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We propose an ambit stochastic model to study the electricity forward prices. We provide a detailed analysis of the probabilistic
properties of such model, discussing the related martingale conditions and deriving concrete implementation of it for the related
underlying spot price. The latter is obtained from the forward model through a limiting argument. Furthermore, we show, also
providing a concrete example, that a proper specification of these models is able to effectively forecast prices of forward contracts
written on the European Energy Exchange (EEX) AG, or German Energy Exchange, market.

1. Introduction

In the last two decades, energy markets have been liberalised
in many areas in the world and this has led to the creation
of completely new markets as in the case of the Nordic Nord
Pool market, the European Energy Exchange (EEX) market,
the Italian GME, where GME stands for Gestore dei Mercati
Energetici, market, and so forth. The latter phenomenon has
been underlined by an increasing interest in trading within
such commodity frameworks, particularly with respect to
electricity, oil, gas, and coal exchange. There is no doubt that
such markets will play a vital role in the future given the
constant expansion of global demand for energy. From the
financial point of view, standard products traded on energy
markets are spot prices, forward and futures contracts, and
options written on them.

In the present work, we focus our attention on economics
aspect linked to the electricity commodity. Our choice is
mainly due to the fact that electricity cannot be stored;
therefore, it has some peculiar characteristics if compared
to other commodities like oil or gas. In particular, as soon
as electricity has been produced, it has to be delivered to
the grid. This leads to very atypical price patterns, such as
large price spikes, strong short-term volatility, and negative

electricity prices for short, but not zero, periods of time.
The latter is the case if the supply considerably exceeds the
demand. A previous type of price behaviours suggests both
practitioners and academicians to develop ad hoc techniques
for this particular framework, hence trying to get finer
approaches to electricity trading than for traditional financial
markets.

Recent literature has studied, in particular, a class of
stochastic models for the electricity price dynamics based
on ambit processes and ambit fields (see, e.g., [1, 2]). Ambit
processes are defined as stochastic integrals with respect to
a multivariate randommeasure, where the integrand is given
by a product of a deterministic kernel function and a stochastic
volatility field and the integration is carried out over a specific
region in space-time, called ambit set. This kind of stochastic
process was first developed in the study of turbulence, but,
because of their flexible structure, they have been applied in
a heterogeneous set of areas (see, e.g., [3, 4]) and, between
them, in the financial framework tomodel dynamic processes
(see, e.g., [5]).

The wide applicability of ambit processes is due to their
flexibility and analytical tractability. As an example, if we
consider the energy markets, ambit processes easily incor-
porate leptokurtic behaviour in returns, stochastic volatility,
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leverage effects, and the observed Samuelson effect in the
volatility, namely, the fact that when the time to maturity
approaches zero, the volatility of the forward price increases
and converges to the volatility of the underlying spot price,
provided the forward price converges to the spot price.

In what follows, we develop a class of models for
electricity forward prices which will be based on ambit
processes and ambit fields. In addition, we show that a proper
specification of these models efficiently forecasts the price of
the German monthly peak forward contracts within the EEX
market scenario.

Although many stylized facts concerning energy mar-
kets can be incorporated in an ambit framework, one may
question whether ambit processes are not in fact too general
to be a good building block for financial models. In fact,
we always have to find the right tradeoff between flexibil-
ity, effectiveness, and concrete application of the proposed
model, particularly in the financial framework where deci-
sions have often to be taken rather quickly. Concerning
the latter point of view, one has to consider that ambit
processes, at least in their most general definition, do not
satisfy the martingale property, a fact that can be considered
as a particularly relevant drawback within the traditional
approach to financial modeling. Nevertheless, we underline
that the martingale framework can be recovered assuming
appropriate conditions to hold, paying the price to work with
a restricted class of ambit processes. Anyway, it is not obvious
that we should adopt the martingale framework if our aim
is to model electricity forward contracts. In particular, lines
of empirical evidence show that electricity prices are not
martingales even at the spot price level, but this does not
imply any arbitrage because electricity cannot be stored. The
last point is of particular relevance since it ensures that our
analysis can be carried out using ambit models, without
being worried about arbitrage opportunities. We would also
like to mention recent results (see, e.g., [6, 7]), which show
that subclasses of nonsemimartingales can be used to model
financial assets without necessarily giving rise to arbitrage
opportunities in markets exhibiting market frictions, such as,
for example, transaction costs.

The paper is organized as follows. In Section 2, we briefly
review the key definitions and concepts on the basis of both
ambit fields analysis and ambit processes; in Section 3, we
introduce the modeling framework for electricity forward
markets, and we study its key properties highlighting the
most relevant model specifications; then, we present suitable
conditions under which the ambit processes adopted in
the presented models are martingales and we also derive a
model for the underlying spot price exploiting the forward
model through a limiting argument; finally, in Section 4,
we concretely apply the approach proposed in Section 3 to
forecast the price of a particular forward contract written
within the German EEX market.

2. Ambit Stochastic Approach

The concepts of ambit fields and ambit processes form the
building blocks of the model for the electricity forward price

that we will present in Section 3.Therefore, in this section, we
briefly review the ideas behind ambit stochastic approaches,
as they have been introduced by Barndorff-Nielsen and
Schmiegel in [3] and then further discussed in [4, 8]; we also
refer to [9] and the references therein for further details.

2.1. The General Framework. The general background setting
for ambit process and ambit field consists of a stochastic field
𝑌 = {𝑌

𝑡
(𝑥)}

𝑡∈R, considered in space-time domain 𝐷 × R,
a curve 𝜔(𝜃) = (𝑥(𝜃), 𝑡(𝜃)), which also belongs to 𝐷 × R,
and the values of the field along such a curve; namely, 𝑋

𝜃
=

𝑌
𝑡(𝜃)
(𝑥(𝜃)); then it follows that 𝑋 = {𝑋

𝜃
} is a stochastic

process. In most applications, the space𝐷 is chosen to beR𝑛,
for 𝑛 = 1, 2, or 3. Moreover, the stochastic field 𝑌 is supposed
to be generated by innovations in space-time and the values
𝑌
𝑡
(𝑥) are assumed to depend only on those innovations that

occur prior to or at time 𝑡. More precisely, at each point (𝑥, 𝑡),
only the innovations in some subset 𝐴

𝑡
(𝑥) of 𝐷 × R

𝑡
, where

R
𝑡
= (−∞, 𝑡], determine the value of 𝑌

𝑡
(𝑥). We refer to𝐴

𝑡
(𝑥)

as the ambit set associated with (𝑥, 𝑡) and to 𝑌 and 𝑋 as an
ambit field and an ambit process, respectively.

