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Due to the increasing needs for organ transplantation and a universal shortage of donated tissues, tissue engineering emerges as a
useful approach to engineer functional tissues. Although different syntheticmaterials have been used to fabricate tissue engineering
scaffolds, they havemany limitations such as the biocompatibility concerns, the inability to support cell attachment, and undesirable
degradation rate. Fibrin gel, a biopolymeric material, provides numerous advantages over synthetic materials in functioning as
a tissue engineering scaffold and a cell carrier. Fibrin gel exhibits excellent biocompatibility, promotes cell attachment, and can
degrade in a controllable manner. Additionally, fibrin gel mimics the natural blood-clotting process and self-assembles into a
polymer network. The ability for fibrin to cure in situ has been exploited to develop injectable scaffolds for the repair of damaged
cardiac and cartilage tissues. Additionally, fibrin gel has been utilized as a cell carrier to protect cells from the forces during
the application and cell delivery processes while enhancing the cell viability and tissue regeneration. Here, we review the recent
advancement in developing fibrin-based biomaterials for the development of injectable tissue engineering scaffold and cell carriers.

1. Introduction

According to the report by the U.S. Department of Health
& Human Services, in 2013, there were over 121,000 patients
waiting in the tissue donation list but there were only 14,000
donors and this gap continues to widen [1]. Due to the
increasing needs for organ transplantation and a universal
donor shortage, tissue engineering emerges as a useful
approach to address this problem. Tissue engineering com-
bines living cells and a suitable polymeric scaffold to regen-
erate functional tissues or organs. An ideal scaffold should be
easy to handle, nontoxic or having no immunogenic effect,
and showing good mechanical and chemical properties,
as well as having controllable degradation to match the
tissue development [2]. Although synthetic polymers such
as polyglycolic acid, polylactic acid, and polyurethanes are
widely used to fabricate tissue engineering scaffolds, these
synthetic materials are limited by biocompatibility concerns,
the inability to support cell attachment, toxic degradation
products, and undesirable degradation rate [3, 4].

For biopolymer-based tissue engineering scaffolds, pro-
tein-based (i.e., fibrin, collagen) materials provide binding

sites for cell adhesion, while the polysaccharide-based (i.e.,
alginate, chitosan, and agarose) scaffolds usually require
further cell-attachment modification to promote cell adhe-
sion and proliferation [5, 6]. Fibrin gel is a degradable
biopolymer formed from fibrinogen. Fibrin gel mimics the
last step of the blood coagulation cascade and results in a
clot of fibrin. Fibrinopeptides are removed fromfibrinogen by
thrombin [7]. With the changes of conformational structure
and the exposure of polymerization sites, fibrin monomers
self-assemble into insoluble fibrin gel [8]. The insoluble
fibrin gel can be eventually degraded with plasmin-mediated
fibrinolysis. The fibrin clot adheres to the native tissue to
prevent the leakage of body fluid and provides cell binding
sites for cell attachment, migration, and proliferation to
promote tissue regeneration [9].

Fibrin gel has been widely used as a bioadhesive in
surgeries for hemostasis, wound closure, and a sealant [10–
13]. Additionally, fibrin gel exhibits minimal inflammation
and foreign body reaction and is readily absorbed during the
normal wound healing process. These fibrin sealants have
been successfully applied in cardiovascular and neuro- and
thoracic surgeries. In recent years, the application of fibrin
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Figure 1: Schematic representation of the fibrin aggregation process. Fibrinogen is composed of two sets of A𝛼-, B𝛽-, and 𝛾 chains. Each
𝛼-chain is connected with E-region through fibrinopeptide A (FPA, orange) and fibrinopeptide B (FPB, green).TheD-region is linked with E-
region through a coiled segment.Thrombin-mediated cleavage of FPA induces the formation of two-stranded protofibril. Subsequent cleavage
of FPB releases 𝛼-chain from E-region and contributes to the lateral aggregation of two-stranded protofibrils and fibrin formation [24].

gel in tissue engineering has become more common. In
comparison to the synthetic polymeric materials, fibrin gel
presents many advantages, such as controllable degradation
rate which matches those of tissue regeneration, nontoxic
degradation products, and excellent biocompatibility. More-
over, the morphology, mechanical properties, and stability
of fibrin gel hydrogel could be tuned by controlling the
precursor concentration and ionic strength [14, 15]. Collagen-
based hydrogel, on the other hand, faces the challenge of fast
degradation rate, which leads to the instability of mechanical
property before the tissue repair or wound healing is done
[16]. In addition, fibrin gel also presents high cell seeding
efficiency, uniform cell distribution [17], adhesive property
[18], and improved cellular interaction [19]. The ability for
fibrin gel to cure in situ makes it suitable for developing
injectable biomaterials that is compatible with minimally
invasive delivery approaches. Existing review articles are
mainly focused on the use of fibrin gel as a bioadhesive in
tissue repair [12, 20–22]. This paper reviews recent advances
in applying fibrin gel as an injectable scaffold and cell carrier
for tissue engineering.

