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To assess the clinical utility of targeted Next-Generation Sequencing (NGS) for the diagnosis of Inherited Retinal Dystrophies
(IRDs), a total of 109 subjects were enrolled in the study, including 88 IRD affected probands and 21 healthy relatives. Clinical
diagnoses included Retinitis Pigmentosa (RP), Leber Congenital Amaurosis (LCA), Stargardt Disease (STGD), Best Macular
Dystrophy (BMD), Usher Syndrome (USH), and other IRDs with undefined clinical diagnosis. Participants underwent a complete
ophthalmologic examination followed by genetic counseling. A custom AmpliSeq™ panel of 72 IRD-related genes was designed
for the analysis and tested using Ion semiconductor Next-Generation Sequencing (NGS). Potential disease-causing mutations were
identified in 59.1% of probands, comprising mutations in 16 genes. The highest diagnostic yields were achieved for BMD, LCA, USH,
and STGD patients, whereas RP confirmed its high genetic heterogeneity. Causative mutations were identified in 17.6% of probands
with undefined diagnosis. Revision of the initial diagnosis was performed for 9.6% of genetically diagnosed patients. This study
demonstrates that NGS represents a comprehensive cost-effective approach for IRDs molecular diagnosis. The identification of the
genetic alterations underlying the phenotype enabled the clinicians to achieve a more accurate diagnosis. The results emphasize
the importance of molecular diagnosis coupled with clinic information to unravel the extensive phenotypic heterogeneity of these
diseases.

1. Introduction photoreceptor cells degeneration, which include Retinitis

Pigmentosa (RP), Leber Congenital Amaurosis (LCA), Star-
Inherited Retinal Dystrophies (IRDs) are a heterogeneous  gardt Disease (STGD), Best Macular Dystrophy (BMD),
group of eye disorders characterized by rod and/or cone  and syndromic forms such as Usher Syndrome (USH).
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TABLE 1: Patients cohort.

Presumed inheritance Age at genetic

Clinical Number of Healthy Familiar Cases . . Sex .
diagnosis cases relatives (number of in family counseling
families) Sporadic AD AR XL M F Range Median
BMD 4 2(1) 4 1 3 12-65 58
LCA 5 5 1 4 2 3 5-85 9
STGD 14 6(3) 14 5 9 8-59 28
RP 45 12 9(4) 14 6 20 5 25 20 2-73 47.5
USH 3 3 2 1 33-53 51
nd IRD 17 4 6(2) 6 6 5 13 4 2-62 35
Total 88 21 23 (10) 21 16 46 5 48 40 2-85 37

BMD: Best Macular Dystrophy; LCA: Leber Congenital Amaurosis; STGD: Stargardt disease; RP: Retinitis Pigmentosa; USH: Usher syndrome; nd IRD:
inherited retinal degeneration not otherwise specified without precisely defined diagnosis; AD: autosomal dominant; AR: autosomal recessive; XL: X-linked;

M: male; F: female.

The overall prevalence of these disorders is ~1 in 4,000
individuals for RP, ~1 in 90,000 individuals for LCA and
USH, ~1 in 5,000-10,000 individuals for STGD, and 1/5000-
1/67000 for BMD (http://www.orpha.net). Classification of
IRDs considers the principal site of retinal dysfunction (rod,
cone, retinal pigment epithelium, or inner retina), the mode
of inheritance, the underlying gene defect, typical age of
onset, rate of progression, and association with systemic
syndromes. The genetic bases of IRDs are highly hetero-
geneous, with almost 150 genes currently known [RetNet,
https://sph.uth.edu/retnet/] and a wide clinical and genetic
overlap among the different disorders, with high phenotypic
variability and genes associated with more than one phe-
notype. The inheritance of these diseases is also complex,
with autosomal dominant (AD), autosomal recessive (AR),
X-linked (XL), and even digenic patterns [1]. The extensive
clinical and genetic heterogeneity in IRD, along with the
variable age of onset, the incomplete penetrance, and unclear
inheritance, hamper clinical diagnosis.

