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Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate
classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we
propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order
to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated
with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can
significantly improve the classification accuracy of motor imagery EEG signals.

1. Introduction

Brain-computer interface (BCI) is a new technology based
on electroencephalographic (EEG) signals [1] that provides a
new way for the patients with motor dysfunction to commu-
nicate with the outside world. In a BCI system, electrical
activity within the cerebral cortex is detected through the
use of an electrode cap and other equipment, and the motor
imagery EEG signals are converted into instructions to con-
trol an external device [2]. In recent years, BCI has been a
major focus in the field of brain science and biomedical engi-
neering and has been developed into a newmultidisciplinary
cross technology.

The key component of a BCI system is how it extracts
EEG characteristics to improve the recognition accuracy,
as the accuracy of this pattern recognition directly affects
the performance of the system. At present, the most com-
monly used pattern recognition methods include the Linear
Discriminant Analysis (LDA), 𝑘-Nearest Neighbor (KNN)
classification algorithm, Artificial Neural Network (ANN),
and Näıve Bayes (NB). The support vector machine (SVM)
was first developed in 1995 by Vapnik based on statistical

learning theory, which is usually used for classification and
nonlinear regression.Themain idea of SVMs is to change the
vector to a higher dimensional space and obtain the optimal
classification plane by calculation so as to make the sample
linearly separable. Kor Shoker has previously analyzed the
corresponding characteristic parameters of the event-related
synchronization (ERS) and event-related desynchronization
(ERD), using the SVM classifier for classification. Because
SVMs can solve the practical problems associated with
small sample sizes, nonlinear relationships, high dimensions,
and local minima the machines can achieve classification
accuracy above 83.5%. However, the kernel function of SVM
is often difficult to choose in practical applications due to the
random and nonstationary nature of EEG signals and the lack
of prior knowledge regarding the distribution characteristic
of the signal [3].

In traditional SVM classifiers, the penalty and nuclear
parameters are usually chosen according to the empirical
data, ignoring the importance of optimizing the parameter to
enhance the effects of the classifier. To improve this, a particle
swarm optimization (PSO) algorithm has been applied to
select the best kernel function and penalty parameters and
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Table 1: The experiments number of the five subjects.

Subjects Training times Test times
aa 168 112
al 224 56
av 84 196
aw 56 224
ay 28 252

thereby improve the accuracy of classification [4, 5]. The
combination of PSO and SVM was used by Maali and
Al-Jumaily for the recognition of apnoea and other sleep
dysfunctions [4] and by Subasi for optimizing the SVM for
EMG signal classification [5].

The classification accuracy of SVM largely depends on the
selection of the kernel function parameters. By combining
with the characteristic of EEG signals, the PSO can be used
to optimize the parameters of the kernel function and the
penalty parameter of EEG SVM classification and thereby
improve classification accuracy.

2. Feature Extraction

2.1. Experiment Data 1. The experimental motor imagery
EEG data was obtained from the 2005 competition, BCI
Competition III Data Iva, which has been published by the
GermanResearch Center for BCImovement. Databases from
five healthy subjects (aa, al, av, aw, and ay aged 24 to 25 years)
were obtained, in which the subjects conducted left hand,
right hand, or right foot motor imagery. The right hand and
right foot imagery data was isolated for analysis within this
paper.

The specific collection process of the experiment was as
follows: the five subjects were asked to sit quietly on the
chair and perform the corresponding imagery according to
prompts shown on a screen in front of them. The timing
diagram of a single imagery experiment can be seen in
Figure 1. Once prompts were given, the subject performed
the appropriate motor imagery for 3.5 seconds and rested
afterwards for a variable time of 1.75–2.25 seconds. During
collection the electrodes were placed in the standard 10–
20 lead mapping, using 59 channels recorded at a sampling
frequency of 100Hz. Every subject conducted four sets of
experiments, each containing 70 runs of motor imagery data
for a total of 280 runs per subject.The specific data of the five
subjects is shown as in Table 1.