2. Mechanism of Fibrinogen Involved in
Blood-Clotting Cascade

Fibrinogen and thrombin are the main components involved
in the blood-clotting process. Fibrinogen is a 340 kDa plasma
glycoprotein consisting of two sets of polypeptide chains
and each set consists of A𝛼-, B𝛽-, and 𝛾 chains (Figure 1)
[7, 23, 24]. The two sets of polypeptide chains are linked
as a dimer by 29 disulfide bonds. B𝛽- and 𝛾 chains consist
of the D-region, which is linked with E-region through a
coiled segment. 𝛼-chains are linked to E-region through fib-
rinopeptide A (FPA) and fibrinopeptide B (FPB). Thrombin

is a protease existing in the plasma, which is formed from
the proteolytically cleaved prothrombin (coagulation factor
II) in the coagulation cascade after the vascular injury [25].
Thrombin-mediated cleavage of FPA and FPB from fibrino-
gen initiates the formation of fibrin. The removal of FPA
occurs first to start the double-stranded protofibril formation.
Subsequently, FPB is removed from fibrinogen and results in
the release of 𝛼-chain from the E-region, which leads to a
lateral aggregation of protofibrils and fibrin formation. The
fibrin continues to self-assemble into a fibrin network.

Fibrin serves as both a cofactor and a substrate for
plasmin-mediated fibrinolytic degradation. Fibrin enhances
the transformation of plasminogen to plasmin by tissue
plasminogen activator (tPA) and breaks down the fiber
structure by the cleavage of plasmin in fibrin [24, 26, 27].

3. Source and Preparation of Fibrin Gel

Fibrin-based products are prepared from pooled plasma.
Human plasma (homologous or autologous) has been used
as a source for fibrinogen to reduce the potential risks
of immunological reaction [28]. The thrombin is usually
purified from bovine plasma. Each of these two precursor
solutions is stored in a separate syringe and is mixed and
injected directly to the wound site [28]. The gelation process
of fibrin gel mimics the last step of the coagulation cascade,
which is a part of natural wound healing processes. Fibrino-
gen is converted to fibrin via the mediation of thrombin.
Then fibrin is cross-linked by a coagulation factor and self-
assembles into fibrin mesh [29]. Gel formation follows the
nonlinear condensation polymerization principle [30]. By
changing the kinetic parameters fibrin gel structure can
be controlled. For instance, increasing the concentration of
thrombin accelerates the gelation time and results in a more
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densely cross-linked network with thinner fibers. On the
other hand, reducing the thrombin concentration results in
gel with a higher porosity [30, 31]. Increasing the concentra-
tion of FXIIa (a coagulation factor which stabilizes the fibrin)
contributes to a denser structure with increased clot stiffness
[32]. Fibrin gels with a final fibrinogen concentration higher
than 25mg/mL, 20mMCa2+, and pH between 6.8 and 9 have
a broad linear viscoelastic region.They also present the ability
to withstand 104 Pamechanical load and a long-term stability,
which is desirable for tissue engineering application [33].The
degradation rate of fibrin gel can be regulated with aprotinin
and tranexamic acid (trans-4-aminomethyl-cyclohexane-1-
carboxylic acid; tAMCA) to precisely match tissue regen-
eration [34]. Fibrin can be fabricated into various types
of tissue engineering scaffolds such as micro/nanoparticles
[35, 36], micro/nanofibers [37, 38], microtubes [39], and
hydrogels [40, 41]. These diverse fibrin-based products have
been applied in different tissue engineering fields and some
of their recent applications are reviewed below.

