatin
selectively attacks squamous cells, much more attention was
devoted to anthracycline drugs, particularly doxorubicin
(Dox) which exhibits a broader spectrum of activity [33, 34].
Purpurin (Purp) displays a similar activity to Dox [35]. It
is an active compound in photodynamic therapy [36] and
demonstrates an ability to inhibit topoisomerase II as well
as intercalate DNA [37]. In addition, its latent hydroquinone
moiety may be metabolized generating a large number of
free radicals damaging bothDNA and cell membrane. Hence,
Purp is currently considered as the important alternative of
Dox. 5-Fluorouracil (5FU) is a well-established anticancer
drug exerting cytotoxicity by affecting DNA synthesis and
inhibiting cell proliferation [38]. In turn, 1,8-naphthalimides
are fluorescent DNA intercalators binding preferentially to
the A-D base pairs [39–41].

In thiswork, extending our recent studies on in vitromag-
netic targeting of breast cancer cells (T47D) with purpurin-
and 5FU-based Fe@MWCNT hybrids [42], we present anti-
cancer activity and influence to selected cancer cells’ life
cycle of various covalent and noncovalent “drug-nanotube”
hybrids based on Purp, 5FU, and 1,8-naphthalimide DNA
intercalators (NIDIs).

2. Results and Discussion

2.1. Synthesis and Physicochemical Properties of Nanotube
Vehicles. Fe@MWCNTs were synthesized via a known c-
CVD protocol using the highest possible concentration
(9.6 wt.%) of ferrocene in toluene as a feedstock [43] and
were optionally oxidized with a nitrating mixture [17].
Morphology of the magnetically steerable nanotube vehicles
was studied using SEM, TEM, and Raman spectroscopy
(Figure 1). SEM image showed that Fe@MWCNT grew as
vertically aligned nanotube films (also called “carpets” or
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Figure 1: SEM and TEM images of Fe@MWCNTs (a, b) and Fe@O-MWCNTs (d, e); Raman spectra of MWCNTs (c) and O-MWCNTs (f);
inset in (b) shows ca. 500 nm long nanotube core filled with magnetic iron-based phases; insets in (e) show (A) still present nanotube Fe core
and (B) removed Fe-based “cork” after oxidative treatment, that is, an open nanotube tip.

“forests”) (Figure 1(a)). The as-grown nanotube bundles dis-
play a significant free volume (in terms of the presence of
interstices between the outer nanotube shells) reaching up to
90 vol.% and are practically indispersible in any solvent [44].
Individual Fe@MWCNTs were nonuniformly filled with iron
nanoparticles visible in TEM image as from partially to con-
tinuously filled nanotube channels (Figure 1(b)). An inset in
Figure 1(b) shows an extra-long, 0.5𝜇m long filling inside the
nanotube channel. In a few cases, some onion-like graphitic
excrescences containing iron nanospheres (removable under
oxidation) could be found on the nanotubes’ outermost

layers. The outer and inner Fe@MWCNT diameters (ODs
and IDs) were nonuniform and varied not only between
different but also for particular nanotubes; ODs and IDs were
found to be equal to 44 ± 25 and 12 ± 6 nm, respectively. The
length of pristine nanotubes was 100±20 𝜇m,while oxidation
led to their partial cutting and the length was reduced to
50±30 𝜇myielding nanotubes which fall into a biocompatible
and water-dispersible category [19–21]. Raman spectrum of
Fe@MWCNT (Figure 1(c)) shows three dominating signals
at 1332, 1579, and 2662 cm−1 which can be assigned to D-
(disorder), G- (tangential graphite), and G󸀠- (second-order
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Table 1: 57Fe Mössbauer spectroscopy parameters for
Fe@MWCNTs and Fe@O-MWCNTs at room temperature [47, 48].