Recently, Next-Generation Sequencing (NGS) has been
used for the genetic diagnosis of retinal diseases [2-6] and
has been reported as a cost-effective approach [7, 8] with a
wide range of reported mutation detection rates related to
differences in number of genes analyzed, NGS platform, and
cohort size but above all composition of the study case phe-
notypes. We therefore present a multidisciplinary approach
coupled with a comprehensive NGS amplicon-based strategy
to explore IRD genetic complexity and evaluate genotype-
phenotype correlations.

2. Patients and Methods

This study was approved by the ethics committee (Comitato
Etico di Modena, Modena, Italy). The procedures followed
were in accordance with the Helsinki Declaration of 1975, as
revised in 2000, and samples were obtained after patients had
provided written informed consent.

A total of 109 samples were collected, including 88 IRDs
affected probands with unknown molecular diagnosis and 21
healthy family members (Table 1). Subjects were recruited
at the Medical Genetics Unit of the University Hospital of

Modena (70 samples), at the Medical Genetics Unit of Parma
University Hospital (15 samples) and Medical Genetics Unit
of Policlinico SantOrsola Malpighi, Bologna (24 samples).
All subjects underwent a complete ophthalmologic exami-
nation (visual acuity, anterior segment and fundus exami-
nation, spectral domain-optical coherence tomography, elec-
troretinogram, and/or electrooculogram) followed by genetic
counseling. When indicated fundus autofluorescence imag-
ing and visual field were also performed. Clinical information
for the patients with identified pathogenic mutations is
shown in Supplementary Table 1 (in Supplementary Material
available online at http://dx.doi.org/10.1155/2016/6341870).
Clinical diagnoses of participating subjects included RP, USH
(hearing impairment + RP), LCA, STGD, BMD, and IRDs not
otherwise specified or with imprecisely defined clinical diag-
nosis. Four control patients with known molecular diagnosis
were used to validate our method.

2.1. AmpliSeq Panel Design and Ion Torrent™ PGM™ Library
Preparation and Sequencing. The Ion AmpliSeq technology
(Life Technologies Ltd., Paisley, UK) was used to design a
panel of 72 genes (Supplementary Table 2) associated with
the following IRD forms: RP, LCA, STGD, BMD, and USH
[RetNet, https://sph.uth.edu/retnet/]. The Ion AmpliSeq
Designer tool (https://www.ampliseq.com/browse.action)
generated an optimized primers design encompassing the
coding DNA sequence of the selected genes, for a total
of 1.649 amplicons divided into two pools to optimize
coverage and multiplex PCR conditions. Libraries were
prepared using the Ion AmpliSeq Library Kit 2.0 starting
from 15ng of gDNA/pool according to manufacturer’s
recommendations. Template preparation was performed
using an Ion OneTouch™ 2 System following the latest
version of the manufacturer’s manuals. The template positive
Ion Sphere Particles (ISPs+) were sequenced on an Ion
Torrent Personal Genome Machine® (PGM) System (Life
Technologies Ltd., Paisley, UK) using the Ion 318™ Chip kit
v2 following the Ion PGM Sequencing 200 Kit v2 manual.

2.2. Sanger Sequencing. Sanger sequencing was performed
to validate CNGBI ¢.875-5_891dup mutation (identified with
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an anomalous distribution of NGS reads attributable to
amplification problems due to the insertion itself located
at the end of the target region) and to sequence RPGR
ORF15 partially uncovered by the NGS panel. Primers for
PCR and sequencing are shown in Supplementary Table 3.
The following conditions were used: a 50 uL. PCR reaction
containing 100 ng of DNA, 100 pmol of forward and reverse
primers, 5uL of buffer, and 0.5uL of Taq Expand High
Fidelity™ DNA Polymerase (Roche). PCR amplification (see
Supplementary Table 3) was performed using a Gene Amp
PCR System 9700 (Applied Biosystems, California, USA).
The resultant amplicons were purified using High Pure PCR
Product Purification Kit (Roche). Additional primers for
RPGR sequencing were used. The sequencing reactions were
performed with BigDye Terminator v1.0 (Life Technologies)
and run on ABI PRISM® 3130XL Genetic Analyzer (Life
Technologies). Due to sequence composition and technical
difficulties, part of RPGR ORF15 (~250 bp, chrX: 38145343-
38145593) could not be accurately sequenced with Sanger
sequencing.