4. Applications of Fibrin Gel in
Tissue Engineering

Tissue engineering is a revolutionary strategy to solve the
problem of shortage of donated organ or tissue. Cells are
isolated frompatient’s tissue biopsy and seeded into a scaffold,
which provides mechanical support for cell migration, pro-
liferation, and tissue regeneration. There are two approaches
to engineer tissues (Figure 2). One of them is to inject the
mixture of scaffold precursor and cells into patients’ body
[42]. The other approach involves culturing the scaffold in
vitro and implanting the subsequent engineered tissue into
patients’ body. Occasionally, it is necessary to encapsulate
cells in a delivery carrier in order to improve the viability
of transplanted cells and tissue regeneration. Therefore, cells
will be mixed with delivery carrier first and then the mixture
system will be delivered into a scaffold.

4.1. Applications of Injectable Fibrin Gel as Scaffolds in Tissue
Engineering. Fibrin gel is able to function as both two-
dimensional and three-dimensional cell culture scaffold [43].
As shown in Figure 3(a), the traditional two-dimensional
scaffold is fabricated before cell seeding. After the gelation of
fibrin gel, isolated cells are seeded into the surface of fibrin
gel [44]. Although the conventional two-dimensional scaffold
provides an understanding as to how cells interact with the
fibrin gel surface, it cannot mimic the natural physiological
environment of cells in vivo. Three-dimensional scaffolds
become popular because of their ability to be a model of
tissue physiology and provide a better understanding on the
interaction of cell and matrix, as well as how the cell-matrix
interaction affects cell function. Moreover, it is essential that
such a system has a potential to be developed to engineer
functional tissue. Three-dimensional scaffolds are fabricated
as described in Figure 3(b). Isolated cells are first suspended
in the scaffold precursor solution. Then, the mixture will
be delivered into a mold and culture for several minutes to
complete the gelation. After the gelation, the construct will
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Figure 2: Schematic illustration of two approaches to engineer
desired tissue. Cells are isolated frombiopsy andmixedwith scaffold
materials. Subsequently the mixture system is injected into patients’
body (left). Alternatively, isolated cells are cultured on a scaffold in
vitro and implanted into desired place after the formation of new
functional tissue (right). Reprinted (adapted) with permission from
[42]. Copyright (2001) American Chemical Society.

be cultured for days for tissue regeneration. Alternatively,
the cell-fibrin gel precursor solution mixture can be directly
injected into a defect in vivo so that the fibrin gel cures
and immobilizes cells for the regeneration for the functional
tissues.The application of injectable fibrin gel for cardiac and
cartilage tissue engineering is introduced.

4.1.1. Application of Injectable Fibrin Gel in Cardiac Tissue
Engineering. Coronary heart disease is one of the leading
causes of death in the world. The myocardial infarction (MI)
causes many irreversible damages to the heart tissue and
eventually leads to heart failure [45]. Cardiac transplantation
is currently the only option to treat the MI damaged heart
tissue. However, due to the shortage of donation researchers
have explored tissue engineering method to regenerate func-
tional heart tissues. Christman et al. [45] have demonstrated
the feasibility of injecting cell-scaffold mixture into damaged
heart after MI to decrease infarct size and improve cell
survival. They created MI on female Sprague-Dawley rats
through surgery and obtained myoblasts from the hind
limb muscle of newborn Sprague-Dawley rats. The isolated
myoblasts were suspended in fibrin gel precursor solution
and injected into ischemic left ventricle. After five weeks
of implantations, the treatment group with cell-fibrin gel
mixture attenuated the decrease in thickness of infarct wall
and preserve cardiac functions based on histological and
echocardiography results, respectively [45]. When compared
to direct injection of cardiomyoblasts, fibrin gel was demon-
strated to increase the survival rate of transplanted cells,
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Figure 3: Schematic illustration of fabrications of two- and three-dimensional cell culture scaffold.The conventional two-dimensional scaffold
is fabricated in advance of cell seeding and the isolated cells are seeded on the surface of scaffold (a). The three-dimensional scaffold cures in
the presence of the encapsulated cells. Then, the mixture can be delivered into a mold to gel or directly injected into a defect in the body (b).
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Figure 4:H&E staining of histological tissue section.Myocardiumwall became thin in the infarction site (arrows in (a)). No vessels and viable
cells were observed in infarction site (b). After eight weeks, the treatment of cell transplantation with fibrin gel (c) demonstrated extensive
tissue regeneration when compared with cell transplantation without fibrin gel (d). Scale bar indicates 2mm (a) and 100𝜇m ((b), (c), and (d))
[47].
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Figure 5: Masson’s trichrome staining of infarction site after eight weeks for treatment with bone marrow mononuclear cells delivered with
((a), (b), and (c)) and without ((d), (e), and (f)) fibrin gel.The infarction size of treatment with fibrin gel (arrows) is smaller than the treatment
without fibrin gel. Treatment with cell-fibrin gel mixture demonstrated a larger amount of viable tissue (red) and a smaller amount of fibrous
tissue (blue) when compared to the direct injection of cells without fibrin gel. Scale bar indicates 2mm in (a), (b), (d), and (e) and 100 𝜇m in
(c) and (f) [47].
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Figure 6: Isolated cells are suspended in fibrin gel solution. The cell suspension is added into cross-linking agent solution dropwise to form
microbeads (a). The microbeads are mixed into injectable scaffold solution and injected into a mold (b). The microbeads degrade gradually
and leave micropores in the three-dimensional scaffold for the migration and proliferation of released cells (c).
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Figure 7: Fluorescent live/dead staining images. Live cells are stained in green and dead cells are in red. Cells were released from the
microbeads after 4 days showing healthy polygonal morphology (arrows in (b)). After 7 days, the number of released cells increased greatly.
Cells attached to the tissue culture polystyrene and showed a healthy morphology (c). Cells continued to proliferate (d) and formed confluent
monolayer at day 21 (e) [53].