Without further assumptions, nothing interesting can
be said about the field 𝑌 and the process 𝑋; therefore, we
have to specify a suitable mathematical structure in the next
subsection; nevertheless, without being rigorous, 𝑌

𝑡
(𝑥) is

defined as a stochastic integral plus a smooth term and the
integrand in the stochastic integral consists of a deterministic
kernel times a positive random variate which is taken to
embody the volatility or intermittency of the field 𝑌. We also
underline that the volatility field, denoted by 𝜎, is given as an
ambit field and a central issue is what can be learned about 𝜎
from observation of 𝑌 or𝑋.

2.2. Ambit Fields and Ambit Processes. In ambit stochastic
approach, an essential role is played by the Lévy bases, which
we give the definition of in what follows mainly following
the extensive and detailed discussion provided by [10, 11].
In addition, the classical concept of subordination of Lévy
processes is generalized to subordination of Lévy bases or
extended subordination, by introducing the so-called meta-
times in [10].

Let 𝑆 be a Borel set in R𝑛 and let B(𝑆) be the Borel 𝜎-
algebra on 𝑆. We denote byB

𝑏
(𝑆) the sub-𝜎-algebra ofB(𝑆)

consisting of the elements of B(𝑆) bounded with respect to
the Lebesgue measure 𝜇; that is,B

𝑏
(𝑆) = {𝐴 ∈ B(𝑆) | 𝜇(𝐴) <

∞}.

Definition 1 (Lévy basis and homogeneous Lévy basis). A
family {𝐿(𝐴) | 𝐴 ∈ B

𝑏
(𝑆)} of random vectors in R𝑛 is an

R𝑛-valued Lévy basis on 𝑆 if the following three properties are
satisfied:

(i) The law of 𝐿(𝐴) is infinitely divisible for all𝐴 ∈ B
𝑏
(𝑆).

(ii) For any sequence 𝐴
1
, . . . , 𝐴

𝑘
of disjoint elements

of B
𝑏
(𝑆), one has that the random variables

𝐿(𝐴
1
), . . . , 𝐿(𝐴

𝑘
) are independent.
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(iii) For any sequence 𝐴
1
, 𝐴

2
, . . . of disjoint elements of

B
𝑏
(𝑆) which satisfy⋃∞

𝑖=1
𝐴

𝑖
∈ B

𝑏
(𝑆), one has that

𝐿(

∞

⋃

𝑖=1

𝐴
𝑖
) =

∞

∑

𝑖=1

𝐿 (𝐴
𝑖
) , (1)

where the convergence on the right hand side is
intended almost surely.

If a Lévy basis has a stationary law, then it is called a
homogeneous Lévy basis.

Remark 2 (about Lévy bases). Properties (ii) and (iii) define
an independently scattered random measure; hence, the class
of Lévy bases is a subclass of independently scattered random
measures.

We are now in position to state the definitions of ambit
field and ambit process.

Definition 3 (ambit field and ambit process). An ambit field
𝑌 is a random field such that

𝑌
𝑡
(𝑥) = 𝜂 + ∫

𝐴
𝑡
(𝑥)

ℎ (𝑥, 𝑡; 𝜉, 𝑧) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧)

+ ∫
𝐷
𝑡
(𝑥)

𝑞 (𝑥, 𝑡; 𝜉, 𝑧) 𝑎
𝑧
(𝜉) 𝑑𝜉 𝑑𝑧,

(2)

provided the integrals exist over ambit sets 𝐴
𝑡
(𝑥) and 𝐷

𝑡
(𝑥),

where 𝜂 is a constant, ℎ and 𝑞 are deterministic functions,
𝜎 ≥ 0 and 𝑎 are stochastic fields, and 𝐿 is a Lévy basis.
Moreover, we define the corresponding ambit process 𝑋 as
the stochastic process, defined on a given probability space
(Ω,F,P), given by the evaluation of the field 𝑌 along a curve
𝜔(𝜃) = (𝑥(𝜃), 𝑡(𝜃)) ⊂ 𝐷 ×R; namely,

𝑋
𝜃
= 𝑌

𝑡(𝜃)
(𝑥 (𝜃))

= 𝜂 + ∫
𝐴(𝜃)

ℎ (𝑡 (𝜃) ; 𝜉, 𝑧) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧)

+ ∫
𝐷(𝜃)

𝑞 (𝑡 (𝜃) ; 𝜉, 𝑧) 𝑎
𝑧
(𝜉) 𝑑𝜉 𝑑𝑧,

(3)

where 𝐴(𝜃) = 𝐴
𝑡(𝜃)
(𝑥(𝜃)) and𝐷(𝜃) = 𝐷

𝑡(𝜃)
(𝑥(𝜃)).

Remark 4 (particular cases of ambit processes). Let us specify
a particular class of ambit fields that is of particular interest
in many applications, which is specified as follows:

𝑌
𝑡
(𝑥) = 𝜂 + ∫

𝐴
𝑡
(𝑥)

ℎ (𝑥 − 𝜉, 𝑡 − 𝑧) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧)

+ ∫
𝐷
𝑡
(𝑥)

𝑞 (𝑥 − 𝜉, 𝑡 − 𝑧) 𝑎
𝑧
(𝜉) 𝑑𝜉 𝑑𝑧,

(4)

where the ambit sets 𝐴
𝑡
(𝑥) and 𝐷

𝑡
(𝑥) are taken to be

homogeneous and nonanticipative; that is, 𝐴
𝑡
(𝑥) is of the

form 𝐴
𝑡
(𝑥) = {𝑎 + (𝑥, 𝑡) | 𝑎 ∈ 𝐴}, where 𝐴 only

involves negative time coordinates, similar to 𝐷
𝑡
(𝑥). In fact,

this specific framework allows modeling stationary random
fields, since 𝑌

𝑡
(𝑥) in (4) turns out to be stationary when

the fields 𝑎 and 𝜎 are stationary and 𝜎 is independent of
the driving Lévy basis 𝐿. Furthermore, other potentially
important features of a random field, such as, for example,
isotropy or skewness, can be easily modeled with (4) via an
appropriate choice of the deterministic kernels ℎ and 𝑞 and
the stochastic fields 𝑎 and 𝜎.