2.2. Experiment Data 2. The experimental motor imagery
EEG data was obtained from the 2005 competition, BCI
Competition III Data Iva, published by the German Research
Center for BCI movement. The data comes from seven
healthy subjects, alphabetically labeled a–g. During the
experiment the subjects completed motor imagery of left
hand, right hand, or foot according to the computer prompts.
Subjects a and f were asked to perform left hand and foot
imagerywhile the remaining five subjects performed imagery
of the left and right hands. EEG electrodes were placed
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Figure 1: The timing chart of a single motor imagery experiment.
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Figure 2: The timing chart of a single motor imagery experiment.

in the standard 10–20 lead mapping and data collection
featured 59 channels with a sampling frequency of 100Hz.
The experimental data from subjects a, b, f, and e have been
analyzed in this paper.

In the experiment subjects performed 200motor imagery
tasks, each lasting for 8 s. During the task, a cross was first
presented for 2 s, indicating that the subject should prepare
for motor imagery. Subjects were then shown an arrow
pointing left, right, or down for 4 seconds, indicating that
the subject should imagine respectivemotion of the left hand,
right hand, or foot. Finally, subjects rested for 2 seconds while
a blank screen was shown. The full experimental process can
be seen in Figure 2.

2.3. Common Spatial Pattern. Common spatial pattern (CSP)
is an improved algorithm based on principle component
analysis. While it has been mainly used in face recognition,
object recognition, and EEG anomaly detection, it has also
been successfully applied to brain-computer interfaces. The
CSP algorithm is a kind of multidimensional statistics that
has often been applied to EEG signal feature extraction and
analysis in two-class multichannel methods. According to
the phenomena of ERD/ERS during motor imagery, feature
extraction using CSP is as follows: firstly, the two classes of
motor imagery EEG signal will be filtered by CSP to make
a class of signals (such as left hand motor imagery) with
maximum variance and a class (such as right hand motor
imagery) that features minimum variance, making a clear
distinction between the two groups. The following are the
specific steps of EEG signal feature extraction using CSP.

Suppose that the motor imagery EEG signal is expressed
as 𝐸
𝑖

𝑗
, where 𝑖 is the sample and 𝑗 represents one of the two

different categories with the range 𝑗 ∈ {1, 2}. The dimension
of the EEG signal is 𝑁 × 𝑇, where 𝑁 is the number of the
channels and 𝑇 is the number of samples recorded in the
experiment. The steps for creating the two classes of motor
imagery for EEG signal feature extraction are then as follows.
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(1) Calculate the sample covariance of the two classes of
motor imagery:

𝑅
𝑗

=
𝐸
𝑖

𝑗
𝐸
𝑖𝑇

𝑗

trace (𝐸𝑖
𝑗
𝐸𝑖𝑇
𝑗

)
, (1)

where 𝐸
𝑖𝑇

𝑗
is the transpose of 𝐸

𝑖

𝑗
, trace(𝐸

𝑖

𝑗
𝐸
𝑖𝑇

𝑗
) is the trace of

the matrix, and 𝑅
𝑗
represents the covariance of class 𝑗. The

space covariance can be calculated as the average of all the
same class data covariance of EEG. Supposing that the average
covariance values of the two-class motor imagery sample are
indicated as 𝑅

1
and 𝑅

2
, then the general covariance can be

expressed as

𝑅
𝑐

= 𝑅
1

+ 𝑅
2
. (2)

(2) Feature decomposition of 𝑅
𝑐
by principle component

analysis is as follows:

𝑅
𝑐

= 𝐵𝜆𝐵
𝑇

, (3)

where 𝐵 is the eigenvector matrix and 𝜆 is the corresponding
characteristic values. The variance can be then uniformed by
a whitening matrix, and the whitening matrix 𝑃 is defined as

𝑃 = 𝜆
−1/2

𝐵
𝑇

. (4)

The average covariance of the two classes of motor imagery
EEG signal can then be changed as followswith thewhitening
matrix 𝑃:

𝑆
1

= 𝑃𝑅
1
𝑃
𝑇

,

𝑆
2

= 𝑃𝑅
2
𝑃
𝑇

.

(5)

(3) The covariance matrix of the two classes has the same
eigenvectors:

𝑆
1

= 𝑈𝜆
1
𝑈
𝑇

,

𝑆
2

= 𝑈𝜆
2
𝑈
𝑇

.