decrease the infarct size, and increase blood flow to the
damaged tissue [46].

Ryu and colleagues [47] injected mixtures of bone mar-
row mononuclear cells and fibrin gel into the infracted
myocardium and found that this formulation enhanced the
neovascularization. Results of this study showed that the
microvessel density of fibrin gel encapsulatedwith cells group
(350 ± 22microvessels/mm2) was significantly higher than
cell-only injection (262 ± 13microvessels/mm2) or medium-
only injection (76 ± 9microvessels/mm2). Additionally, the
average inner diameter of microvessels of fibrin gel encapsu-
lated with cells group (14.6 ± 1.2 𝜇m) is larger than cell-only
injection group (10.2 ± 0.7 𝜇m) and medium-only injection
group (7.3 ± 0.5 𝜇m). Hematoxylin and eosin (H&E) staining

revealed that the treatment of cell transplantation with fibrin
gel resulted in more extensive tissue regeneration in the
infarction site when compared to cell transplantation without
fibrin gel (Figure 4). Additionally, the infarction site treated
with cell-fibrin gelmixture exhibited a larger amount of viable
cells and a smaller amount of fibrous tissue compared to
the treatment without fibrin gel (Figure 5) [47]. It was also
reported that by transplanting adipose-derived stem cells
with injectable fibrin scaffolds cell retention was larger than
cell-only injection and heart function was also improved
significantly [48].

4.1.2. Application of Injectable Fibrin Gel in Cartilage Engi-
neering. Cartilage is a connective tissue with no vascular
network in its inner structure.Therefore, it has limited ability



The Scientific World Journal 7

(a)

(c) (d)

(b)

hU
CM

SC
-s

yn
th

es
iz

ed
m

in
er

al
 co

nc
en

tr
at

io
n 

(m
M

)

0

1

2

3

4

5

6

4d
7d

7d

14d

14d

21d

21d

Figure 8: Alizarin staining for the synthesis of bone mineral at 7, 14, and 21 days. The calcium minerals are stained in red. The mineral
concentration was measured by osteogenesis assay and the results are shown in (d).Themineral concentration at day 21 is 10-fold higher than
day 7, which demonstrated cells released from microbeads synthesized bone mineral successfully [53].

to regenerate or repair injured cartilage tissue. Damage of
cartilage tissues results in the formation of scar tissues with
both structure and function that differ greatly from the
undamaged cartilage [49]. Cakmak et al. [50] transplanted
chondrocytes with injectable fibrin gel and demonstrated
that this approach could achieve cartilage tissue regenera-
tion. They injected chondrocyte-fibrin gel mixture into the
forehead and interocular regions of New Zealand white rab-
bits demonstrated neocartilage formation after eight weeks.
Lee et al. [51] reported that by injecting synovium-derived
mesenchymal stem cells with injectable collagen/hyaluronic
acid/fibrinogen composite gel into rabbit model regenerated
and repaired osteochondral defect in knee.Through histolog-
ical analysis they found that glycosaminoglycans and type II
collagen were accumulated within the extracellular matrix.
In addition, hyaline-like cartilage construct was produced.
After twenty-four weeks, the defects had been repaired with
hyaline-like cartilage tissue.