Remark 5 (stochastic integration). In order to build relevant
models based on ambit fields, we need a suitable integration
theory. In [12], Rajput and Rosinski have proposed an inte-
gration theory for appropriate deterministic integrands with
respect to Lévy bases. However, in the context of ambit fields,
we need to integrate stochastic integrands. To solve the latter
issue, we can count on an alternative integration concept due
to Walsh. Such an idea works even if the integrand depends
on the particular Lévy basis chosen (see [13]). Unfortunately,
the Walsh approach can be used to define ambit fields only
when the driving Lévy basis is square-integrable. In the recent
work [14], the ideas of Walsh, Rajput, and Rosinski have
been combined to propose an integration concept for random
integrands and general Lévy bases. Such an approach relies on
[15], which is an earlier work by Bichteler and Jacod.We refer
to [16] as a complete reference for the comparison of various
integration concepts.

3. Modeling Electricity Forward
Price by Ambit Fields

Due to their structure, we can use ambit fields to cap-
ture many characteristics of energy markets such as strong
seasonal patterns, very pronounced volatility clusters, high
spikes/jumps, and the Samuelson effect. For these reasons,
we review a general model, presented in [5], for electricity
forward prices which is based on ambit fields.

3.1. AModel for Forward Prices. Let (Ω,F,P) be a probability
space, 𝐿

𝑧
(𝐴) := 𝐿(𝐴, 𝑧) = 𝐿(𝐴 × (0, 𝑧]) a Lévy basis, 𝜎 =

𝜎
𝑧
(𝐴) a stochastic field for 𝐴 ∈ B(R

+
), and 𝑧 ∈ R. In

addition, we consider the filtrationF = {F
𝑡
}
𝑡∈R defined by

F
𝑡
=

∞

⋂

𝑛=1

F
0

(𝑡+1)/𝑛
, (5)

where

F
0

𝑡
= 𝜎 {(𝐿 (𝐴, 𝑧) , 𝜎

𝑧
(𝐴)) | 𝐴 ∈B (R

+
) , 𝑧 ≤ 𝑡} ∨N, (6)

and where N denotes the 𝑃-null sets of F. Note that F
𝑡
is

right continuous by construction. Using an ambit field, we
model the forward price 𝑓

𝑡
(𝑥) as a stochastic process for each

fixed 𝑥; namely,

𝑓
𝑡
(𝑥) := ∫

𝐴
𝑡
(𝑥)

𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧) , (7)
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where 𝑡 ∈ R denotes the current time, 𝜎
𝑧
(𝜉) > 0 denotes

the volatility of the forward market as a whole, 𝐴
𝑡
(𝑥) is an

ambit set, and 𝑘 is the kernel function. A complete model
description is given specifying an ambit set 𝐴

𝑡
(𝑥), a kernel

function 𝑘, a stochastic volatility field 𝜎
𝑧
(𝜉), and a Lévy basis

𝐿. Latter choices are often based on qualitative analysis of the
markets we want to study as well as concerning the analytical
tractability of the resulting model. However, in general, we
would like 𝑓

𝑡
(𝑥) to be well defined in the sense of Walsh (see

[13]) and stationary in time. In order to have integrability in
the sense of Walsh, we assume that the following conditions
hold:

(i) The Lévy basis 𝐿 is square-integrable and has zero-
mean.

(ii) The stochastic volatility field 𝜎 is adapted to the
filtration {F

𝑡
}
𝑡∈R and independent of the Lévy basis

𝐿.
(iii) The kernel function 𝑘 is nonnegative and such that

𝑘(𝜉, 𝑢; 𝑥) = 0 for 𝑢 < 0.
(iv) The convolution 𝑘 ∗ 𝜎 is integrable with respect to 𝐿.

Moreover, in order to ensure that 𝑓
𝑡
(𝑥) is stationary in time,

we assume that the following conditions hold:

(v) The stochastic volatility field 𝜎
𝑧
(𝜉) is stationary in 𝑧.

(vi) The ambit set 𝐴
𝑡
(𝑥) is such that

𝐴
𝑡
(𝑥) = {𝑎 + (0, 𝑡) | 𝑎 ∈ 𝐴

0
(𝑥)} , (8)

where 𝐴
0
(𝑥) = {(𝜉, 𝑧) | 𝜉 ≥ 0, 𝑧 ≤ 𝑡}.

Throughout this section, we suppose that 𝑓
𝑡
(𝑥) is defined as

in (7) and satisfies conditions (i)–(vi).

Remark 6 (when 𝑥 is a function of 𝑡). The aforementioned
conditions on 𝑓

𝑡
(𝑥) ensure having stationarity in time;

however, as soon as we replace 𝑥 by a function of 𝑡, that is,
𝑥 = 𝑥(𝑡), 𝑓

𝑡
(𝑥(𝑡)) is not in general stationary any more. For

instance, if we want to reflect the fact that the forward price
depends also on the time to maturity, let us indicate it by
𝑇 > 0; placing 𝑥(𝑡) = 𝑇−𝑡, we lose the stationarity of𝑓

𝑡
(𝑥(𝑡)),

with respect to time.

Remark 7 (about 𝑓
0
(𝑥)). If we consider (7), we have that the

forward price at time 0 is given by

𝑓
0
(𝑥) = ∫

𝐴
0
(𝑥)

𝑘 (𝜉, −𝑧; 𝑥) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧) , (9)

where in the right hand side in (9) we perform integration
with respect to a randommeasure. It follows that the forward
price at time 0 is the value of the random variable 𝑓

0
(𝑥)

given in (9), contrary to most other models where 𝑓
0
(𝑥) is

considered as a deterministic quantity equal to the observed
price.