2.3. Data Analysis. Samples were processed using the
Ion Torrent Suite™ (TS) Software for raw data processing
and sequence alignment to the human genome reference
sequence hgl9. The TS Variant Caller was used for the
detection of germline variants that were subsequently
analyzed using the following optimized filtering and
annotation pipeline. Annovar [9] and Variant Effect Predictor
(VEP) [10] were used to functionally annotate the detected
variants, retrieving RefSeq gene annotation, dbSNP rs
identifiers, ClinVar accession, and allele frequency observed
in the population (1000-Genome Project, NHLBI GO Exome
Sequencing Project ESP6500SI-V2, Exome and Aggregation
Consortium ExAC 0.3). Variants with low coverage or low
frequency (<30 reads or <30%, resp.) were filtered out. The
synonymous variants and variants having an allele frequency
greater than 1% reported in the population were discarded
as well. In addition, an internal database, built with all
variants present in our cohort of processed samples, allowed
recognizing and classifying as polymorphisms variants not
listed in public databases. Variants were further annotated
with conservation scores and functional predictions listed
in dbNSFP [11-13], a database which compiles scores from
various prediction algorithms, among which are SIFT,
Polyphen2, LRT, MutationTaster, MutationAssessor, and
FATHMM. Retina International (http://www.retina-interna-
-tional.org/), RPGR database (http://rpgrhhgu.mrc.ac.uk/
index.php?select_db=RPGR), CEP290base (http://
cep290base.cmgg.be/), and BESTI LOVD database (http://
www-huge.uni-regensburg.de/BEST1_database) were used
to explore additional annotations and literature information,
if present. Splice-altering predictions were obtained using
the online tools Human Splicing Finder (HSF 3.0) [14] and
NNSPLICE 0.9 [15] and the databases dbscSNV [16] and
SPIDEX ([17], which provide predicted effects for all of the
potential variants within splicing consensus regions or across
the entire genome, respectively. For the prioritization of
pathogenetic mutations, the evaluation of inheritance mode
was taken into account, along with segregation information

coming from the sequencing of healthy family members, if
available.

NGS procedure and data analysis were tested on the four
control samples with known molecular diagnosis as proof of
concept. In all cases the previously identified variants were
correctly detected and prioritized as pathogenic variants.

3. Results

A cohort of 109 samples (Table 1), including 88 IRDs affected
probands without molecular diagnosis and 21 unaffected
family members, was analyzed by the newly developed system
based on NGS and data analysis. A total of 19 sequencing
runs were performed (6 samples/Ion Chip 318), obtaining
on average a mean coverage of 450 mapped reads, with 92%
mean uniformity and 97.6% (SD + 1.4) of target regions
covered at least 30x (96.2% > 50x). For each sample, 242 raw
variants were detected on average. Annotation and filtering
procedure resulted in the identification of possibly causative
mutations in 59.1% of patients (n = 52/88) (Table 2,
Figure 1). The majority of the obtained molecular diagnoses
were consistent with the subject’s clinical presentation and
family history.

We found pathogenic mutations in 16 genes, with the
most recurrent being ABCA4 for STGD and USH2A for
RP/USH patients. The majority of the mutated genes were
inherited with an AR pattern (78.9%), followed in order
by AD (11.5%) and XL (9.6%) inheritance. The majority
of cases displaying recessive inheritance were compound
heterozygous of two different pathogenic variants, in line with
the low frequency of consanguineous marriages in Italy

Identified candidate pathogenic mutations are shown
in Table 3. Overall, 63 different mutations were identified:
62.5% of variants were already reported in previous studies,
while 375% were novel. Among the list of novel variants,
56% were missense predicted to have deleterious protein
functional effect by the prediction algorithms described in
the Patients and Methods (predicted to be damaging by
at least three of the applied algorithms), and 44% were
frameshift, nonsense, or splice-site mutations that might
severely affect protein function. Notably, 12% of identified
variants were located within splicing consensus regions, and
additional 12% were exonic variants predicted to alter splicing
through enhancer/silencer motif modification or the creation
of new potential donor/acceptor sites.

