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Identification of B-cell epitopes is a fundamental step for development of epitope-based vaccines, therapeutic antibodies, and
diagnostic tools. Epitope-based antibodies are currently the most promising class of biopharmaceuticals. In the last decade, in-
depth in silico analysis and categorization of the experimentally identified epitopes stimulated development of algorithms for
epitope prediction. Recently, various in silico tools are employed in attempts to predict B-cell epitopes based on sequence and/or
structural data.Themain objective of epitope identification is to replace an antigen in the immunization, antibody production, and
serodiagnosis. The accurate identification of B-cell epitopes still presents major challenges for immunologists. Advances in B-cell
epitope mapping and computational prediction have yielded molecular insights into the process of biorecognition and formation
of antigen-antibody complex, which may help to localize B-cell epitopes more precisely. In this paper, we have comprehensively
reviewed state-of-the-art experimental methods for B-cell epitope identification, existing databases for epitopes, and novel in silico
resources and prediction tools available online. We have also elaborated new trends in the antibody-based epitope prediction. The
aim of this review is to assist researchers in identification of B-cell epitopes.

1. Introduction

Antigen-antibody interaction is a key event in humoral
immune response to invading pathogen. A specific antibody
(Ab) recognizes antigen (Ag) at discrete regions known as
antigenic determinants or B-cell epitopes. B-cell epitopes can
be defined as a surface accessible clusters of amino acids,
which are recognized by secreted antibodies or B-cell recep-
tors and are able to elicit cellular or humoral immune
response [1].

Most of the Ag surface may become part of epitopes after
recognition with antibodies and the exact selection mech-
anism why certain antigen regions become B-cell epitopes
is not fully understood [2]. The classification of antigenic
determinants into epitopes and nonepitopes ignoring the
antigen reconfiguration in Ag-Ab complex may not accu-
rately reflect biological reality [3]. The accurate identification
of B-cell epitopes constitutes a basis for development of

antibody therapeutics [4], peptide-based vaccines [4, 5], and
immunodiagnostic tool [6].

Based on the spatial structure B-cell epitopes can be
categorized as a continuous (linear or sequential) and dis-
continuous (nonlinear or conformational) epitopes; in the
latter case amino acid residues are in close contact due to
the three-dimensional conformation [7].Theminimal amino
acid sequence (contact residue span) required for proper
folding of the discontinuous epitope in native proteins may
range from 20 to 400 amino acids. It is generally believed
that most of identified linear antigenic determinants are
parts of the conformational B-cell epitopes [8–10]. Using a
less stringent definition for continuity, it was found that the
majority of discontinuous epitopes (over 70%) are composed
of 1–5 linear segments of lengths of 1–6 amino acids [10].

The experimental methods developed to identify the
epitopes can roughly be divided into structural and func-
tional studies. The X-ray crystallography can exactly locate
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the position of epitope within the protein structure but is
laborious, time consuming, costly, technically difficult, and
not applicable for all antigens [11]. Some of the commonly
used methods for functional B-cell epitope mapping are
screening of antigen-derived proteolytic fragments or pep-
tides for antibody binding and testing the Ag-Ab reactivity
of mutants (site-directed or randomly mutated) [11]. Other
techniques like display technologies and mimotope analysis
have also become acceptable alternative choices for epitope
mapping thanks to their relative cheapness, flexibility, and
speed [12, 13].

Rubinstein and colleagues proposed a null hypothesis that
the surface of the antigen is homogeneously antigenic. With
the large-scale statistical analysis of Ag-Ab cocrystals derived
from the protein databases, they were able to define physico-
chemical, structural, and geometrical aspects of epitopes and
concluded that epitopes are clearly distinguishable from the
remaining antigen surface [10]. In another study, Kringelum
and coworkers described B-cell epitope as a flat, elongated,
oval shaped bundle with unorganized secondary structure
[14]. Thanks to the comprehensive experimental studies and
in silico analyses conducted hitherto, it is possible to defined
the features distinguishing epitope from nonepitope. The
majority of epitopes span 15–25 residues and an area of 600–
1000 Å2 organized in loops. The epitope surface accessibility
is common feature. Sequence of the epitopes is enriched with
Y, W, charged, and polar amino acids (amino acids with
exposed side chains) and with specific amino acid pairs. The
Ag-Ab interaction occurs without preference for a specific
CDR loop and involves epitope compression [10]. In recent
years, it was shown that the differences between residues
within epitopes and other residues are not substantial and
amino acid composition is not sufficient for differentiating
between epitopes and nonepitopes (reviewed in [2]).