(6)

So the corresponding feature values of the two classes
of covariance matrices can be obtained, which have been
expressed here as the values 𝜆

1
and 𝜆

2
that satisfy the

equation 𝜆
1

+𝜆
2

= 𝐼, where 𝐼 is an identity matrix.Therefore,
according to the above formula, if the feature value of 𝑆

1
is

maximal, then the feature value of the corresponding feature
vector of 𝑆

2
is minimal, and vice versa, two classes of the EEG

signal are separable.
(4) According to step (3), 𝑈 can be used to distinguish

the two different kinds of dataset. The first-𝑚 and last-𝑚
representative feature vectors can be chosen to form a matrix
from the two types of the feature vectors and the projection
matrix can be expressed as

𝑊 = 𝐵
𝑇

𝑃. (7)

Then the projected matrix of the two types of the motor
imagery EEG signal through the filter can be expressed as

𝑌 = 𝑊𝐸
𝑖

𝑗
. (8)

Finally, the feature of the coefficient of the logarithm can be
indicated as

𝑓
𝑗

= log(
var (𝑌

𝑗
)

∑
𝑘=2𝑚

𝑘=1
log (var (𝑌

𝑘
))

) , 𝑗 = 1, 2, . . . , 2𝑚, (9)

where 𝑌
𝑗
is the 𝑗th line of 𝑌 and var(𝑌

𝑗
) is the variance.

2.4. Regularized Common Spatial Pattern. In traditional CSP
EEG feature extraction, the data is recorded from only one
subject. When the sample size for this subject is small, the
feature extraction results are often unsatisfactory, especially
considering how easily EEG data can be influenced by the
emotions or physical conditions of the subjects. In order to
solve this problem, the Regularized Common Spatial Pattern
(RCSP) algorithm has been used for feature extraction [6,
7]. This method introduces a regularization parameter to
avoid the drawbacks of a single sample and reduce individual
differences. The specific procedures are as follows.

𝑛 subjects are selected, specifying one as the main subject
and the others as secondary subjects. The regulation param-
eters of 𝛽 and 𝛾 (0 ≤ 𝛾, 𝛽 ≤ 1) are then introduced to
combine the covariancematrix of themain subject with those
of secondary subjects, and the two classes of the covariance
matrix are constructed as follows:

𝑍
1

(𝛾, 𝛽) = (1 − 𝛾)
(1 − 𝛽) ⋅ 𝑅

1
+ 𝛽 ⋅ 𝑅

1
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+
𝛾

𝑁
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1
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1
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]

⋅ 𝐼,

𝑍
2
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(1 − 𝛽) ⋅ 𝑅

2
+ 𝛽 ⋅ 𝑅

2
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𝛾
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2

+ 𝛽 ⋅ 𝑅
2

(1 − 𝛽) ⋅ 𝑚 + 𝛽 ⋅ (𝑛 − 1) ⋅ 𝑚
]

⋅ 𝐼,

(10)

where 𝑅
1
and 𝑅

2
represent the two-class sample covariance

matrices of the main subject, the covariance matrices of the
other 𝑛 − 1 subjects are 𝑅

1
and 𝑅

2
, 𝑚 is the number of the

experiments, and tr express the trace of the matrix. 𝐼 is a unit
matrix of 𝑁 × 𝑁, where 𝑁 is the number of the channels.
The two-class covariance matrices are solved and the feature
decomposition formula performed is as follows:

𝑍 (𝛾, 𝛽) = 𝑍
1

(𝛾, 𝛽) + 𝑍
2

(𝛾, 𝛽) = 𝑈Λ𝑈
𝑇

, (11)
wherein 𝑈 is the feature vector, Λ is the diagonal matrix of
the corresponding eigenvalues, and the whitening matrix is
defined as

𝑃 = Λ̂
−1/2

⋅
̂
𝑈
𝑇

. (12)

Equation (10) is subsequently whitened:

𝑍
1

(𝛾, 𝛽) = 𝑃 ⋅ 𝑍
1
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𝑇

= 𝑈
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1
,

𝑍
2

(𝛾, 𝛽) = 𝑃 ⋅ 𝑍
2

(𝜆, 𝛽) ⋅ 𝑃
𝑇

= 𝑈
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⋅ Λ
2
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𝑇

2
,

(13)
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wherein Λ
1
and Λ

2
are the eigenvalues and 𝑈

1
and 𝑈

2
are

the feature vectors. Selecting the first- and last-𝑚 eigenvectors
of the eigenvalues, then the spatial filter is constructed as
follows:

𝑊
1

= 𝑈
𝑇

1
⋅ 𝑃,

𝑊
2

= 𝑈
𝑇

2
⋅ 𝑃.