Table 2 summarizes the mutation detection rates obtained
for the different clinical subtypes of our study cohort. The
highest diagnostic yields were achieved for BMD, LCA,
USH, and STGD patients with well-defined clinical diagnosis,
where the number of known genes associated with each
disease is relatively limited.

For BMD cases, all diagnosed patients were heterozygous
for mutations on BESTI. Three patients (mother and son)
were found to harbour a novel BESTI missense mutation
¢.80G>C (p.Ser27Thr) located in the immediate N-terminus,
in one of the four mutational hotspots regions in the highly
conserved N-terminal half of the protein [18] and predicted
to be deleterious by all interrogated algorithms.
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FIGURE 1: The chart summarizes the diagnostic yields obtained for the clinical subtypes of this study. The different levels of circles (from inner
to outside) specify clinical diagnoses, inheritance mode, mutated genes, and clinical reassessment.

TaBLE 2: Diagnostic yields for the clinical subtypes of this study.

Clinical Cases Genetic Unsolved Clinical Diagnostic

diagnosis (n) diagnosis (1) cases (n) reasse.ssmen.t yield (%)
(final diagnosis)

BMD 4 4 — 100

LCA 5 4 1 80

STGD 14 1 3 78.5

RP 45 27 18 2 (USH) 60.0

USH 3 3 — 100

nd IRD 17 3 14 3 (ACS;,II:I(I;IIS)L CA, 17.6

Total 88 52 36 5 59.1

BMD: Best Macular Dystrophy; LCA: Leber Congenital Amaurosis; STGD: Stargardt Disease; RP: Retinitis Pigmentosa; USH: Usher Syndrome; nd IRD:
inherited retinal degeneration not otherwise specified without precisely defined diagnosis; ACHM: Achromatopsia.
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For STGD patients, genetic diagnosis was achieved in 11
out of 14 (78.5% of the cases). All diagnosed patients in our
cohort carried mutations on ABCA4. In 75% of the unsolved
cases at least one ABCA4 pathogenic allele was identified,
suggesting the presence of disease-causing mutations lying
outside the coding sequence covered by our panel, as reported
in a previous study [19].

In LCA patients, causative mutations were identified in
CEP290, RPE65, RPGRIP], and CRX genes, and only one case
remained unsolved (20% of the total LCA cases), whereas all
Usher 2 syndrome cases were found to carry mutations in
USH2A gene.

For RP patients, genetic diagnosis was achieved in 27 out
of 45 (60% of the cases), involving mutations in 11 different
genes: confirming that these phenotypes are genetically het-
erogeneous (Figure 1). Dominant mutations were identified
in RHO gene, whereas USH2A, CNGBI, and TULPI were the
most recurrently mutated genes in ARRP. X-linked inheri-
tance was established for 5 RP male patients (4 probands had
mutations in RPGR, whereas one had a mutation in RP2). The
identification of USH2A as the defective gene in patients with
initial clinical diagnosis of RP was followed by audiometric
testing to establish if there were any hearing deficiencies. A
hearing impairment was found in 2 cases out of 5 leading to
clinical reassessment and final diagnosis of USH (Table 2).

For patients with IRD without a defined clinical diag-
nosis or with unclear disease manifestations, we identified
causative mutations in 7 out of 17 probands (23.5% of the
total IRD cases). In two cases the molecular results allowed
a refined clinical diagnosis: a compound heterozygosity of
two mutations in CEP290 led to a genetic diagnosis of LCA
in a patient with initial diagnosis of North Carolina or Star-
gardt macular dystrophy, whereas a homozygous pathogenic
variant in ABCA4 was found in a patient with tapetoretinal
degeneration.