Advancement in the epitope mapping technologies hand
in hand with bioinformatics has greatly contributed to devel-
oping immunoinformatics, which involves application of
computational methods in immunology to unveil structures
of antibody, B-cell, T-cell, and allergen, prediction of MHC
binding, modelling of epitopes, and analysis of immune
networks. Several algorithms have been developed to predict
B-cell epitopes from their sequence or structure [15–18]. The
early prediction methods were focused on the identification
of linear epitopes through propensity scale. To improve
prediction performance,methods based onmachine learning
such asHiddenMarkovModel [19], recurrent neural network
[20], and support vector machine [21] were developed.
Despite this advancements, there are still a limited number of
methods that predict discontinuous epitopes, and they need
combination of the information, for example, amino acid
statistics, spatial information, and surface exposure [22].

Identification B-cell epitopes is extensively employed
in the development of diagnostic tests, therapeutics and
vaccines [23–26]. Use of epitope mapping in the drug devel-
opment is reviewed earlier [27]. In spite of advances in B-cell
epitopemapping, it is important to note that antibodies raised
against peptides often lack the ability to bind native proteins
due to unstructured nature of the peptide [28].

The main purpose of this review is to provide researcher
with the general knowledge about existing methods of B-cell
epitope mapping and short overview of epitope databases,
recently used prediction methods, and publicly available
tools.

2. B-Cell Epitope Mapping

Most of the existingmethods for epitopemapping (structural
and functional approach) are expensive, laborious, time
consuming, and often fail to identify all epitopes. Structural
epitope mapping methods interpret the protein structure
comprising residues in direct contact with an antibody but
often fail to reveal contribution of amino acids in binding
strength. The identification and characterization of residues
important for binding within structurally defined antigenic
determinant are the aim of functional epitope mapping tools.

Themost accuratemethod for structural epitopemapping
is X-ray crystallography of Ag-Ab complexes and is often
regarded as the only method to define a structural epitope
[29]. Among “wet” lab methods this technique is a guarantee
of precise identification of both continuous and discontin-
uous epitopes and provide information about strength of
binding [30–32]. Bacterial or viral antigens, especially small
soluble proteins, are ideal for crystallography. However, the
X-ray crystallography is limited by quality of cocrystals and
electron density of the antibody [33]. Recently developed
freely available program FTProd can be used as computa-
tional alternative to expensive and time consuming X-ray
crystallography [34].Nuclearmagnetic resonance (NMR)has
also potential to replace traditional X-ray crystallography.
This approach provides data about the structure, dynamics,
and binding energy of Ag-Ab complex and is performed in
solution where no crystals are needed. However, NMR is
limited to small proteins and peptides (<25 kDa) [35]. Satura-
tion transfer differenceNMR (reviewed in [36]) and antibody
inhibition of hydrogen-deuterium exchange in the antigen
are other two methods capable of mapping epitope regions
withmoderate resolution [37].The electronmicroscopy (EM)
can also be used for epitope localization; however it is a
low-resolution structural method that is utilized on larger
antigens (e.g., whole viral particles) [38]. Unfortunately, this
method is unable to detect contact residues and can be used
for confirmation of surface accessibility of the epitope [39].
An alternative, cryoelectron microscopy allows observations
of rapidly frozen Ag-Ab complexes in physiological buffers
avoiding the need for stains and fixatives [40, 41].

The methods for functional epitope mapping can be
divided into fourmain groups: competitionmethods, antigen
fragmentationmethods,modificationmethods, andmethods
using synthetic peptides or peptide libraries [42]. Compe-
tition methods have low-resolution degree of mapping and
are commonly used to determine whether two different
monoclonal antibodies (mAbs) can bind to antigen at the
same time or whether they compete with each other for
the same epitope [11]. Most of the functional methods are
based on the ability to detect binding of antibody to anti-
gen fragments, synthetic peptides, or recombinant antigens
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(including mutated variants, antigens arrayed by in situ cell-
free translation, and/or expressed using selectable systems
such as phage display). In the binding assays, peptides
are immobilized on solid support and binding of antibody
is detected by western blot, dot blot, and/or ELISA. This
approach does not require expensive equipment and is able
to quantify the immune response towards a specific epitope.
The dot blot requires the purified molecule to be spotted on
the membrane and is mainly used for qualitative detection
[43]. The peptides can be synthesized on pins (PEPSCAN�),
on a cellulose membrane support (SPOT method�), or on
peptide microarrays [44, 45]. Such techniques simplify the
handling of large numbers of peptides and eliminate the need
for identification of positive peptides by sequencing or by
mass spectrometry. Binding assays were successfully used in
identification of epitopes in several viruses, bacteria, fungi,
parasites, and human diseases (reviewed in [27]).