4.2. Applications of Fibrin Gel as Cell Carriers in Tissue Engi-
neering. The use of fibrin gel as a cell carrying microbeads
has been widely investigated in recent decades. The purpose
of using fibrin gel as a carrier to deliver cells into a three-
dimensional scaffold is to protect cells from the forces
applied during the preparation and delivery processes [52].
Using fibrin microbeads to carry cells results in good cell
viability. Isolated cells are suspended into fibrin gel solution

(Figure 6). Then the cell suspension will be added to cross-
linking agent solution dropwise to form microbeads. Finally,
the microbeads will be entrapped into a three-dimensional
scaffold for tissue regeneration. The microbeads will degrade
gradually and release cells into scaffolds. Additionally, due to
the degradation of microbeads micropores will also be left
open for cell migration and proliferation [53].

The use of fibrin-based microbeads for stem cell encap-
sulation and as delivery vehicle along with injectable scaf-
folds has demonstrated promise in promoting bone regen-
eration. Zhou and Xu [53] incorporated human umbilical
cord mesenchymal stem cells into alginate-fibrin microbeads
and added these microbeads to an injectable scaffold. The
alginate-fibrinmicrobeads degraded at day 4 and released the
encapsulated stem cells into the scaffold. The released cells
showed healthy polygonal morphology and exhibited excel-
lent cell viability (Figure 7). Alizarin staining confirmed the
synthesis of bone minerals (Figure 8). Similarly, microbeads-
encapsulated stem cells exhibited enhanced cell viability
and myogenic differentiation capability for muscle tissue
engineering [54]. After 16 days of culture, the percentage
of live cells in the microbeads containing scaffold reached
91% and was significantly higher when compared to direct
encapsulation of the cells into the construct without the
microbeads (cell viability of 81%). The live cell density in the
constructwithmicrobeadswas also 1.6-fold higher than those
without microbeads.
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5. Future Outlook

Fibrin gel has demonstrated potential in functioning as an
injectable scaffold for tissue engineering. However, there are
numerous obstacles such as the weak mechanical properties,
potential disease transmission, and the shrinkage of the gel
that still need to be addressed for the wide adoption of
fibrin gel in tissue engineering [55, 56]. It is possible to
chemically modify the structure of fibrin gel to improve
the mechanical properties and issues associated with gel
shrinkage. To improve the mechanical properties of fibrin
networks, hybrid composites that combine fibrin with syn-
thetic biodegradable polymers, such as polyglycolic acid [57]
and poly(lactic-co-glycolic acid) [58, 59], have demonstrated
the ability to promote cell attachment and infiltration as well
as tissue restoration. Similarly, fibrin gel formed from genipin
cross-linking has demonstrated improved mechanical prop-
erties [60]. Genipin-cross-linked fibrin exhibited promise in
functioning as an adhesive for repairing intervertebral disc
annulus while demonstrating elastic modulus in the range
of native annular tissue and remained adhered to the native
tissue at strains exceeding physiological levels. Most recently,
fibrin gel was functionalized with nitric oxide donors for
preparing biomaterials capable of controlling release of nitric
oxide for promoting tissue regeneration and wound healing
[61, 62].

6. Summary

The combination of excellent biocompatibility, controllable
degradation rate, adhesive property, and ability to cure in
situ makes fibrin gel an attractive biomaterial for tissue
engineering applications. Fibrin gel self-assembles into a
scaffold by mimicking the last step of blood clotting to
support cell migration, proliferation, differentiation, and
tissue regeneration. It can also be used as cell carriers to
protect cells from the forces produced during preparation
and delivery processes. Further engineering the fibrin gel
through chemical modification can be used to develop tissue
engineering scaffolds with improved mechanical properties
and multifunctional biomaterials.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] U. S. Department of Health & Human Services, http://www
.organdonor.gov/.

[2] S. Jockenhoevel, G. Zund, S. P. Hoerstrup et al., “Fibrin gel–
advantages of a new scaffold in cardiovascular tissue engineer-
ing,” European Journal of Cardio-Thoracic Surgery, vol. 19, no. 4,
pp. 424–430, 2001.

[3] S.Grad, L. Kupcsik, K.Gorna, S.Gogolewski, andM.Alini, “The
use of biodegradable polyurethane scaffolds for cartilage tissue
engineering: potential and limitations,”Biomaterials, vol. 24, no.
28, pp. 5163–5171, 2003.

[4] P. A. Gunatillake and R. Adhikari, “Biodegradable synthetic
polymers for tissue engineering,” European Cells and Materials,
vol. 5, pp. 1–16, 2003.

[5] F. R. Maia, A. H. Lourenço, P. L. Granja, R. M. Gonçalves, and
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