Under previous conditions (i)–(vi), the ambit field spec-
ification provided by (7) is highly analytically tractable and
its conditional cumulant function is given by the following
proposition.

Proposition 8 (conditional cumulant function of 𝑓
𝑡
(𝑥)). Let

𝐿 be a homogeneous Lévy basis; hence, its control measure is
proportional to the Lebesgue measure and one can assume,
without loss of generality, that the proportionality constant
equals 1. Then, the cumulant function of 𝑓

𝑡
(𝑥), conditioned to

𝜎, is given by

𝐶
𝜎
{𝜁 ‡ 𝑓

𝑡
(𝑥)}

= ∫

𝑡

−∞

∫

∞

0

𝐶 {𝜁𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) 𝜎
𝑧
(𝜉) ‡ 𝐿


} 𝑑𝜉 𝑑𝑧,

(10)

where 𝐿 is the Lévy seed associated with 𝐿; see Subsection 3.2
of [5] for a rigorous definition of Lévy seed associated with a
Lévy basis. Moreover, if 𝐿 is Gaussian, then

𝐶 {𝜁𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) 𝜎
𝑧
(𝜉) ‡ 𝐿


}

= −
1

2
𝜁
2
𝑘
2
(𝜉, 𝑡 − 𝑧; 𝑥) 𝜎

2

𝑧
(𝜉) .

(11)

Proof. The proposition is an immediate consequence of
Proposition 2.6 in [12].

3.2. Examples of Model Specifications. The forward model
𝑓
𝑡
(𝑥) based on an ambit field has a very general structure;

consequently, it is possible to concretely specify exploiting
several choices a peculiarity which is highly useful in many
applications. There are three components of the model to
specify, namely, the Lévy basis 𝐿, the kernel function 𝑘, and
the volatility 𝜎. In the following, we present some examples
of specification for the parameters 𝐿 and 𝑘, while we discuss
volatility modulation in the next subsection.

3.2.1. Specification of the Lévy Basis. Our model is based
on the zero-mean and square-integrable assumptions; hence,
we can choose any infinitely divisible distribution satisfying
these two hypotheses. A natural choice is to consider a
Gaussian Lévy basis which implies a smooth random field.
Alternatively, we can take a normal inverse Gaussian Lévy
basis. We could need to relax the zero-mean assumption for
the Lévy basis, in order to choose, for example, a Gamma or
an inverse Gaussian Lévy basis.

3.2.2. Specification of the Kernel Function. The kernel func-
tion 𝑘 plays a key role in our setting since

(i) the kernel function completely determines the space-
time autocorrelation structure of a zero-mean ambit
field (see Section 3.4);

(ii) the kernel function characterises the Samuelson effect
as we will see inTheorem 28;
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(iii) the kernel function determines whether the forward
price is a martingale or not (see Theorem 19 and
Corollary 21).

Recall that the kernel 𝑘 is a function of the three variables 𝜉, 𝑡−
𝑧, and 𝑥, where 𝑡 − 𝑧 refers to the temporal component and
𝜉, 𝑥 refer to the spatial dimension. A rather natural approach
for specifying a kernel function is to assume a factorisation
property that we will present by two different realizations
each of which has its own relevance in a specific framework.
First, we study factorisation into a temporal and a spatial
kernel. In particular, we assume that the kernel function
factorises as follows:

𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) = 𝜙 (𝜉, 𝑥) 𝜓 (𝑡 − 𝑧) , (12)

for suitable functions 𝜓 and 𝜙 representing the temporal part
and the spatial part, respectively. Equation (12) allows us to
study specifications of 𝜙 and 𝜓 separately. In empirical work,
it will be particularly interesting to focus in more detail on
the question of how to model the spatial kernel function 𝜙,
which determines the correlation between various forward
contracts. Even if we are allowed to choose similar or
identical types of functions for both the temporal and the
spatial dimension, nevertheless, we will see in Section 3.6
that particular choices for 𝜙 lead to a rather natural relation
between forward and implied spot prices. Let us briefly study
an example which is included in the presented modeling
framework.

Example 9 (exponential kernel function). Let 𝐿 be a homo-
geneous symmetric normal inverse Gaussian Lévy basis
NIG(𝛼, 0, 0, 𝛿); namely, it has Lévy seed 𝐿 with density

𝜋
−1
𝛿𝛼 |𝑥|

−1
𝐾 (𝛼 |𝑥|) , (13)

where 𝐾 denotes the modified Bessel function of the second
kind, while 𝛼, 𝛿 > 0. Then,

𝐶 {𝜁 ‡ 𝐿

} = 𝛿𝛼 − 𝛿√𝛼2 + 𝜁2. (14)

If the kernel function 𝑘 factorises as in (12), and 𝜎
𝑧
(𝜉) ≡ 1,

then

log (E [𝑖V𝑓
𝑡
(𝑥)])

= ∫
𝐴
𝑡
(𝑥)

𝐶 {V𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) ‡ 𝐿} 𝑑𝜉 𝑑𝑧

= ∫
𝐴
𝑡
(𝑥)

(𝛿𝛼 − 𝛿√𝛼2 + (𝜙 (𝜉, 𝑥) 𝜓 (𝑡 − 𝑧))
2

)𝑑𝜉 𝑑𝑧,

(15)

and the latter integral can be computed explicitly for suitable
kernel functions, for example, for 𝜙(𝜉, 𝑥) = 𝑒−𝜆(𝜉+𝑥) and 𝜓(𝑡−
𝑧) = 𝑒

−𝜆(𝑡−𝑧) for 𝜆 > 0. Then,

𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) = 𝑒
−𝜆(𝜉+𝑥)

𝑒
−𝜆(𝑡−𝑧)

, (16)

and, taking 𝑥(𝑡) = 𝑇 − 𝑡 as in Remark 6, we have

𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) = 𝑒
−𝜆𝜉

𝑒
−𝜆(𝑇−𝑧)

. (17)

Therefore, the cumulant function is given by

log (E [𝑖V𝑓
𝑡
(𝑥)])

= 𝛿𝛼∫

𝑡

−∞

∫

∞

0

(1 − √1 + 𝑐2𝑒−2𝜆(𝜉−𝑠)) 𝑑𝜉 𝑑𝑧,

(18)

for 𝑐 = V𝑒−2𝜆𝑇/𝛼, and the integral in (18) can be easily
computed.