2.1. Mutagenesis. Mutagenesis is a rapid epitope mapping
method that relies on the fact that substitution of individual
residue/s (hot-spot/s) that constitutes a functional epitope
causes loss of antibody binding. Hot-spots (most frequently
Tyr, Arg, and Trp) are energetically important residues and
comprise only a fraction of the complete protein-protein
interface area [39]. The protein library can be generated by
either random or site-directed mutations. The combination
of mutagenesis approach with display techniques enables
screening of many hundreds or thousands of mutated pro-
teins (reviewed in [46]).The saturation mutagenesis, another
versatile tool, replaces amino acid residue at specific position
with all 20 naturally occurring residues. However, in some
cases the loss of immunoreactivity due to the disruption
of antigenic structure complicates the interpretation of the
results.

The majority of epitope contacts in Ag-Ab complex
occur through amino acid side chains [10]. Alanine scanning
mutagenesis provides a controlled method to define the
contributions of each residue’s side chain to Ab binding
by alanine sequential substitution (causing truncation of
side chains to 𝛽-carbon without additional flexibility of
protein backbone) for each nonalanine residue one at a
time. Although this mapping strategy may not identify every
residue in contact with an antibody, the critical residues
identified using this approach represent amino acids whose
side chains make the highest energetic contributions to the
paratope-epitope interaction [47]. The generation of combi-
natorial libraries of displayed alanine mutations significantly
accelerates the functional mapping of epitopes. Computa-
tional alanine scanning can also rapidly calculate the effect of
alanine mutation on a binding free energy in protein-protein
complex using a simple free energy function (available at
http://robetta.bakerlab.org/alaninescan) [48].

The combinatorial mutagenesis enables identifying
residues, which are not critical for binding but contribute to
the formation of epitope or establish multiple individually
weak interactions with paratope. This strategy is based
on combinatorial randomization of a discrete antigenic
region and grouping of mutated residues (primary sequence

proximity) to maximize the chances of underscoring
combined effects mediated by neighboring residues [49].

Another technique in mutagenesis, a shotgun mutagene-
sis, enables identification of both linear and conformational
epitopes with mapping rates of over 20 epitopes/month. This
high-throughput strategy is based on large-scalemutagenesis,
where each clone bears a defined amino acid mutation (such
as an alanine substitution) and direct cellular testing for mAb
reactivity of natively folded proteins (proper oligomerization,
disulphide bonds, glycosylation, and other posttranslational
modifications). Shotgun mutagenesis has been used to map
over 250mAbs targeting dengue, chikungunya, and hepatitis
C viruses, with additional mAb epitopes mapped on hepatitis
B virus, respiratory syncytial virus, and HIV (reviewed in
[50]).

2.2. Display Techniques. Display technologies, best exem-
plified by phage and yeast display, provide a powerful
technique for epitope mapping. Display techniques have
become acceptable alternative for epitope mapping due to
their relative cheapness and quickness [12]. The principle
of display methods is based on testing the binding capacity
of a variety of peptides displayed on the display platforms
(tethering of proteins to ribosomes-mRNAcomplex, or to the
surface of phage, bacteria, mammalian, insect, or yeast cells)
to the monoclonal antibody of interest through the affinity
selection method of biopanning.

One of the most frequent and popular display methods
for epitope mapping is phage display. Construction of phage
display peptide libraries (displaying >109 of peptides) rep-
resents popular way of generation of antigenic fragments
which are screened for antibody binding [12]. This powerful
approach involves fusion of the foreign DNA fragments with
the filamentous phage gene coding coat protein (e.g., pIII,
pVI, pVII, pVIII, and pIX). The bacteriophage M13 or lytic
alternatives such as T4, T7, and P4 bacteriophages or lambda
phage are usually used as model viruses for phage display.
Randompeptide phage libraries (combinatorial libraries) and
gene or genome fragment phage libraries are commonly used
techniques for epitope identification (reviewed in [29]).

3. B-Cell Epitope Databases

Thanks to the technological advances in genomics, pro-
teomics, and epitope mapping techniques, huge amounts of
data are being generated and are necessary to organize in a
searchable form. B-cell epitope databases provide a training
set for evaluation of existing epitope prediction methods
and constitute platform for development of novel and better
algorithms for prediction. The B-cell epitope databases can
be classified as multifaceted database such as IEDB and
AntiJen, B-cell oriented database such as BciPep, Epitome,
and SDAP, and single pathogenic organism oriented database
such as theHIVMolecular ImmunologyDatabase, FLAVIdB,
and Influenza Sequence and Epitope Database. It has to
be mentioned that most of the available databases include
peptide/s recognized by the receptors of the adaptive immune
system and/or amino acid residues of antigen that are in
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Table 1: List of B-cell epitope databases.