Sample/phase C (%) S (mm/s) Δ (mm/s) B (T) D (mm/s)
Fe@MWCNTs
𝛾-Fe 40 −0.10 — — 0.18
𝛼-Fe 34 0.01 — 33.0 0.18
Fe3C 26 0.20 0.03 20.6 0.28
Fe@O-MWCNTs
𝛾-Fe 42 −0.09 — — 0.17
𝛼-Fe 53 0.00 — 33.2 0.17
Fe3C 5 0.14 0.18 21.0 0.27
C (%): relative contribution of various iron phases to the absorption cross
section; it corresponds to iron abundancies as particular phases; S (mm/s):
spectral shift versus shift of 𝛼-Fe at room temperature; Δ (mm/s): electric
quadrupole splitting;B (T):magnetic hyperfine field; Γ (mm/s): absorber line
width. Errors for all values are of the order of unity for the last digit shown.

harmonic) bands, respectively [45]. Moreover, D󸀠-peak can
be visible as a shoulder at 1610 cm−1 once the signal at the
maximum of 1579 cm−1 was deconvoluted.

After oxidation of pristine Fe@MWCNTs for 20min
under reflux in a mixture of sulfuric acid (98%) and nitric
acid (68%) (3/1, v/v) (for a detailed experimental protocol,
please see Supporting Information (SI) available online at
https://doi.org/10.1155/2017/1262309), the nanotubes changed
their morphology into more twisted and entangled shape
as visible by SEM (Figure 1(d)). This change took place
due to extensive corrugation and formation of numerous
grooves as revealed by TEM (Figure 1(e)). TEM images
revealed that Fe@O-MWCNTs also contained encapsulated
iron nanoparticles but, as determined by elemental analysis,
the final Fe content dropped from 7.0 for Fe@MWCNTs
to 3.0 wt.% whereas total O content (mainly as carboxylic
groups) increased from 0 to ca. 18 wt.% [46]. The decrease in
the Fe content after oxidative functionalization was observed
due to partial erosion of the Fe nanoparticles from the
nanotube tips and excrescences and, to a lesser extent,
from the walls. Raman spectroscopy confirmed moderately
destructive functionalization of graphene walls as the 𝐼

𝐷
/𝐼
𝐺

ratio increased to 0.74 (Figures 1(c) and 1(f)).
Magnetic characterization of Fe@MWCNTs and their

oxidized counterparts has revealed that their ferromagnetic
behavior was a derivative of the multiphase structure of
iron nanoparticles encapsulated in the nanotube cores. 57Fe
Mössbauer spectra with the superimposed fitted curves are
shown in Figure 2 while the essential results are collected in
Table 1.

The sample of Fe@MWCNTs was composed of three iron
containing phases, that is, 𝛾-Fe, 𝛼-Fe, and Fe3C.Themajority
of iron (40 at.%) resided in the 𝛾-Fe being paramagnetic at
room temperature, 34 at.% of iron made ferromagnetic 𝛼-
Fe, and the remainder (26 at.%) resided in the magnetically
ordered iron carbide (Fe

3
C). Spectra at high velocity range

(±12mm/s) were additionally acquired revealing absence of
iron oxides. The sample of Fe@O-MWCNTs (of total Fe
content equal to 3wt.%) similarly contained metallic Fe
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Figure 2: 57Fe Mössbauer spectra of Fe@MWCNTs and Fe@O-
MWCNTs at room temperature.

phases as the dominating components but the content of Fe
3
C

(residing typically at the Fe/C interphase and hence being
the most accessible and susceptible to aggressive oxidizing
agents [49]) dropped to as low level as 5 wt.%. Nevertheless, it
was clear frommagnetic hyperfine field experiments that the
concentration of ferromagnetic phases, that is, Fe and Fe3C,
exhibited maneuverability in the external magnetic field.

2.2. Drugs and “Drug-Nanotube” Hybrids. Purp, 5FU, and
NIDIs were used asmodel anticancer drugs towards immobi-
lization onto Fe@MWCNTs and Fe@O-MWCNTs (Figure 3)
(detailed experimental procedures are presented in SI). Purp-
N3 (2a) was synthesized from Purp via its regioselective 𝑂2-
alkylationwith 1-azido-4-bromobutane in the presence of 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) as a deprotonating
agent. 5FU, after addition to 2-hydroxyethyl acrylate [50],
was equipped with a longer linker in a reaction of the
corresponding Michael adduct with 6-azidohexanoic acid,
in the presence of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-
methylmorpholinium chloride (DMT-MM) as a condensing
agent, yielding 5FU-N