Alternative factorisation of the kernel function is given as
follows:

𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) = Φ (𝜉)Ψ (𝑡 − 𝑧, 𝑥) , (19)

for suitable functions Φ and Ψ. Although the latter does not
look very natural at first sight, it is very important since it
naturally includes cases where 𝑡 is removed, for example,
choosing 𝑥(𝑡) = 𝑇 − 𝑡 and Ψ(𝑡 − 𝑧, 𝑥) = Ψ(𝑡 − 𝑧 + 𝑥);
in fact, in this case, we have Ψ(𝑡 − 𝑧, 𝑥) = Ψ(𝑡 − 𝑧 + 𝑥) =

Ψ(𝑇−𝑧).The latter case is crucial when we want to formulate
martingale conditions for the forward price (see Section 3.5).
Let us consider two particular realizations for (19).

Example 10 (exponential Ψ). Miming the Ornstein-
Uhlenbeck case, for 𝛼 > 0, we can set

𝑘 (𝑡 − 𝑧, 𝑥) = Ψ (𝑡 − 𝑧, 𝑥) = 𝑒
−𝛼(𝑡−𝑧+𝑥)

, (20)

hence takingΦ(𝜉) ≡ 1 from factorisation (19).

Example 11 (hyperbolic kernel function). In [17], the authors
propose a model for electricity forward prices with a Lévy
basis obtained from a standard Brownian motion and kernel
function given by

𝑘 (𝑧, 𝑇) =
𝑎

(𝑇 − 𝑧 + 𝑏)
+ 𝑐, (21)

where 𝑎, 𝑏, and 𝑐 are positive constants. The authors argued
that the Samuelson effect in electricity markets is much
steeper than in other commodity markets, defending the
choice of a hyperbolic function rather than an exponential
one. Note that we can obtain this kernel function from
factorisation (19) with Φ(𝜉) ≡ 1 and Ψ(𝑡 − 𝑧, 𝑥) = 𝑎/(𝑥 +

𝑡 − 𝑧 + 𝑏) + 𝑐 when 𝑥 = 𝑇 − 𝑡.

3.3. Space-Time Stochastic Volatility. Although a variety of
purely temporal stochastic volatility models can be found in
the literature, suitable space-time stochastic volatility models
still need to be developed. Until now, volatility modulation
within the framework of an ambit field can be achieved by
four complementary methods: by introducing a stochastic
integrand, by extended subordination, by probability mixing,
or by Lévy mixing.
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3.3.1. Volatility Modulation via a Stochastic Integrand. This
method has already been suggested in the initial definition
of ambit fields (see (2)). In that case, there are essentially
two approaches that can be used to construct a stochastic
volatility field. In fact, we can specify the stochastic field
directly as a random field, for example, as another ambit
field, or we can start with a purely temporal or purely spatial
stochastic volatility process, respectively, and then suitably
generalise it to a random field. In the following, we will
present examples of both types of construction. First, we
focus on the modeling approach where we directly specify a
random field for the volatility field. A natural starting point
for modeling the volatility is to combine kernel smoothing of
a homogeneous Lévy basis with (nonlinear) transformation
to ensure positivity. For instance, let

𝜎
2

𝑡
(𝑥) = 𝑉(∫

R×R𝑛
𝐾 (𝑥, 𝑡 − 𝑧; 𝜉) 𝐿

𝜎
(𝑑𝜉, 𝑑𝑧)) , (22)

where 𝐿𝜎 is a homogeneous Lévy basis independent of 𝐿,
𝐾 : R𝑛

× R × R𝑛
→ R

+
is an integrable kernel

function satisfying 𝐾(𝑥, 𝑢; 𝜉) = 0 for 𝑢 < 0, and 𝑉 :

R → R
+
is a continuous, nonnegative function. Clearly, the

kernel function𝐾 determines the space-time autocorrelation
structure of the volatility field 𝜎2.

Remark 12 (about stochastic volatility). Note that 𝜎2 defined
by (22) is stationary in the temporal dimension and if we have

𝐾 (𝑥, 𝑡 − 𝑧; 𝜉) = 𝐾
∗
(𝑥 − 𝜉, 𝑡 − 𝑧) , (23)

for some suitable function𝐾∗, then the stochastic volatility is
both stationary in time and homogeneous in space.

Example 13 (X2 distribution). Consider stochastic volatility
as in (22), let 𝐿𝜎 be a standard normal Lévy basis, and let
𝑉(𝑥) = 𝑥

2. Then, 𝜎2

𝑧
(𝜉) is clearly positive and has a pointwise

X2 distribution with one degree of freedom.

In what follows, we show how to construct a stochastic
volatility field by extending a purely temporal stochastic
process to a random field. Note that our objective is to
construct a stochastic volatility field which is stationary, at
least in the temporal dimension.There are many possibilities
to reach the latter goal, but in the following we decide to
focus our attention on a particularly relevant one, namely,
the Ornstein-Uhlenbeck type volatility field (OUTVF). The
choice of an Ornstein-Uhlenbeck process as the stationary
base component is motivated by its analytical tractability and
also because it tends to performwell in practice, at least in the
purely temporal case. Without loss of generality, we restrict
our attention to the case 𝑛 = 1; that is, we consider one spatial
dimension. In order to present this type of volatility fields, we
have to define the Lévy supraprocesses.