Database Source (URL) Ref.
IEDB
IEDB-3D http://www.iedb.org/ —

AntiJen http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm [56, 57]
CED http://immunet.cn/ced/ [59]
Epitome http://www.rostlab.org/services/epitome/ [60]
BciPep http://www.imtech.res.in/raghava/bcipep/info.html [61]
SEDB http://sedb.bicpu.edu.in [62]
SDAP https://fermi.utmb.edu/ [63]
HIV
Molecular
Immunology
Database

http://www.hiv.lanl.gov/content/immunology/index.html —

FLAVIdB http://cvc.dfci.harvard.edu/flavi/ [64]

close contact with antibody (structural epitopes) and lack
important epitope information such as a detailed molecular
characterization of epitopes and the mention of contact
residues that make energetic contributions to binding. The
databases that collect B-cell epitope are listed in Table 1.

The Immune Epitope Database (IEDB) is a compre-
hensive resource aimed to catalogue experimentally deter-
mined B-cell and T-cell epitopes from human, nonhuman
primates, and other animal species along with the experi-
mental contexts. It captures epitopes related to category A-
C pathogens, emerging and reemerging pathogens, allergens,
and autoantigens. IEDB contains epitopes derived from the
peer-reviewed literature, patent applications, direct submis-
sion, and other publicly available databases, for example,
FIMM [51], HLA Ligand database [52], and MHC binding
database [53]. IEDB also provides tools for the prediction of
linear B-cell epitopes from protein sequence including amino
acid scales and HMMs, DiscoTope, ElliPro, Paratome, and
PIGS.The database houses epitope conservancy analysis tool
for determination of the degree of epitope conservation or
variability, tool for analysis of population coverage, or tool for
localization of epitope in 3D structure of antigen. The IEDB-
3D catalogues T-cell and B-cell epitopes and MHC ligands
with accompanied functional assays and immunologically
relevant information derived from PDB and provides cal-
culation of intermolecular contacts and interface areas [54].
An application, EpitopeViewer, allows visualization of the
antigen structures and is fully embedded in IEDB-3D [55].

AntiJen v2.0 (developed from JenPep) contains quan-
titative binding data for peptides binding to MHC ligand,
TCR-MHC complexes, T-cell epitopes, TAP (a transporter
associated with the MHC class I restricted antigen process-
ing), and B-cell epitopes. It also contains immunological
protein-protein interactions and biophysical data such as
diffusion coefficient and cellular data [56, 57]. AntiJen is
linked to protein database Swiss-Prot, NCBI, MPID, PDB,
and PubMed, which enables further in-depth cross referenc-
ing. The aim of AntiJen is to integrate quantitative kinetic,
thermodynamic, and biophysical data, with functional and
cellular information, which can be used in immunology and

immunovaccinology [58]. AntiJen does not allow download-
ing of the data.

Conformational Epitope Database (CED) provides a
manually curated dataset of conformational epitopes that
can be used to evaluate existing epitope prediction meth-
ods and develop new and better algorithms for prediction
[59]. This database has limited size and contains only high
quality clearly defined conformational epitopes collected
from published peer-reviewed articles. The database implies
additional information, such as residues dispatching, local-
ization, immunological properties, source antigen, and cor-
responding antibody of the epitope. CED is hyperlinked to
other databases (e.g., Swiss-Prot, PDB, KEGG, or PubMed).
Conformational epitopes with corresponding PDB structures
can be viewed interactively in the context of the Ag-Ab
complex, antigen structure, or known theoretical model
that can help to identify important structural features. The
semiautomatic database Epitome collects structure-inferred
antigenic residues in proteins that are involved in interaction
with residues on antibody CDRs, and it provides information
of corresponding paratope [60]. It serves for detailed descrip-
tion of residues with and enables visualization of three-
dimensional structure of Ag-Ab complex derived from PDB
through Jmol tool [60].

The comprehensive database BciPep provides dataset
of experimentally validated linear B-cell epitopes derived
from literature and other publicly available databases
[61].

In BciPep, B-cell epitopes are categorized into three
classes: immunodominant (2-3-fold enhancement of anti-
peptide antibody synthesis compared to reference protein
or control, e.g., BSA or KLH), immunogenic (onefold
enhancement of anti-peptide antibody synthesis compared
to reference protein or control, e.g., BSA or KLH), and
null-immunogenic (no difference observed when compared
to reference protein or control, e.g., BSA or KLH). The
database provides information (isotype and name/number)
about anti-peptide antibodies produced against an epitope
and their neutralization potential.The database is linked with
Swiss-Prot, PDB, MHCBN, and PubMed [61].
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Table 2: List of web available tools for continuous B-cell epitope prediction.