(14)

The training samples of 𝑋
1
and 𝑋

2
are extracted by CSP and

the feature vector of [𝑍
1
, 𝑍
2
] is obtained as follows:

𝑍
1

= 𝑊
1
𝑋
1
,

𝑍
2

= 𝑊
2
𝑋
2
.

(15)

3. Feature Recognition of EEG

3.1. Support Vector Machine. Support vector machines were
created by Vapnik based on the statistical learning theory and
can solve the problems associated with small sample sizes,
nonlinear relationships, and multiple classifications [8]. The
principle of SVM classification is to construct an optimal
hyperplane as the decision surface to identify the different
classes, so as to maximize the spacing between them.

In solving the nonlinear classification problem of SVM,
the kernel function is used instead of the inner product
computation and nonlinear problems are converted to linear
classification problems by raising their dimension [9]. The
paper mainly focuses on two-class feature classification, and
the sample set is expressed as (𝑥

𝑖
, 𝑦
𝑖
), 𝑖 = 1, 2, . . . , 𝑙, 𝑥 ∈ 𝑅

𝑁,
where 𝑦

𝑖
∈ {−1, +1} is the identifier of the category. The

discriminant function can be expressed as

𝑦
𝑖
[(𝑤 ⋅ 𝑥

𝑖
) + 𝑏] − 1 ≥ 0, 𝑖 = 1, 2, . . . , 𝑙. (16)

Through the Lagrange multiplier, this can be transformed
into a dual problem and the conversion optimization objec-
tive function is as follows:

min 𝑄 (𝑎) =
1

2

𝑙

∑

𝑖,𝑗=1

𝑎
𝑖
𝑎
𝑗
𝑦
𝑖
𝑦
𝑗

⋅ 𝐾 (𝑥
𝑖
, 𝑥
𝑗
) −

𝑙

∑

𝑖=1

𝑎
𝑖
, (17)

which satisfies the constraints: ∑
𝑙

𝑖=1
𝑎
𝑖
𝑦
𝑖

= 0, 0 ≤ 𝑎
𝑖

≤ 𝐶,
where 𝑎

𝑖
represents the corresponding Lagrange multipliers

of 𝑀 for each constraint and 𝐶 is the punishment parameter
of the sample. To solve the above problem, an appropriate
kernel function𝐾(𝑥, 𝑦) is selected and a RBF function is used
chosen in this paper, which can be expressed as

𝐾 (𝑥, 𝑥
𝑖
) =

exp (−
󵄨󵄨󵄨󵄨𝑥 − 𝑥

𝑖

󵄨󵄨󵄨󵄨
2
)

𝑔2
. (18)

The optimal classification function can be obtained as

𝑓 (𝑥) = sgn(

𝑙

∑

𝑖=1

𝑎
∗

𝑖
𝑦
𝑖
𝐾 (𝑥, 𝑥

𝑖
) + 𝑏
∗

) , (19)

wherein 𝑎
∗ and 𝑏

∗ are the parameters used to determine the
optimal classification surface, which can be obtained by a
support vector.

3.2. Particle Swarm Optimization. The particle swarm opti-
mization (PSO) approach was proposed by Kennedy and
Eberhart in 1995 as an evolutionary optimization algorithm
[10, 11]. The main principle of PSO is to start with a random
point and then evaluate the fitness function of that particle
which will be evaluated to find the optimal solution by iter-
ative optimization [12]. The primary characteristics of PSO
are sample structure, a relatively low number of adjustment
parameters rapid convergences, and ease of implementation,
leading to the broad use of the algorithm in various fields.

PSO is a global iterative optimization algorithm. Each
individual in the population is represented as a particle.
At the beginning a fitness function is set to determine the
fitness value of each particle and these particles are set to
move within the search space according to their speed and
position following the current of optimal moving particles
[13]. Following this process, a final optimal solution will be
obtained. During each iteration the particle will move along
a track that is optimal both for itself and for the group. The
specific optimization process is described as follows.