Definition 14 (Lévy supraprocess generated by 𝑋). Suppose
that𝑋 = {𝑋

𝑡
}
𝑡∈R is a stationary, positive, and infinitely divis-

ible process onR. Let𝑍
|⋅
= {𝑍

𝑥|⋅
}
𝑥∈R
+

be a family of stationary

processes such that 𝑍
|⋅
has independent increments and for

each 𝑥 the cumulant function of 𝑍
𝑥|⋅

is given by

𝐶 {𝑚 ‡ 𝑍
𝑥|⋅
} = 𝑥𝐶 {𝑚 ‡ 𝑋} , (24)

where

𝐶 {𝑚 ‡ 𝑋} = log (E [𝑒𝑖𝑚(�̂�)
]) , (25)

with

𝑚(𝑋) = ∫𝑋
𝑧
𝑚(𝑑𝑧) , (26)

for an arbitrary signed measure 𝑚 on R. Then, for any fixed
�̂� ∈ R, 𝑍

|̂𝑡
= {𝑍

𝑥|̂𝑡
}
𝑥∈R
+

is a Lévy process called Lévy
supraprocess generated by 𝑋.

Definition 15 (OUTVF). Suppose that �̂� is a positive
Ornstein-Uhlenbeck process with rate parameter 𝜆 > 0 and
such that it is generated by a Lévy subordinator 𝑌; that is,

�̂�
𝑡
= ∫

𝑡

−∞

𝑒
−𝜆(𝑡−𝑧)

𝑑𝑌
𝑧
. (27)

A stochastic volatility field 𝜎2

𝑡
(𝑥) onR×R is an OUTVF if

it is defined as

𝜏
𝑡
(𝑥) = 𝜎

2

𝑡
(𝑥) = 𝑒

−𝜂𝑥
�̂�
𝑡
+ ∫

𝑥

0

𝑒
−𝜂(𝑥−𝜉)

𝑑𝑍
𝜉|𝑡
, (28)

where 𝜂 > 0 is the spatial rate parameter andZ = {𝑍
⋅|𝑡
}
𝑡∈R
+

is a family of Lévy supraprocesses.

Note that, in the above construction, we start from
an Ornstein-Uhlenbeck process in time, 𝜏

𝑡
(0) = �̂�

𝑡
, and

the spatial structure is then introduced through two steps.
First, we multiply the process with an exponential weight
𝑒
−𝜂𝑥 dependent on a spatial component, which reaches its
maximum for 𝑥 = 0, decaying as it moves away from
the purely temporal case. Second, we add an integral which
is similar to an Ornstein-Uhlenbeck process in the spatial
variable 𝑥. However, although the stochastic volatility field
𝜏 is stationary in time, note here that the integration starts
from 0 rather than from −∞; hence, the resulting component
is not stationary in the spatial variable 𝑥, even if this could
be changed without affecting the structure if such a property
is required in a particular application. Finally, note that
the process 𝜏

𝑡
(𝑥) is in general not predictable, which is

disadvantageous given that we want to construct stochastic
integrals in the sense of Walsh. However, if we choose 𝑋
as an Ornstein-Uhlenbeck process, we obtain a predictable
stochastic volatility process.
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Example 16 (covariance function of 𝜏 when 𝑋 is an Orn-
stein-Uhlenbeck process). Suppose that 𝑋 is an Ornstein-
Uhlenbeck process with rate parameter 𝜅 > 0 and gen-
erated by a Lévy process 𝑋. Then, using the notations in
Definition 15, we have

Cov (𝜏
𝑡
(𝑥) , 𝜏

𝑡
(𝑥)) =

1

2
(Var (𝑌

1
) 𝜆

−1
𝑒
−𝜆|𝑡−�̃�|−𝜂(𝑥+𝑥)

+ Var (𝑋
0
) 𝜂

−1
𝑒
−𝜅|𝑡−�̃�|−𝜂|𝑥−𝑥|

− Var (𝑋
0
) 𝜂

−1
𝑒
−𝜅|𝑡−�̃�|−𝜂(𝑥+𝑥)

) .

(29)

Furthermore, if Var(𝑌
1
) = Var(𝑋

0
) and 𝜅 = 𝜆 = 𝜂, then for

fixed 𝑥 and 𝑥 the covariance function of 𝜏 is

Cov (𝜏
𝑡
(𝑥) , 𝜏

𝑡
(𝑥)) = 𝑒

−𝜅(|𝑡−�̃�|+|𝑥−𝑥|)
. (30)

3.3.2. Volatility Modulation via Extended Subordination. An
alternative way of volatility modulation is by means of
extended subordination. In this modulation, the volatility
𝜎
2

𝑡
(𝑥) = 𝜏

𝑡
(𝑥) is incorporated in the modeling through

a meta-time T associated with an absolutely continuous
measure 𝑇 on 𝑆; namely,

𝑇 (𝐴) = ∫
𝐴

𝜏
𝑡
(𝑥) 𝑑𝑥 𝑑𝑡, (31)

where 𝐴 ∈ B
𝑏
(𝑆). A natural choice of meta-time is T(𝐴) =

{T(𝑥, 𝑡) | (𝑥, 𝑡) ∈ 𝐴}, where T is the mapping given by
T(𝑥, 𝑡) = (𝑥, 𝜏+

𝑡
(𝑥)), while

𝜏
+

𝑡
(𝑥) = ∫

𝑡

0

𝜏
𝑧
(𝑥) 𝑑𝑧. (32)

The above construction of ameta-time in a space-timemodel
is very general, since it allows defining a variety of models for
the random field 𝜏

𝑡
(𝑥), leading to new model specifications.

For instance, one could model 𝜏
𝑡
(𝑥) by an OUTVF or any

other model discussed previously. It follows that this way to
modulate the volatility is more general than the previous one.

3.3.3. Volatility Modulation via Probability Mixing and Lévy
Mixing. Volatility modulation can also be obtained through
a probability mixing approach which is realized defining
new distributions by randomising a parameter from a given
parametric distribution, as in the following classical example.