Tool Source (URL) Input data Ref.
ABCPred http://www.imtech.res.in/raghava/abcpred/ FASTA [20]
APCPred http://ccb.bmi.ac.cn/APCpred/ FASTA —
BCPREDS http://ailab.ist.psu.edu/bcpred/ FASTA [92, 93]
BepiPred http://www.cbs.dtu.dk/services/BepiPred FASTA or FASTA file [19]
LBtope http://crdd.osdd.net/raghava/lbtope/ FASTA or FASTA file [94]
Bcepred http://www.imtech.res.in/raghava/bcepred/ FASTA or FASTA file [76]
SVMTriP http://sysbio.unl.edu/SVMTriP/ FASTA [78]

Table 3: List of web available tools for discontinuous/conformational B-cell epitope prediction.

Tool Source (URL) Input data Ref.
DiscoTope http://www.cbs.dtu.dk/services/DiscoTope-2.0/ PDB ID or PDB file [22, 71]
BePro (PEPITO) http://pepito.proteomics.ics.uci.edu/ PDB ID or PDB file [79]
ElliPro http://tools.immuneepitope.org/ellipro/ FASTA or Swiss-Prot ID [83]
SEPPA http://badd.tongji.edu.cn/seppa/ PDB ID or PDB file [81]
EPITOPIA http://epitopia.tau.ac.il/ FASTA/PDB ID or PDB file [95]
CBTOPE http://www.imtech.res.in/raghava/cbtope/ FASTA or FASTA file [85]
EPCES http://sysbio.unl.edu/EPCES/ PDB ID or PDB file [96]
EPSVR http://sysbio.unl.edu/EPSVR/ PDB ID or PDB file [97]

PEASE http://www.ofranlab.org/PEASE Ag PDB ID or PDB file
Ab FASTA or FASTA file [88]

EpiPred http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/EpiPred.php PDB ID or PDB file [72]

Structural Epitope Database (SEDB) contains 3D com-
plexes of B-cell, T-cell, andMHCboundmolecules and shows
Ag-Ab interaction plot. SEDB collects related information of
epitopes, like gene-ontology information, Ag-Ab interaction
graph, and epitopes location in protein with interaction data,
which are missing in currently available epitope databases
[62].

Structural Database of Allergenic Proteins (SDAP) con-
tains sequences, structures, and IgE epitopes of allergenic
proteins and offers additional computational tools for struc-
tural studies. SDAP enables allergen-peptidematching for the
detection of novel allergens and the cross-reactivity between
known allergens [63].

Databases oriented on single pathogenic organism have
been developed to target vaccine design. The HIV Molec-
ular Immunology Database collects cytotoxic, helper T-cell
epitopes and B-cell epitopes in annotated and searchable
form and offers several generic data analysis tools. FLAVIdB
is a comprehensive database of antigens from Flavivirus
spp. derived from external databases (GenPept, UniProt,
IEDB, and PDB) and corresponding literature. It contains
flavivirus antigen sequences, T-cell epitopes, B-cell epitopes,
and molecular structures of the dengue virus envelope
protein. Database is equipped with tools for block entropy
analysis and flavivirus species classification [64].

4. In Silico B-Cell Epitope Prediction

Correlation between B-cell epitope localization and physico-
chemical properties (e.g., hydrophilicity, solvent accessibility,
flexibility, turns, polarity, antigenicity, and surface exposure),

has been demonstrated in several studies (reviewed in [65]).
Earlier prediction methods were monoparametric (based
on single residue property or propensity scale) calculating
average propensity value along a sliding window [66–68].
It was demonstrated that methods based on propensity
profiling yield poor results in the practice [69]. To improve
the performance of prediction of both continuous and
discontinuous epitopes, machine learning methods were
evolved. Most of these methods were developed based on
very small datasets and used randomly selected peptides
instead of experimentally verified nonepitopes as a negative
training set [70]. Currently used methods for continuous
epitope prediction combine two or more residue properties
with machine learning approaches (summarized in Tables
2 and 3). In general, prediction methods can be divided
based on the level of input information to methods based
on antigen sequence and methods based on 3D structure of
antigen. Structure-based methods significantly outperform
sequence-basedmethods [71]. Unfortunately, existing predic-
tion methods are not accurate enough and annotate general
immunogenic/epitope-like regions on the antigen [69, 72]. It
was demonstrated that consensus of various B-cell epitope
prediction methods ensures greater accuracy of the results
[73]. Here we offer a short overview of publicly available
methods and servers for prediction of continuous as well as
discontinuous B-cell epitopes (summarized in Tables 2 and
3).

4.1. Prediction of Continuous B-Cell Epitopes. The first pre-
diction method using recurrent neural network, ABCPred,
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has been trained on B-cell epitopes obtained from BciPep
database and nonepitopes obtained randomly from Swiss-
Prot database. The ABCPred is a neural network based
method for prediction of continuous B-cell epitopes using
fixed length pattern [20].The ABCPred dataset contains data
of epitopes from viruses, bacteria, parasites, and fungi that
are stored in BciPep database with the prediction accuracy
of 65.9%. ABCPred, AAP method and BCPred, and BayesB
predict only short peptide fragments. The B-cell epitopes
of the Emy162 protein of Echinococcus multilocularis (the
causative agent of zoonotic helminthosis) were predicted
using BCPred and ABCPred [74].