Supposing in dimensional space 𝑑 there are 𝑖 particles,
the position (𝑥

𝑖
) and velocity (V

𝑖
) of each particle are 𝑥

𝑖
=

(𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑑

)
𝑇 and V

𝑖
= (V
𝑖1

, V
𝑖2

, . . . , V
𝑖𝑑

)
𝑇, where 𝑖 =

1, 2, . . . , 𝑁. The best position of each particle 𝑖 is 𝑝
𝑖

=

(𝑝
𝑖1

, 𝑝
𝑖2

, . . . , 𝑝
𝑖𝑑

), and the extreme values of the global popu-
lations are𝑝

𝑔
= (𝑝
𝑔1

, 𝑝
𝑔2

, . . . , 𝑝
𝑔𝑑

). Each particle then adjusts
their own speed and position by comparing with the global
and individual extreme value to get the optimal parameters
through iterative calculation. The particle update formulae
for velocity and position are expressed as follows:

V𝑡+1
𝑖𝑑

= V𝑡
𝑖𝑑

+ 𝑐
1
𝑟
1

(𝑝
𝑡

𝑖𝑑
− 𝑥
𝑡

𝑖𝑑
) + 𝑐
2
𝑟
2

(𝑝
𝑡

𝑔𝑑
− 𝑥
𝑡

𝑔𝑑
) , (20)

𝑥
𝑡+1

𝑖𝑑
= 𝑥
𝑡

𝑖𝑑
+ V𝑡+1
𝑖𝑑

, (21)

wherein the position 𝑥
𝑡

𝑖𝑑
∈ [𝐿

𝑑
, 𝑈
𝑑
] and 𝐿

𝑑
and 𝑈

𝑑
,

respectively, represent the lower and upper 𝐷-dimensional
space. The current iteration number is given by 𝑡 and the
range of the speed is V𝑡

𝑖𝑑
∈ [Vmin,𝑑, Vmax,𝑑], where Vmin,𝑑 and

Vmax,𝑑 are the lower and upper particle velocity. 𝑟
1
and 𝑟
2
are

random numbers uniformly distributed in (0, 1) and 𝑐
1
and

𝑐
2
are the constants called learning factors, which trade off

the best position for the particle itself and the best position
among groups. Shi and Eberhart added the inertia weight
parameters to the original PSO to control the search scope
and to reduce the importance of the upper speed limit. Using
this, formula (20) can be changed to

V𝑡+1
𝑖𝑑

= 𝑤V𝑡
𝑖𝑑

+ 𝑐
1
𝑟
1

(𝑝
𝑡

𝑖𝑑
− 𝑥
𝑡

𝑖𝑑
) + 𝑐
2
𝑟
2

(𝑝
𝑡

𝑔𝑑
− 𝑥
𝑡

𝑖𝑑
) , (22)

where the greater the value of the inertia weight parameter 𝑤

is, the stronger the capability of the global search becomes.
In contrast, the local search ability becomes weaker. Lastly,
𝑡 is the number of the iterations and once the termination
condition is reached, the optimal solution will be obtained.

3.3. Improved PSO-SVMClassifier. Theselection of the kernel
parameter for the support vector machine can directly affect
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Figure 3: The flowchart of PSO optimized SVM parameters.

the performance of the classifier, making this selection pro-
cess quite important.The traditional cross-validationmethod
for selecting this parameter, however, is inefficient and will
not necessarily achieve an optimal solution. Due to the
parallelism and the independence in the target optimization
of PSO, themethod can be successful in solving the nonlinear
problems in high-dimensional space [14].

The RBF function has been chosen here as the kernel
function of SVM for the pattern classification of motor
imagery EEG signals. SVM classification relies heavily upon
the selection of appropriate penalty and kernel parameters.
These parameters will be optimized by PSO, and the optimal
parameters will be applied to EEG signal classification and
prediction.The flowchart of the optimized SVM based on the
PSOalgorithm is shown in Figure 3, and the concrete steps are
as follows.

(1) Initialization. In the 𝐷-dimensional parameter space, the
position and the velocity of the particle 𝑀 will be initialized,
including setting the initial parameters of 𝑐

1
and 𝑐
2
, as well as

the inertia weight of the population. The penalty parameter
and the nuclear parameters of the SVM will be initialized,
and the size of the population and the largest number of the
iterations will be determined.

(2) Calculating the Fitness. First model the support vector
machine with the initialized parameters, and train the model

based on the training sample. Then calculate the fitness
function values using the fitness function of each particle.

(3) Adjusting. Adjust the personal best position and the global
best position according to the particle fitness value.

(4) Updating. Update the position and the velocity of the
particle according to formulae (21) and (22) to get the new
parameters of 𝑝 best and 𝑔 best.