Example 17 (normal variance-mean mixture distribution).
Consider as base model

𝑌
𝑡
(𝑥) = ∫

𝐴
𝑡
(𝑥)

ℎ (𝑥, 𝑡; 𝜉, 𝑧) 𝐿 (𝑑𝜉, 𝑑𝑧) , (33)

assuming that the corresponding Lévy basis 𝐿 is homoge-
neous and Gaussian; namely, the corresponding Lévy seed
is given by 𝐿


∼ N(𝜂 + 𝛽𝜎

2
, 𝜎

2
) with 𝜂, 𝛽, 𝜎 ∈ R and

𝜎
2
> 0. Then, we use probability mixing supposing that 𝜎2 is

random. Hence, the conditional law of the Lévy seed is given
by 𝐿 | 𝜎 ∼ N(𝜂 + 𝛽𝜎

2
, 𝜎

2
). Due to the scaling property of

the Gaussian distribution, such a model can be represented
as in (2); therefore, in this particular case, probability mixing
and volatility modulation via a stationary stochastic inte-
grand produce the same result. Such a construction falls into
the class of normal variance-mean mixtures.

In this context, it is important to note that probability
mixing does not generally lead to infinitely divisible dis-
tributions. In order to overcome this problem, we present
the concept of Lévy mixing. Let 𝐿 be a factorisable Lévy
basis on R𝑛 with characteristic quadruplet (𝑎, �̃�, ](𝑑𝑥, ⋅), 𝑐)
(see Subsection 2.2 of [10] for a rigorous definition of
characteristic quadruplet of a Lévy basis and factorisable
Lévy basis). Suppose that ](𝑑𝑥, ⋅) depends on the parameter
𝜃 ∈ Π, where Π denotes the space of the parameter 𝜃. Then,
the Lévy measure of 𝐿 is given by ](𝑑𝑥, 𝜃)𝑐(𝑑𝑠). Let 𝛾 be a
measure on Π and define

𝑛 (𝑑𝑥, 𝑑𝑠) = ∫
Π

] (𝑑𝑥, 𝜃) 𝛾 (𝑑𝜃) 𝑐 (𝑑𝑠) , (34)

where we assume that

∫
R

(1 ∧ 𝑥
2
) 𝑛 (𝑑𝑥, 𝑑𝑠) < ∞; (35)

then there exists a Lévy basis �̂� which has 𝑛 as its Lévy
measure. We define �̂� as the Lévy basis obtained by Lévy
mixing of 𝐿 with the measure 𝛾. Let us study a concrete
example of Lévy mixing.

Example 18 (superposition of Ornstein-Uhlenbeck type pro-
cess). Let us consider the example of superposition of
Ornstein-Uhlenbeck type process. Let 𝐿 be a subordinator
without drift and with Lévy measure ]

𝐿
, and consider an

Ornstein-Uhlenbeck process

𝑌
𝑡
= ∫

𝑡

−∞

𝑒
−𝜃(𝑡−𝑧)

𝑑𝐿 (𝑧) , (36)

for 𝜃 > 0. By a simple calculation, we obtain the following
expression for the cumulant function of 𝑌

𝑡
:

𝐶 {𝜁 ‡ 𝑌
𝑡
} = ∫

∞

0

(𝑒
𝑖𝜁𝑥

− 1) ] (𝑑𝑥, 𝜃) , (37)

for 𝜁 ∈ R, where

] (𝑑𝑥, 𝜃) = ∫
∞

0

]
𝐿
(𝑒

𝜃𝑢
𝑑𝑥) 𝑑𝑢 (38)

is a mixture of ]
𝐿
with the Lebesgue measure. Lévy mixing

can be carried out with respect to the parameter 𝜃; namely,

]̃ (𝑑𝑥) = ∫
∞

0

] (𝑑𝑥, 𝜃) 𝛾 (𝑑𝜃) , (39)

where 𝛾 is a measure on [0,∞) satisfying

∫

∞

0

𝑥]̃ (𝑑𝑥) < ∞. (40)
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Taking �̃� to be the Lévy basis with Lévy measure
]
𝐿
(𝑑𝑥)𝑑𝑢𝛾(𝑑𝜃) and defining the superposition of Ornstein-

Uhlenbeck type process �̃�
𝑡
with respect to �̃� by

�̃�
𝑡
= ∫

∞

0

∫

𝑡

−∞

𝑒
−𝜆(𝑡−𝑧)

�̃� (𝑑𝑧, 𝑑𝜆) , (41)

where 𝜆 > 0, we have that the cumulant function of �̃�
𝑡
is given

by

𝐶 {𝜁 ‡ �̃�
𝑡
} = ∫

∞

0

∫

𝑡

−∞

𝐶 {𝜁𝑒
−𝜃(𝑡−𝑧)

‡ 𝐿
1
} 𝑑𝑧𝛾 (𝑑𝜃)

= ∫

∞

0

∫

∞

0

(𝑒
𝑖𝜁𝑒
−𝜃𝑢

− 1) ]
𝐿
(𝑑𝑥) 𝑑𝑢𝛾 (𝑑𝜃)

= ∫

∞

0

(𝑒
𝑖𝜁𝑥

− 1) ]̃ (𝑑𝑥) ,

(42)

hence showing that superposition of Ornstein-Uhlenbeck
type process can be obtained from an Ornstein-Uhlenbeck
process through Lévy mixing.

3.4. Autocorrelation and Cross-Correlation. We would like
to underline that the proposed approach allows modeling
the entire forward curve. Hence, it is interesting to study
the correlation structure between various forward contracts
implied by the presented modeling framework. Starting from
the definition of covariance function of an ambit field (see
Section A.4 of [5]), we deduce the autocorrelation function of
a forward contract 𝑓

𝑡
(𝑥). More precisely, assuming that the

Lévy basis is homogeneous, and taking 𝑡, ℎ ∈ R, ℎ ≥ 0, and
𝑥, 𝑥 ≥ 0, we have that the ambit set defined in (8) can be
expressed as 𝐴

𝑡
(𝑥) ∩ 𝐴

𝑡+ℎ
(𝑥) = 𝐴

𝑡
(𝑥) := 𝐴

𝑡
; then we define

the autocorrelation function as

Cor (𝑓
𝑡
(𝑥) , 𝑓

𝑡+ℎ
(𝑥)) :=

∫
[0,∞)×[0,∞)