3
(2b). Substituted 1,8-naphthalimide

https://doi.org/10.1155/2017/1262309
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Figure 3: Synthesis of the “drug-nanotube” hybrids.

derivatives (2c–2f) were synthesized from the appropriate
1,8-naphthalic anhydrides via aminolysis with Boc-protected
hexylenediamine (Scheme S1, SI). Purp-N3 (2a) and 5FU-
N3 (2b) were covalently anchored to MWCNTs using
nitrene chemistry yielding MWCNT>N-Purp (3aa) and
MWCNT>N-5FU (3ab), respectively (Figure 3).

Pristine Fe@MWCNTs were oxidized to Fe@O-
MWCNTs (bearing carboxylic groups) according to the pro-
tocol depicted earlier (20min reflux H2SO4 (98%) +
HNO3 (68%) (3/1, v/v)) and the latter were subsequently
conjugated with variously substituted 1,8-naphthalimide
derivatives (2c–2f) using DMT-MM as a condensing agent
and giving the appropriate hybrids (3bc c-bf). Alternatively,
Phth(CO)

2
N-NH

2
(2c) treated with O-MWCNTs in DMF

formed the “nanotubate” salt (3bc i). The hybrids were
obtained with various drug loadings (DLs) (Table 2) as
determined by thermogravimetric analysis (TGA) (Figure 4).

DLs were calculated using a range of decomposition
determined by projection of the peak onset and offset points
(ca. 200 and 800∘C) corresponding to minimal and maximal
rates of decomposition of the “drug + linker” moieties in
the “drug-nanotube” hybrids and further subtraction of the
weight loss derived from the linker itself and volatiles (water
and organic solvents used for the synthesis and isolation) [51–
53]. From those values (for the same temperature ranges),
weight losses (%) of MWCNTs and O-MWCNTs were

subtracted yielding DLs for the particular “drug-nanotube”
hybrids.

Anchoring the chemotherapeutic drugs (or their pro-
drugs) has left the morphology of the modified nanotubes
intact. Nevertheless, this modification changes the surface
polarity of nanotubes, their affinity to aqueous media,
and hence further binding to cell membranes [54]. In
order to visualize uptake and drug unloading from the
“drug-nanotube” hybrids, fluorescent and scanning confocal
microscopy studies were performed (Figure S1, SI). The
observations were possible because all of the hybrids exhib-
ited fluorescence in the spectral range of 4󸀠,6-diamidino-
2-phenylindole (DAPI). It was found that “drug-nanotube”
hybrids landed, pierced, or in a few cases penetrated cancer
cells, similar to our previous studies [42], and the fluorescent
drugs were unloaded intracellularly, mainly by diffusion after
enzymatic cleavage or physical unloading. The enhanced cell
penetration by nanotubes, also in the presence of magnetic
field and noncytotoxic to humanmonocytemacrophage cells,
was described by Boncel et al. [42] and Mahmood et al.
[55]. The latter complex mechanism opens an additional
route of intracellular release in the presence of a magnetic
field. It was indeed confirmed that nanotubes, apart from
altering cellular metabolic activity, may physically impair the
membrane integrity yielding synergetic cytotoxicity [17]. The
combination of the above facts with digestibility ofMWCNTs
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Table 2: Drug loadings (DLs) in the “drug-nanotube” hybrids.

Nanotube
1

Drugs (and prodrugs)
2

“Drug-nanotube” hybrid
3

Drug + linker
loading (wt.%) DL (wt.%)∗

MWCNT
(1a)

Purp-N
3
(2a) MWCNT>N-Purp (3aa) 15.0 11.8

5FU-N
3
(2b) MWCNT>N-5FU (3ab) 42.0 15.2

O-MWCNT
(1b)

Phth(CO)
2
N-NH

2
(2c)

MWCNT-COO–

Phth(CO)
2
N-

NH
3

+(3bc i)
6.0 3.4

MWCNT-CONH-N-
(OC)
2
Phth

(3bc c)
11.5 7.0

M-Phth(CO)
2
N-

NH
2
(2d)

MWCNT-CONH-N-
(OC)
2
Phth-M

(3bd)
1.0 0.7

3NO
2
-Phth(CO)

2
N-

NH
2
(2e)

MWCNT-CONH-N-
(OC)
2
Phth-3NO

2
(3be) 3.0 2.1

4NO
2
-Phth(CO)

2
N-

NH
2
(2f)

MWCNT-CONH-N-
(OC)
2
Phth-4NO

2
(3bf) 7.0 4.8

∗DL was calculated based on pyrolytic (Ar) TGA and it was calculated per pure drug (i.e., excluding linker) based on the structures in Figure 3.