(5) Determination. When the error condition or the max-
imum number of iterations has been reached, stop the
iterative output. Otherwise, return to step (3) to continue the
calculation.

(6) Classification. Output the optimal kernel parameter 𝑔 and
the penalty factor 𝐶; then, retrain the SVM classifier with the
training sample. Finally, use the obtained best classifier for
class prediction.

Through the six steps above, complete the parameter
optimization of the SVM penalty parameter and kernel
parameter based on PSO, and use the optimized classifier
for the classification and prediction of motor imagery EEG
signals.

4. Experimental Results and Analysis

4.1. The Process of PSO Optimizing the SVM Parameters. In
this experiment, the data obtained from BCI Competition
2005 Data Iva has been applied for analysis. The five subjects
of aa, al, av, aw, and ay have been chosen for the feature
extraction and classification experiment, and the C3 and C4
channels have been selected for the analysis ofmotor imagery
EEG data.

Firstly, the CSPmethodwas applied for feature extraction
for the two classes of themotor imagery EEG signal.Then, the
PSO-SVM classifier was used to classify the extracted feature
vectors.The initial parameters of the PSOwere set as 𝑤 = 0.8,
𝑐
1

= 1.5, and 𝑐
2

= 1.7. The 50 particles were used in the
swarm, the maximum number of iterations was set to 100,
the penalty parameter 𝐶 was in the range of (0.1, 100), and
the kernel parameter 𝑔 was in the range of (0.01, 1000). The
experimental iterative optimization process for subject aa is
shown in Figure 4. As shown in the figure, the continuous
iteration process will gradually approach maximal fitness.
When the termination condition was reached, the average
fitness was approximately 90% and the output values of the
optimal parameters were 𝐶 = 4.5294 and 𝑔 = 0.01.

4.2. Experiment 1 Classification Results and Analysis. In the
experiment of the BCI Competition 2005 Data Iva, one sub-
ject was selected as themain subject while the four remaining
subjects were selected as the supplementary subject, with the
number of samples for each selected as 200, 100, 80, and
56 in decreasing order. The ratio training samples to test
samples were 60 : 40. In order to achieve the best feature
classification results, the appropriate regulation parameters
needed to be selected. After several tests, the regularization
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Table 2: The classification results of PSO-SVM and traditional methods for 2005 Data Iva.

Accuracy (%) aa (100) al (200) av (80) aw (56)
Max Average Max Average Max Average Max Average

Decision tree 82.5 79.8 74.6 71.5 74.2 71.2 75.4 72.8
BP 71.4 70.2 85.8 84.2 81.6 79.4 72.2 70.6
KNN 94.6 92.5 87.6 85.8 82.4 80.1 89.2 87.8
LDA 96.2 95.4 92.7 90.2 82.8 80.2 91.6 90.2
SVM 97.7 96.4 92.5 89.4 81.5 77.6 90.5 88.9
PSO-SVM 98.1 97.0 93.9 91.7 82.0 80.5 92.3 91.6

Best fitness
Accuracy fitness
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Evolution iterative number
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Figure 4: The fitness curve of the particle swarm optimization
parameters.

parameters were set to zero for subjects aa and al, while
the parameters were set to 𝛽 = 0 and 𝛾 = 0.01 for
subjects av and aw to reach the ideal feature extraction result.
Figures 5 and 6, respectively, represent the classification rate
of subject aa with the SVM and PSO-SVM classifiers. When
the test label coincides with the pretest label, it indicates
that the classification results are the same in that type
of imagined motion. In these figures, it is clear that the
classification accuracy after PSO is greater than that obtained
without optimization, indicating an overall improvement in
performance.

To verify that the recognition results of the SVM after
the PSO were optimized, subjects al, aa, av, and aw were
selected for motor imagery EEG signal classification with
both the traditional SVM and PSO-SVM classifiers. The
classification accuracy results of the four subjects with SVM
and PSO-SVM are shown in Table 2. Each of the four
subjects showed increases in both maximum and average
classification accuracy. The average recognition of the four
subjects increased about 2%, indicating that the PSO-SVM
can effectively improve the performance of the SVM classifier
when optimal parameters have been obtained.