In 36 patients (12 familiar and 24 sporadic) the molecular
analysis did not achieve any definitive result, even after the
analysis of the healthy family members, which was performed
in 8 cases. Half of the cases with a negative test result (18 out of
36) were affected by RP. The additional analysis of the RPGR
ORF15 (a mutational hotspot which was nonsufficiently
covered in our panel) for the male patients with a sporadic
or suspected X-linked pattern of inheritance (10 patients) by
Sanger sequencing yielded no additional mutations.

4. Discussion

The results of the present study confirm that high-throughput
Next-Generation Sequencing represents a comprehensive
cost-effective approach for the molecular diagnosis of Inher-
ited Retinal Dystrophies (IRDs), achieving a molecular diag-
nosis for 59.1% of the studied cases. More specifically, among
the different clinical phenotypes, the highest detection rates
were achieved for BMD, LCA, USH, and STGD patients,
in whom the genetic test clearly confirmed the clinical
diagnoses (Table 2). The results of the RP and of the not
defined IRD cohorts, instead, demonstrated the high genetic
heterogeneity of this diseases and the essential contribution of
our NGS analysis to achieving an accurate diagnosis, with the
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involvement of 12 different genes in 28 sporadic cases. Revi-
sion of the initial diagnosis, performed for 9.6% of the genet-
ically diagnosed patients, further emphasizes the importance
of a comprehensive genotype/phenotype analysis to unravel
the extensive heterogeneity of these diseases. Notably, a
remarkable fraction of identified variants are splice-altering
mutations (25% of the total mutation burden, 16 out of
64), located within splicing consensus regions, or exonic
variants predicted to cause enhancer/silencer motif modifi-
cation or the creation of new potential donor/acceptor, which
are amenable to the antisense-mediated splicing-correction
approaches, as recently reported for several genetic diseases,
including CEP290-caused LCA [20, 21].

The prevalence of IRD and most importantly the fre-
quency of gene mutations causing those diseases are not well
characterized in Italy and only few data have been reported
[22-24]. RPE65, CRBI, and GUCY2D were identified as the
most prevalent mutated genes in Italian LCA patients [22]
and RHO was reported to be the gene most commonly
responsible for ADRP [23] and EYS the most recurrent for
nonsyndromic ARRP and sporadic cases [24]. Our study
contributes only partially to the knowledge of the gene
mutation frequencies, since each IRD type is represented
by small cohorts of cases (i.e., the LCA and dominant RP
phenotypes were accounted for by 5 and 6 cases, resp.), and
some probands of other ethnicities have been included too.
Indeed, regarding LCA, we identified mutations in CEP290,
RPEG65, CRX, and RPGRIPI genes.

For ADRP, RHO was identified to be responsible for
the phenotype in one case, whereas, in ARRP and sporadic
RP, USH2A, CNGBI, and TULPI were the most recurrently
mutated genes. RPE65 mutations were found in two ARRP
cases: in one more case, still unsolved, a single RPE65 het-
erozygous pathogenic variant was found. ROMI compound
heterozygosity was established in one RP proband, suggesting
a mechanism of recessive inheritance for this gene associated
with dominant and digenic forms. X-linked inheritance was
established for 5 RP affected probands, with RPGR and RP2
identified as the disease-causing gene in 4 cases and 1 case,
respectively. All BMD diagnosed patients were heterozygous
for mutations on BESTI gene, the major gene responsible for
Best’s juvenile form [25], whereas the 78.5% of patients with
clinically diagnosed STGD carried pathogenic variants on
ABCA4 [26].

Similarly to a recent study [6], the clinical sensitivity
of our NGS analysis was not uniform, with the highest
diagnostic yields obtained in conditions where the disease-
causing genes have been nearly all identified.