MWCNTs (1a)
O-MWCNTs (1b)

100

90

80

70

60

W
ei

gh
t (

%
)

0 100 200 300 400 500 600 700 800

T (∘C)

MWCNT>N-Purp (3aa)
MWCNT>N-5FU (3ab)
MWCNT-CONH-N-(／＃)2Phth (3bc_c)
MWCNT-COO− Phth(＃／)2N-N（3

+ (3bc_i)
MWCNT-CONH-N-(／＃)2Phth-M (3bd)
MWCNT-CONH-N-(／＃)2Phth-3N／2 (3be)
MWCNT-CONH-N-(／＃)2Phth-4N／2 (3bf)

Figure 4: TGA curves of nanotube vehicles and “drug-nanotube”
hybrids; the analyses were performed under argon at 20∘Cmin−1.

by peroxidases [19] establishes perspective premises towards
in vivo studies.

2.3. Cytotoxicity of Drugs/“Drug-Nanotube” Hybrids, Induc-
tion of Apoptosis, and Influence on the Cancer Cell Cycle.
With the aim of evaluating the cytotoxicity of nanotube vehi-
cles, pure anticancer agents (or their prodrugs) as well as
“drug-nanotube” hybrids, in the background of pure 5FU as

a control drug, were analyzed using a 3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) assay (Figure 5).

Both types of nanotube vehicles emerged as practically
noncytotoxic against Me45 up to 50𝜇gmL−1, whereas pris-
tine MWCNTs (1a) were more cytotoxic for HCT116+ cells
than O-MWCNTs (1b). For this cell line, inversely pro-
portional concentration-viability dependence was observed.
Moreover, HCT116+ cells were the most sensitive to nan-
otubes among all of the tested lines. Response of the Caco-2
line to the nanotubes falls in between the responses of Me45
andHCT+116. Me45 cells exhibited high in vitro resistance to
“drug-nanotube” hybrids, similar to the nanotube vehicles.
Only MWCNT>N-5FU hybrid (3ab) emerged as highly
active against Me45 cells killing ca. half of their population
at 50 𝜇g mL−1. Similar cytotoxicity was achieved by 5FU
at 2000 times lower concentration. MWCNT>N-Purp (3aa)
was the most cytotoxic against HCT116+ with ca. 60% of
viable cells at the highest tested concentration. Caco-2 cells
exposed to the “drug-nanotube” hybrids appeared to be the
most suitable target for 1,8-naphthalimide-based intercalators
anchored to nanotubes, with the 4-nitro derivative (3bf) as
the most active one. Viability of the Caco-2 cell line at 50𝜇g
mL−1 of the MWCNT-CONH-N-(OC)

2
Phth-4NO

2
hybrid

(3bf) was below 35%. It must be emphasized that this effect
was not achievable even at as high concentration of pure drug
(2c) as 100 𝜇g mL−1. It seems that MWCNTs could exhibit
intrinsic cytotoxicity by cellular membrane damage and, for
example, interfere with the microtubule dynamics [56–58].