APCPred combines amino acid anchoring pair com-
position (APC) and support vector machine (SVM) meth-
ods, which significantly improved the prediction accuracy.
APCPred achieved an improved area under curve (AUC) of
0.794 [75]. BCPred server allows choosing predictionmethod
among amino acids pair scaling method (AAP), BCPred,
and FBCPred. AAP approach is based on the finding that
particular amino acid pairs occur more frequently in epitope
than nonepitope sequence. Combination of AAP propensity
scale with turns, accessibility, antigenicity, hydrophilicity, and
flexibility propensity scales improved the accuracy (72.5%).

BCPred method employs subsequence kernel-based
SVM classifier andwas trained on homology-reduced dataset
of linear B-cell epitopes (with <80% sequence identity)
derived from dataset previously used to test ABCPred. The
performance of BCPred (AUC 0.758) outperforms imple-
mentation of AAP (AUC 0.7).

FBCPred is a novel method developed for prediction
of B-cell epitopes with flexible length. Homology-reduced
dataset is publicly available for comparing existing linear B-
cell epitope predictionmethods and testing of new prediction
software.

BepiPred predicts continuous epitopes by combining two
residues properties with Hidden Markov Model. BepiPred
was evaluated on dataset of epitopes extracted from the
literature, AntiJen, and HIV databases. This method has a
quite low sensitivity [19].

The server BcePred is used for prediction of continuous
B-cell epitopes based on physicochemical properties and
allows user to select any residue property or combination
of two or more properties employed in prediction. The
performance of BcePred was evaluated on dataset containing
epitopes obtained from BciPep database and dataset of ran-
domly chosen nonepitopes from Swiss-Prot. The accuracy of
BcePred combining four amino acid properties (hydrophilic-
ity, flexibility, polarity, and exposed surface) is 58.70% [76].

A novel continuous B-cell epitope prediction method
EPMRL was developed using multiple linear regression.
EPMLR was tested on BEOD dataset containing only exper-
imentally verified epitopes and nonepitopes and achieves
overall sensitivity of 81.8% and precision of 64.1% and area
under the receiver operating characteristic curve (AUC) of
0.728 [77].

B-cell epitope prediction using support vector machine
tool (BEST) is sequence-based tool designed for prediction
of both linear and conformational epitopes from full anti-
gen sequence. Prediction is based on averaging of selected

scores (sequence conservation, similarity to experimentally
validated B-cell epitopes, predicted secondary structure, and
relative solvent accessibility) generated from 20-mers. BEST
achieves AUC at 0.81 and 0.85 for the fragment-based
prediction and 0.57 and 0.6 for full antigen. BEST outper-
forms several modern sequence-based B-cell epitope predic-
tors including ABCPred, BCPred, COBEpro, and CBTOPE
[16].

SVMTriP employs support vector machine to combine
the tripeptide similarity and propensity scores to predict
linear epitopes. SVMTriP achieves a sensitivity of 80.1%
and a precision of 55.2% and the AUC value 0.702, when
tested on nonredundant epitopes extracted from IEDB [78].
A comparative study concluded that the methods based on
sequence analysis do not predict epitopes better than chance.
Since the majority of epitopes are discontinuous, prediction
methods taking into account structural data could increase
the accuracy of epitope prediction [69].

4.2. Prediction of Discontinuous B-Cell Epitopes. Although
the majority (∼90%) of the B-cell epitopes are discontinuous
(conformational), to date much effort was concentrated on
identification of continuous epitopes [22]. However, with
the advance of proteomics and increasing number of Ag-Ab
crystal structures available in databases, it is now easier to
perform deeper analyses of conformational epitopes. These
epitopes comprise linear stretches of residues brought into
close proximity upon protein folding and the reconfiguration
of epitope residues when an antigen is in complex with spe-
cific antibody. Most of the prediction methods are antibody-
ignored methods. One must also take into account the fact
that predicted epitopes are frequently short sequences of
residues that represent the part of discontinuous epitope.The
tools currently used for prediction of discontinuous epitopes
are summarized in Table 3.