Direct comparison of our findings with other recently
published NGS studies [2-6, 27] is not straightforward, due to
differences in the number of genes analyzed but especially due
to composition and relative representation of the different
phenotypes in the patients cohorts. However, the finding of
USH2A and ABCA4 as the most mutated genes for RP/USH
and STGD patients is consistent with previous reports [27-
29]. In our RP cohort, USH2A is followed by CNGBI and
RPGR. These two genes, already reported among the most
frequently mutated genes in IRD patients [29], were not
highly frequently altered in the Saudi population [6] or
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in a large cohort of Western European and South Asian
individuals [27]. Also, we did not find any alteration in EYS,
one of the top three genes contributing to IRD in other
populations [28, 29].

The different gene alterations identified in our LCA
cohort (CEP290, RPE65, RPGRIPI, and CRX genes) were
consistent with the different disease manifestations of the
analyzed patients, in accordance with the specific clinical
features described for each of the LCA-associated genes
[30, 31]. Less direct is the correlation between the genes
involved and the phenotypic features in RP, due to the known
contribution of environmental factors to late-childhood- and
adult-onset-diseases.

Allelic heterogeneity, with different mutations in the same
gene causing different phenotypes, is evident also in USH2A-
related retinal disease. Genotype-phenotype correlations
observed in our cohort were in accordance with the allelic
hierarchy proposed in a recent study [32], supporting the
model that USH represents the null phenotype consequent
upon severe USH2A defects, whereas milder mutations in at
least one allele result in a pure retinal phenotype associated
with normal auditory function.

IRD genetic heterogeneity, reflected in the identification
of mutations in many genes with a considerable number of
previously undescribed alterations, supported the conclusion
that molecular diagnosis of these disorders should rely on
massive parallel multigene sequencing. Nevertheless, for
36 probands, including 12 familiar cases and 24 unrelated
probands, our NGS procedure did not result in the identi-
fication of a clear genetic cause of the disease. Some subjects
may have mutations that cannot be detected by our amplicon-
based approach, such as deep intronic mutations, copy-
number variations, or large deletions. In the perspective of
the design of a more complete new version of the panel,
additional deep intronic regions reported in the literature as
carrying disease-causing mutations [19, 33, 34] or a higher
exon padding (5bp in our design, up to 100 bp available in
the current pipeline version of the ITon AmpliSeq Designer
tool) could be implemented. Moreover, technical limitations,
including the difficult amplification of RPGR ORFI5, a
mutational hotspot for X-linked RP, may have accounted
for some of the missed diagnosis (our panel is presently
covering only 30% of this critical exon), but the addition
of the specific analysis by Sanger sequencing of the ORF15
of the RPGR gene in 10 males patients, with sporadic/X-
linked RP and previously testing negative for pathogenic
mutations using our NGS panel, did not reveal any mutation
in the analyzed region. Finally, as an improvement to further
support the pathogenicity of novel mutations identified in
probands, the analysis of both affected and unaffected family
member should be performed, when possible.

In some of the patients who tested negative we how-
ever identified single potentially pathogenic heterozygous
mutations in recessive genes or novel heterozygous missense
variants in dominant genes with unknown significance,
lacking the appropriate level of evidence to classify them
as disease-causing or not in concordance with patients’
clinical presentations or family data. The contribution of
these variants in combination with deep intronic mutations
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or large deletions is suspected but could not be demonstrated
with the present technique.

Database incompleteness further complicates variant
interpretation. Two probands with BMD phenotype and
BESTI mutation were found to harbour also heterozy-
gous mutation in RHO (c.578C>T, p.Thrl93Met), which
was predicted to be damaging and listed as associated
with ADRP in a public database [http://www.retina-interna-
tional.org/sci-news/databases/mutation-database] but in our
cohort was carried also by healthy subject, reinforcing the
need of a critical interpretation of the molecular findings in
view of the phenotypic features of the patients with IRD until
a more thorough knowledge of the frequency of the variants
and a critical amount of data present in the public disease
databases are reached.

In conclusion, by presenting profoundly different muta-
tion rates varying according to the clinical diagnosis and
by reporting 9.61% of cases of reassessment of the initial
diagnosis on the basis of the results of the test, our study
reinforces the need of a multidisciplinary work-up before and
after the genetic testing, due to the implications of the results
in terms of risk assessment for family members and inclusion
in gene-based clinical trials.
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