Furthermore, cytotoxicity studies of some of the tested
drugs displayed a bimodal activity, particularly 2a, 2c, and
5FU (2g) against HCT116+ (Figure 5), which in general
means higher toxicity at lower dose ranges and lower toxicity
at higher doses. Such results are rather commonly known
for pharmaceutical tests of different chemical compounds
well known from the literature. For example, physiological
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Figure 5: Cytotoxicity studies of nanotube vehicles (pristine Fe@MWCNTs and Fe@O-MWCNTs), anticancer agents, and “drug-nanotube”
hybrids.
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Figure 6: Analysis of apoptosis in cell lines incubated with Fe@MWCNT/Fe@O-MWCNT vehicles, anticancer agents, and “drug-nanotube”
hybrids.

data obtained for hormone-like inhibitors tested in vivo
on heartbeat frequency in insects suggested adaptation of
cellular receptors at low concentrations of peptide leu-
comyosuppressin (for low heartbeat frequency, the inhibi-
tion was observed) and further their resistance at higher
concentrations (at higher heartbeat frequency, no inhibition
was observed) [59]. A similar phenomenon called hormesis
is frequently found in the radiosensitivity or radioresistance
assays where low doses of ionizing radiation are more toxic
than higher ones, because of cancer cells adaptation to the
toxic conditions at higher doses of IR [60]. Also, for star-
shaped copolymers as nanocarriers of bioactive compounds
tested onMCF-7 andMCF-7 doxorubicin-resistant cell lines,
bimodal activities were observed: cytotoxicity decreased with
the increasing concentrations [61].

Apoptosis induced by nanotube vehicles and (preselected
in the MTS assay) most cytotoxic hybrids was analyzed using
an Annexin V assay (Figure 6). The results were presented in
the background of pure anticancer agents (and their prodrug
counterparts).

It is evident (Figure 6(a)) that the MWCNT>N-5FU
(3ab)hybrid is characterized by the lowest tendency to induce
necrosis in Me45. This behavior is in contrast to pure 5FU
(2g) and 5FU-N3 (2b). Similar tendency could be found
for the MWCNT>N-Purp (3aa) of which cytotoxicity was
based on the activation of apoptosis (Figure 6(b)). Oppo-
sitely, 3bf hybrid induced necrosis in the highest fraction
of Caco-2 population (Figure 6(c)). Obviously, in this con-
text, MWCNT>N-5FU (3ab) and MWCNT>N-Purp (3aa)
emerge as the most promising hybrids against Me45 and
HCT116+ cells, respectively.

Analysis of the cell life cycles in the presence of nan-
otubes, drugs, and “drug-nanotube” hybridswas based on the
determination of the cellular DNA content using propidium
iodide (PI) and flow cytometry as a technique (Figure 7).

The aim of the analysis, as a natural continuation of the
above apoptosis studies, was to determine which phase of the
cell division is impaired or inhibited by the most promising
“drug-nanotube” hybrids.

As PI binds stoichiometrically to DNA; the number of
DNA-PI complexes enables calculating histograms of DNA
contents as a function of fluorescence intensity of the dye
for nanotube vehicles, pure drugs, and “drug-nanotube”
hybrids. Four main phases of the cell division [62, 63] could
be observed here: sub-G1, G0/G1, S, and G2/M. The G2/M
phase determines mitosis (in which the cell contains a double
amount of DNA as before division, i.e., in the G0/G1 phase).
The cells, described by phase sub-G1 in which DNA content
is lower than in the G0/G1 phase, correspond to apoptotic
and necrotic cells. Divided cells are in the S fraction.The level
of polyploids (cells containing more DNA than in the G2/M
phase) is typically referred to as noise and indicates damage
that occurred duringmitosis [64]. As shown, the results are in
the agreement with the apoptosis and cytotoxicity studies. All
of the hybrids generated mostly apoptotic cells as a response.
On the other hand, the presence of apoptotic cells does not
exclude the possibility of cellular membrane damage while
this effect can be significantly enhanced in the presence of a
magnetic field.

3. Conclusions

In the quest for novel targeted drug delivery systems, “drug-
MWCNT” hybrids were synthesized and their biological
activity was determined in vitro against selected cancer cell
lines. Nanotubes themselves, as vehicles enhancing targeting
and revealing its intrinsic cytotoxicity, may be considered as
potential platforms in the magnetic drug delivery.The earlier
observed magnetic maneuverability [42] was here confirmed
by Mössbauer spectroscopy which indicated the presence of
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Figure 7: Analysis of the cell cycle in Me45, HCT116+, and Caco-2 lines incubated with MWCNT vehicles, drugs/prodrugs, and “drug-
nanotube” hybrids.