The first attempts at epitope prediction based on 3D
structure began with development of CEP server, which is
based on accessibility of amino acid residues and requires
the 3D data in PDB format [17]. Hitherto, this tool is dep-
recated and is not available. Subsequent server, DiscoTope,
predicts discontinuous B-cell epitopes by combining the
surface accessibility and spatial and amino acid statistics
to differentiate between epitopes and nonepitope sites. It
generates one residue propensity score in the sphere of 10 Å
which is the result of combination of the hydrophilicity scale
and the epitope log-odds ratios [22]. DiscoTope has been
recently updated to 2.0 version by Kringelum and coworkers
with several improvements for proper benchmark definitions
and use and achieves an AUC of 0.731 [71].

BEpro server (formerly known as PEPITO) uses a com-
bination of amino acid propensity scores along with side
chain orientation and solvent accessibility information using
half sphere exposure values at multiple distances to predict
discontinuous B-cell epitopes. It achieves AUC of 75.4 on the
DiscoTope dataset [79]. BEpro and CEP prediction is based
on the detection of exposed residues ignoring the residues
buried in the spatial structure, whichmay affect the reliability
of predictions.
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PEPOP is structure-based method, which identifies clus-
ters of accessible surface residues and segments that might
form putative discontinuous epitopes and can be used to
design immunogenic peptides. The anti-peptides antibodies
showed reactivity with the cognate antigens in 80% of the
cases (four cases from five) and were used in sandwich
capture assay. Compared to CEP and DiscoTope, PEPOP
showed comparable specificity and slightly better sensitivity
[80]. Hitherto, this tool is deprecated and is not available.

Improved Spatial Epitope Prediction of Protein Antigens
server (SEPPA) focusing on single residue propensity scales
and continual segment clustering was developed in 2009 by
Sun and colleagues [81]. SEPPA employs a novel concept of
unit patch of residue triangle and spatial clustering coefficient
to describe local spatial context in protein antigen surface and
3D characteristic of epitopes. A parameter of 4 Å was chosen
in the definition of unit patch of residue triangle. Curated
data of nonredundant spatial epitopes from PDB database
was used for method testing. SEPPA outperforms popular
prediction tools, CEP, DiscoTope, and BEpro, and achieves
an average AUC over 0.742 [81].

Server ElliPro (derived from Ellipsoid and Protrusion)
implements modified method for identifying continuous
epitopes in the protein regions protruding from the globular
surface of antigen [82] in combination with a residue cluster-
ing algorithm for prediction of discontinuous epitopes from
primary antigen sequence or structure [83]. ElliPro performs
BLAST search of PDB for antigen sequences homologues or
use MODELLER [84] to predict 3D structure. ElliPro (AUC
value of 0.732) outperforms structure-based methods CEP
and DiscoTope. ElliPro enables visualization of linear and
discontinuous epitopes on the protein 3D structure [83].

Computational prediction tool EPITOPIA employsNäıve
Bayes classifier to predict epitopes in linear sequence or
3D structure. It distinguishes the nonepitope and epitope
regions by computing an immunogenicity score (reflecting
the immunogenic potential of a certain residue relative to all
residues in the antigen) for each solvent accessible residue or
a score for every amino acid. EPITOPIA yields higher success
rate of 89.4% (mean AUC value of 0.60) when compared to
ElliPro and DiscoTope [18].

CBTOPE was proposed for the prediction of discontin-
uous epitopes from antigen primary structure. This SVM-
based predictor combines traditional features of physic-
ochemical profiles and sequence-derived inputs including
composition and collocation of amino acids. It outperformed
other structure methods using binary profile of pattern and
physicochemical profile of patterns with better sensitivity and
AUC on the same benchmark dataset [85].

Epitope prediction method, which uses Consensus Scor-
ing (EPCES) combines scores from residue epitope propen-
sity, residue conservation, side-chain energy, contact num-
ber, surface planarity, and secondary structure composition.
EPCES predicts discontinuous epitopes with 47.8% sensitiv-
ity, 69.5% specificity, and an AUC value of 0.632, which is
statistically similar to other published methods.

The Antigenic Epitopes Prediction with Support Vec-
tor Regression server (EPSVR) employs vector regression
to integrate same scores as are combined in EPCES and

achieves AUC value of 0.597. EPSVR is integrated in
metaserver EPMeta together with five existing prediction
servers (EPCES, EPITOPIA, SEPPA, PEPITO, andDiscoTope
1.2) and provides consensus prediction results. The perfor-
mance of EPMeta is AUC value of 0.6, which is higher than
performance of any other existing single server. Unfortu-
nately, this server met unsolvable technical difficulties and is
no more available.