To further verify the validity of the PSO optimized SVM,
the classification results of PSO-SVM have been compared
with the traditional classification methods such as decision
tree, BP, KNN, and LDA. The classification results of LDA
are from the literature [12]; subjects aa, al, av, and aw were
chosen as the main subjects with the remaining four chosen
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Figure 5: The classification accuracy figure before optimization.

as the secondary subjects. In this experiment, the first 40 sets
of experimental data were chosen from each subject and the
regularization parameters were set as 𝛽 = 0 and 𝛾 = 0.01.
The maximum and average classification accuracy results of
the methods are shown in Table 2. In order to compare the
classification performance of different classifiers clearly, the
average classification accuracy results are shown in Figure 7.
This bar chart, comparing the classification result of PSO-
SVM with traditional classification methods, shows that the
classification accuracy of PSO-SVM is higher than that of
other methods in each subject, with classification accuracy
reaching up to 97%.The final results then show that the PSO-
SVM has clear advantages and it can effectively improve EEG
classification accuracy.

4.3. Experiment 2 Classification Results and Analysis. In this
experiment, the data of BCI Competition Datasets 1 2008
have been applied for analysis. Four subjects, a, b, f, and e,
have been chosen for the feature extraction and classification
experiment and the C3 and C4 channels selected for the
analysis of motor imagery EEG data. The data of the four
subjects were firstly extracted feature by the CSP method.
After 100 experimental iterations, the final classification
results of the PSO-SVM and SVM were obtained. The results
from these classifications are shown in Table 3.
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Table 3: The classification results of PSO-SVM and traditional methods for 2008 Dataset 1.

Accuracy (%) a b f e
Max Average Max Average Max Average Max Average

Decision tree 84.5 81.4 74.6 72.5 86.2 84.5 84.6 78.2
BP 85.6 82.2 74.8 73.2 87.6 85.4 83.4 81.5
KNN 90.6 86.5 78.6 76.8 91.4 87.1 84.2 82.8
LDA 89.4 86.2 80.5 76.6 90.8 86.0 86.4 82.2
SVM 91.7 86.8 78.0 76.3 95.0 86.1 90.5 78.3
PSO-SVM 91.3 88.1 83.5 80.1 95.2 89.7 92.0 83.1
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Figure 6: The classification accuracy figure after optimization.

From this table, the accuracy results again show that the
PSO optimized SVM classifier can improve the classification
rate for two-class EEG signal in most cases. While subject a
was able to achieve a marginally greater maximum classifi-
cation accuracy with standard SVM, all other subjects and
conditions show increased performance with the PSO-SVM
algorithm. The CSP method combined with the PSO-SVM
classifier can subsequently be considered more suitable for
motor imagery EEG classification.

Furthermore, in order to verify the validity of the PSO
optimized SVM, the classification results of PSO-SVM have
been compared with the traditional classifiers such as deci-
sion tree, BP, KNN, and LDA. In this experiment, four
subjects a, b, f, and e were firstly extracted feature by the CSP
method. The maximum and average classification accuracy
results of the methods are shown in Table 3. In order to com-
pare the classification performance of different classification
methods clearly, the average classification accuracy results are
shown in Figure 8.This bar chart, comparing the classification
result of PSO-SVMwith traditional classifiers, shows that the
classification accuracy of PSO-SVM is higher than that of
other methods in each subject, with classification accuracy
reaching up to 89.7%. The final results show that the PSO-
SVM algorithm has clear advantages for EEG classification.

Decision tree
BP
KNN

LDA
SVM
PSO-SVM

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 p
er

ce
nt

ag
e r

at
e (

%
)

al av awaa
Subject

Figure 7: The classification accuracy of PSO-SVM compared with
traditional methods for 2005 Data Iva.
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Figure 8: The classification accuracy of PSO-SVM compared with
traditional methods for 2008 Dataset 1.
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5. Conclusions

This paper has focused on the classification of the motor
imagery EEG signals by analyzing the data obtained from
the BCI Competition Datasets 1 2008 and 2005 competition
BCI Competition III Data Iva. The final experimental results
show that the kernel function of SVM optimized by particle
swarm optimization can effectively improve the classification
accuracy.ThePSO-SVMclassificationmethod is able to over-
come the shortcomings of the parameter selection problem
that traditional SVM is subject to. The systematic nature
of PSO-SVM further allows for the rapid determination of
parameters, making the process much less time-intensive. In
a word, the PSO-SVM classifier can reach a better accuracy
rate than traditional classification method.
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