ferromagnetic Fe-based phases encapsulated in the core of
nanotubes, also at a sufficient level in oxidized nanotubes.
Their application however must be carefully addressed as
different cancer cells reveal different levels of sensitivity to
the “drug-nanotube” hybrids. Fe@MWCNT hybrids of 5FU
and Purp, formed via nitrene chemistry, appear as the most
suitable rapid responsemagnetic drug delivery systems in the
locoregional therapy against Me45 and HCT116+ cells, while
hybrids of oxidized Fe@MWCNTs and 4-nitro- and 4-(N-
morpholinyl)-1,8-naphthalimide DNA intercalator formed
via amidation against Caco-2 cells. The studies open a route
to in vivo research against the so-preselected cancer cells
exploiting hybrids of Fe@MWCNTs and anticancer agents
formed via novel surface chemistries.

4. Experimental

SEM analysis was performed by means of SEM JEOL
7001TTLS. High-resolution transmission electron micros-
copy micrographs were obtained with a JEOL ARM 200F
HRTEM with an accelerating voltage of 200 kV. The Raman
spectra were obtained using a Ramascope-1000 spectrometer.
The excitation source was a He-Ne laser of a wavelength
of 633 nm. Each spectrum was collected with six accumu-
lations of 10 s. Mössbauer transmission measurements were
performed at room temperature using RENON MsAa-3
spectrometer equipped with the LND Kr-filled proportional
detector and He-Ne laser-based interferometer used to cal-
ibrate velocity scale [65]. A commercial 57Co(Rh) source
kept at room temperature was applied for 14.41 keV resonant
transition in 57Fe. The Mössbauer absorbers were prepared
using 100mg of Fe@MWCNTs or Fe@O-MWCNTs and the
absorbers’ thicknesses amounted to 50mg/cm2. Data were
processed by means of the Mosgraf-2009 software within the
transmission integral approximation.

4.1. Stock Solutions/Dispersions. Pure compoundswere intro-
duced into media as solutions in DMSO (99.9%) and
their cytotoxicity was determined for eleven concentrations,

that is, 1 ng/mL, 5 ng/mL, 25 ng/mL, 50 ng/mL, 100 ng/mL,
500 ng/mL, 1 𝜇g/mL, 10 𝜇g/mL, 25𝜇g/mL, 50𝜇g/mL, and
100 𝜇g/mL. In order to obtain the appropriate concentrations,
1mg of each compound was dissolved in DMSO (1mL), and
the mother solution (1mg/mL) was used as a base for the
more diluted solutions. Each solution was filtered through a
22𝜇m filter.

Cytotoxicity of nanotube vehicles and drug-nanotube
hybrids was determined for dispersions of four concentra-
tions, that is, 5, 10, 20, and 50 𝜇g/mL. Similarly, as for pure
compounds, firstly, the mother dispersion of 1mg/mL was
prepared by 1 h of ultrasonication at 37∘C, and then diluted
and ultrasonicated dispersions were prepared and introduced
into the media.

4.2. Cell Lines. Three cell lines were used in the studies,
namely, Me45, HCT116+, and Caco-2. The first cell line is
human fibroblasts derived from malignant melanoma. The
two other epithelial lines derive from human colon cancer.
All of the cells are characterized by the adherent growth
mode. Human melanoma (Me45) cell line was derived in
1997 from melanoma metastasis to lymph node of a 35-
year-old male patient treated at the Institute of Radiobiology
of the Maria Skłodowska-Curie Memorial Cancer Centre,
Gliwice (Poland). Human colon carcinoma (HCT116+) cell
line is a line of human colon adenoma cells. The cells were
grown in the bank of Maria Skłodowska-Curie Memorial
Cancer Centre, Gliwice (Poland). Human Caucasian colon
adenocarcinoma (Caco-2) cell line was isolated from a 72-
year-old Caucasian male. The line was purchased from the
European Collection of Cell Cultures (ECACC) and the line
was generously given by the Medical University of Silesia in
Zabrze (Poland). The cells are of high resemblance to the
human intestinal epithelium cells. It must be emphasized that
Caco-2, as the only one from all of the cell lines previously
derived from the intestinal tumor line, is capable of forming
a layer of cells possessing morphological, structural, and
functional similarity to the intestinal epithelium occurring in
the human body. Key features characterizing Caco-2 cells are
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(a) formation of intercellular tight junctions, (b) expression
of specific enzymes, for example, alkaline phosphatase or
protein transport channels (P-glycoprotein, cytochromes,
etc.), and (c) cell differentiation towards the formation of
microvilli of the “brush border.”