Evaluation of performance of prediction tools is often
difficult, especially when each of them has their own testing
dataset. To solve this problem and help users to choose
the tool, the recent web servers, CEP [17], DiscoTope [22],
PEPOP [80], ElliPro [83], BEpro [79], and SEPPA [81], were
tested with an independent dataset created by collection
of the experimentally confirmed discontinuous epitopes.
SEPPA gave the best performance among the six tools (the
averaged AUC value of 0.62, sensitivity of 0.49) followed by
DiscoTope and BEpro (the averaged AUC value of 0.58 and
0.55, sensitivity of 0.36 and 0.18). The performance of CEP,
PEPOP, and ElliPro did not exceed averaged AUC values of
0.55 [86]. The detection based on exposed residues ignoring
the residues buried in the structure can account for low
performance of CEP tool. The best performance achieved by
SEPPA could be attributed to growing number of available
structural data and new spatial features incorporated in its
algorithm [86].

4.3. Antibody-Specific Epitope Prediction. The traditional
antibody-ignored epitope prediction methods do not take
into account the reconfiguration of epitope residues when
an antigen is in complex with a specific antibody [3].
Reconfiguration of Ag takes place when Ab binds both short
peptide or whole antigen. To reflect this biological reality,
several prediction methods based on sequence or structure
of interacting Ab and Ag have been introduced in the last
few years. The performance of antibody-based prediction of
epitopes is competitive, or even better, when compared with
structure-based predictors (rigid-body docking algorithms)
[3].

A method using Antibody-Specific Epitope Prediction
(ASEP) index developed by Soga and coworkers, represents
the first benchmark in epitope prediction for individual
antibody and has been used to narrow down candidate
epitopes previously predicted by the conventional methods
[87].

The EpiPred combines conformational matching of the
Ab-Ag structures and knowledge based asymmetric Ab-
Ag scoring to annotate the likely epitope regions specific
to the given antibody [72]. This global docking pipeline
requires the sequence of Ab and structure of unbound
Ag. Compared to rigid-body docking algorithms, EpiPred
significantly enriches the number of close-to-native decoys
when adjusting the Ab sequence against the Ag [72].

Predicting Epitopes Using Antibody Sequences (PEASE)
evaluates a pair score for all combinations of one residue from
the complementarity determining regions (CDR) of antibody
and one residue from the surface exposed region of antigen.
A residue score of antigen surface residue is its highest pair
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Table 4: List of B-cell epitope prediction tools based on mimotope analysis.

Tool Source Ref.
MIMOX http://immunet.cn/mimox/ [91]

MimoPro http://informatics.nenu.edu.cn/MimoPro
http://informatics.nenu.edu.cn/PepMapper/ [98]

Pep-3D-Search http://informatics.nenu.edu.cn/PepMapper/ [99]
MIMOP upon request [13]
LocaPep http://atenea.montes.upm.es/#soft [100]
PepSurf http://pepitope.tau.ac.il/sources.html [101]

score. A higher residue score means that contact between
antibody and antigen residue is more strongly predicted and
that this residue constitutes a part of B-cell epitope. PEASE
also identifies surface patches on the antigen, which contain
multiple residues with high residue scores [88]. PEASE was
successfully used to predict the vaccinia virus epitopes [89].

B-cell epitope prediction through association rules
(Bepar) is predicting epitopes based on antibody-antigen
(paratope-epitope) association patterns which can be applied
to any antibody-antigen sequence pair. Residue cooperativity
and relative composition have been used to enhance the
performance of this method. Bepar shows competitive per-
formance on epitope prediction and outperforms CEP even
without antigen 3D structure information [90].

4.4. Mimotope-Based Epitope Prediction. In recent years, the
epitope prediction methods employing mimotopes derived
from phage display experiments were developed. In gen-
eral, these methods can be classified as methods that map
mimotopes to the overlapping location patches on the antigen
surface using statistical features of mimotopes and methods
using mimotope mapping back to the antigen sequence
through alignment. Mimotope has similar physicochemical
properties and spatial organization but however rarely shows
sequence similarity to the native antigen. In some cases,
mimotope mapping back to the antigen can indicate B-cell
epitope location [91]. B-cell epitope prediction tools based on
mimotope analysis are summarized in Table 4.

5. Conclusion

Antibodies are currently the most promising class of bio-
pharmaceuticals.Themain objective of epitope identification
is to replace an antigen in the immunization, antibody
production, and serodiagnosis. The accurate identification of
B-cell epitopes and large-scale data integration still presents
major challenges for immunologists. Advances in B-cell
epitope mapping and computational prediction have yielded
molecular insights into the process of biorecognition and
formation of Ag-Ab complex, which may help to formulate
even more precise algorithms to predict their localization in
the antigen. However, based on statistics it is not possible to
precisely determine the epitope characteristics, which allow
biorecognition. One has to keep in mind that the epitopes
are not intrinsic feature of proteins and antibody-ignored
prediction methods predict only putative epitope to which

an undefined Ab might bind. The real epitopes cannot be
predicted ignoring the structural effect upon Ag-Ab complex
formation. This fact opens new space for all algorithms to
improve further.
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