4.3. Cell Cultures. All cell lines were cultured in culture flasks
with 25 cm2 (T-25) or 75 cm2 (T-75) bottom surface. Basic
medium DMEM/Ham’s F-12 with L-glutamine was supple-
mented with Fetal Bovine Serum (FBS) (12%) containing
antibiotics MycoKill AB (1 : 50 dilution). The culture was
grown in an incubator under standard conditions, that is,
37∘C, CO

2
content in the atmosphere of 5%, and humidity

of ca. 60%.

4.4. Passage and Culture of Cells. Under sterile conditions,
the stale medium was poured from the above cell cultures.
The bottom of the bottle was washed with 1 or 3mL of a
concentrated solution of trypsin, for T-25 or T-75 bottles,
respectively, in order to neutralize the trypsin present in
the culture medium and to remove dead cells only slightly
adhering to the bottom of the bottles. Then, 3mL (T-25) or
5mL (T-75) of a freshly prepared concentrated solution of
trypsin was added to the bottles using a serological pipette
and the bottles were placed in the incubator for a fewminutes.
Theprocess of separation of cells was continuouslymonitored
under a light microscope. The duration of the process varied
and depended on the adhesion degree of cells to the substrate
and morphology of the cells (in the case of HCT116+ and
Caco-2 cells, the process was rapid, whereas Me45 cells were
detaching very slowly). After complete detachment of the
cells, an equal amount (3 or 5mL) of the fresh culturemedium
was added to the bottle. The bottle’s content was carefully
divided using a serological pipette, transferred to Falcon
tubes, and then centrifuged in a bench centrifuge (1500 rpm,
3min).Themediumwith trypsinwas carefully decanted from
the cell sediment, and then 1mL of fresh medium was added
again. After precise distribution of the cell sediments in the
new medium, ca. 100 𝜇L of suspension was collected in an
Eppendorf tube in order to count the number of cells in the
Bürker counting chamber. After the passage, the bottle was
refilled with fresh culturemediumDMEM (8-9mLT-25) and
(10–12mL T-75) and the growth of cells was continued.

After determination of concentration of cells per 1mL
of suspension, the appropriate volume of suspension was
withdrawn to a new test tube and filled up with fresh DMEM
medium, depending on the volume required for the planned
assay.

4.5. Cytotoxicity Assays. The cells were trypsinized, counted
in the Bürker chamber, suspended in a suitable amount
of DMEM medium, and then placed in 96-well plates,
which were then cultured for 24 h under standard conditions
(37∘C, 5% CO2). After 24 h, the medium was removed and
replaced with a fresh one of volume allowing for dosing solu-
tions/dispersions of tested compounds, nanotube vehicles,
“drug-nanotube” hybrids, and the control of the appropriate
concentration. Each measurement was performed in tripli-
cate.

After the addition ofmedia and solutions/dispersions, the
plates were incubated for 24 h under standard conditions.
Then, the medium was removed from above the cells and
was replaced by 100 𝜇L of phosphate-buffered saline (PBS).
The MTS reagent was combined with 1-methoxyphenazine
methosulfate (PMS) (2mL MTS + 100 𝜇L PMS for each
plate) and 20 𝜇L of the mixture was added to each well.
The plates were incubated for 2 h until the color in the
control wells was changed from light yellow to brown. The
absorbance for formazan produced solely by alive cells was
measured at a wavelength of 𝜆 = 490 nm using a microplate
spectrophotometer. The absorbance values were expressed as
a percentage change in viability of tested cells relative to the
control cells. Cell viability was therefore calculated from the
formula cell viability = 𝐴/𝐴0 ⋅ 100%.

4.6. Analysis of Apoptosis. After removal of cells, trypsin was
neutralized with the previously collected medium. The sam-
ples were centrifuged (1500 rpm, 3min) and the supernatant
was carefully removed using a pipette. The precipitate was
washed with 300𝜇L of PBS and, to the rinsed precipitate
of cells, cold Annexin-dedicated buffer (50𝜇L) and then
Annexin V (2.5𝜇L) were added. Next, the open tubes were
placed into the incubator for 20min.After this time, 250𝜇Lof
Annexin-dedicated buffer and 10𝜇L of PI solution (3mg/mL)
were added and the whole system was mixed carefully. The
samples were incubated in the dark for 15min and then
transferred onto ice. Immediately prior to the flow cyto-
metric analysis, the samples were vortexed and transferred
to cytometer tubes. The counting camera encountered first
10,000 events. The results were analyzed using Flowing MS
Office� ver. 2.5.0 and MS Excel 2007�.

4.7. Cell Cycle Analysis by Flow Cytometry. After addi-
tion of the appropriate amounts of medium and solu-
tions/dispersions, the samples were incubated for 24 h under
standard conditions. Afterwards, the medium was moved
to new Eppendorf tubes, whereas the remaining cells were
detrypsinized (by adding 500 𝜇L of concentrated trypsin
solution to each well). Trypsin was neutralized by previously
poured off medium containing dead cells and the samples
were centrifuged (1500 rpm, 3min). The supernatant was
carefully poured off, and the precipitate was rinsed with
300 𝜇L of PBS. Then, to each tube, 600 𝜇L of frozen 96%
EtOH was added dropwise and the tubes were vortexed for
the accurate fixation of the cells. The samples were stored at
4∘C for a minimum of 24 h, and up to a week and before
the measurements, they were again centrifuged (1000 rpm,
3min). The supernatant was collected and the residual cells
were rinsed with 300 𝜇L of PBS. Then, 50𝜇L of RNase
solution at a concentration of 100 𝜇g/mL (prepared from a
stock solution of 10mg/mL, in a ratio of 1 : 49 RNase/PBS)was
added in order to remove RNA and the samples were shaken
in a Thermoblock at 37∘C for 20min. Then, 250𝜇L of PI was
added at a concentration of 100𝜇g/mL and the samples were
allowed to stand in the dark for 10min. After this time, the
samples were transferred onto ice. Immediately prior to the
measurements, each sample was vortexed thoroughly and the
tube was placed in a flow cytometer. The counting camera
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encountered first 10,000 events. The results were presented
as the number of cells histograms of fluorescence intensity
versus concentration of PI and then analyzed by Flowing MS
Office 2.5.0 and MS Excel 2007.

4.8. Statistical Analysis. All measurements for cytotoxicity,
apoptosis, and cell cycle were performed at least in triplicate,
and resultswere presented as average+/− SD.The significance
of any changes, according to the control and untreated cells,
was calculated with Student’s t-test with p value < 0.001.
Relevant changes presented in Figures 5–7 were indicated by
an asterisk (∗).

4.9. Preparation of the Samples for Microscopy Imaging. The
sample preparation for microscopic analysis lasted 72 h.
Firstly, cell trypsinization was performed, the amount of cells
was determined using a Bürker chamber, and the samples
were prepared in a suitable suspension. The cells were placed
onto sterile 4-well plates and incubated for 24 h under
standard conditions. Subsequently, DMEM was replaced by
a freshly prepared one, in order to maintain concentration of
the hybrids. Images were acquired for concentrations of 5 and
50 𝜇g/mL. After addition of appropriate amounts of medium
and solution/dispersion, the samples were incubated for 24 h
under standard conditions. Then, the supernatant was care-
fully collected with a pipette from the cells and discarded.The
cells werewashedwith 500 𝜇L of PBS and then fixedwith 70%
EtOH (10min). After fixation, alcohol was removed, 500 𝜇L
of deionized water was added, and the system was allowed
to stand for 2-3min. Subsequently, water was removed with a
pipette and thewall platewas broken off. To eachwell, 10𝜇L of
DAPI was introduced and a drop of glycerol was added, and
then the well was covered with a coverslip, which was then
protected against drying using a dedicated resin.The samples
were stored in closed boxes at 4∘C.
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