𝑘 (𝜉, 𝑢; 𝑥) 𝑘 (𝜉, 𝑢 + ℎ; 𝑥)E [𝜎2

0
(𝜉)] 𝑑𝜉 𝑑𝑢

√∫
[0,∞)×[0,∞)

𝑘2 (𝜉, 𝑢; 𝑥)E [𝜎2

0
(𝜉)] 𝑑𝜉 𝑑𝑢 ∫

[0,∞)×[0,∞)
𝑘2 (𝜉, 𝑢; 𝑥)E [𝜎2

0
(𝜉)] 𝑑𝜉 𝑑𝑢



. (43)

Note that the correlation structure is principally determined
by three factors, which are the intersection of the correspond-
ing ambit sets, the kernel function, and the autocorrelation
structure of the stochastic volatility field. Furthermore, we
could model various commodity forward contracts, such as
electricity and natural gas futures, simultaneously. It follows
that we can specify different ambit sets, kernel functions,
stochastic volatility fields, and Lévy bases in order to obtain
a rather flexible correlation structure. In such a situation, it
becomes even more clear how flexible the ambit setting is.
The details of these multivariate extensions can be found in
Section A.5 of [5].

3.5. Martingale Condition. In what follows, we give sufficient
conditions for the presented model to be a martingale, even
if such property may be too restrictive if we are interested in
modeling electricity forward contracts. In fact, there are at
least two arguments that support the choice of more general
classes of stochastic processes than martingales. First, in the
energy context, it might not be as crucial that 𝑓

𝑡
(𝑇 − 𝑡) is a

martingale as it is in the context of modeling interest rates. In
fact, in many emerging electricity markets, a seller may not
be able to find any buyer to get rid of a forward; oppositely,
it may also happen that there are no sellers when one wants
to buy a contract. Hence, the illiquidity prevents possible
arbitrage opportunities from being exercised and we need a
martingale condition only in the absence of arbitrage setting
(see [18]). Second, independently of the particular structure
of energy markets, the recent literature in mathematical
finance (see, e.g., [6, 18]) has highlighted that some classes
of nonsemimartingales, in particular stochastic processes
with conditional full support, do not necessarily give rise

to arbitrage opportunities reflecting more realistic charac-
teristics of the market. In the null-spatial setting, Pakkanen
proves that Brownian semistationary processes have in fact
conditional full support (see [7]). In future research, it will
be interesting to study extensions of the latter result to more
general ambit fields. However, the question of establishing
martingale conditions for ambit fields is interesting in order
to point out a subset of the classwe are considering, which can
be exploited to model general forward prices, hence without
restricting ourselves to the electricity case. In what follows,
we formulate the martingale condition for ambit fields more
general than those defined by (7), where the ambit set𝐴

𝑡
(𝑥) is

chosen as in (8), also showing that such condition simplifies
in the modeling framework described in Section 3.1.

Theorem 19 (martingale condition for general ambit fields).
Let 𝑥 = 𝑇 − 𝑡 for some 𝑇 > 0 and, for fixed 𝑡 ∈ R, let

𝑌
𝑡
(𝑥) := 𝑌

𝑡
(𝑇 − 𝑡)

= ∫
𝐴
𝑡
(𝑥)

ℎ (𝜉, 𝑧; 𝑇 − 𝑡, 𝑡) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧) ,

(44)

where 𝐴
𝑡
(𝑥) is defined as in (8), ℎ is a deterministic kernel

function, 𝜎 is an adapted, nonnegative random field, and 𝐿 is
a Lévy basis satisfying both (i) and (iv). Further, 𝜎 and 𝐿 are
assumed to be independent.Then, {𝑌

𝑡
(𝑇−𝑡)}

𝑡∈R is amartingale
with respect to {F

𝑡
}
𝑡∈R defined as in (5) if and only if, for all

𝜉 > 0, 𝑧 ≤ 𝑡 ≤ 𝑇, it holds

ℎ (𝜉, 𝑧; 𝑇 − 𝑡, 𝑡) = ℎ̃ (𝜉, 𝑧; 𝑇) , (45)

for some deterministic kernel function ℎ̃.
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Proof. Measurability and integrability properties are trivially
verified according to what we have seen so far; therefore, we
just have to show that

E [𝑌
𝑡
(𝑇 − 𝑡) | F

�̃�
] = 𝑌

𝑡
(𝑇 − �̃�) , (46)

for all �̃� ≤ 𝑡. Note that, for �̃� ≤ 𝑡, we have that 𝐴
�̃�
(𝑥) ⊂ 𝐴

𝑡
(𝑥).

Using the independence property of 𝜎 and 𝐿 and the fact that
𝐿 is a zero-mean process, we find

E [𝑌
𝑡
(𝑇 − 𝑡) | F

�̃�
]

= E [∫
𝐴
�̃�
(𝑥)

ℎ (𝜉, 𝑧; 𝑇 − 𝑡, 𝑡) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧)

+ ∫
𝐴
𝑡
(𝑥)\𝐴

�̃�
(𝑥)

ℎ (𝜉, 𝑧; 𝑇 − 𝑡, 𝑡) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧) | F

�̃�
]

= ∫
𝐴
�̃�
(𝑥)

ℎ (𝜉, 𝑧; 𝑡, 𝑇 − 𝑡) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧) = 𝑌

𝑡
(𝑇

− �̃�) + 𝐼
𝑡
(𝑇 − �̃�) ,

(47)

where

𝐼
𝑡
(𝑇 − �̃�) = ∫

𝐴
�̃�
(𝑥)

(ℎ (𝜉, 𝑧; 𝑇 − 𝑡, 𝑡) − ℎ (𝜉, 𝑧; 𝑇 − �̃�, �̃�))

⋅ 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧) .

(48)

Without loss of generality, we can assume that Var(𝐿) = 1.
Since 𝐿 is a Lévy basis with zero-mean, we know thatE[𝐼

𝑡
(𝑇−

�̃�)] = 0 and from the Itô isometry (seeTheorem 2.5 in [13]) we
therefore get that

Var (𝐼
𝑡
(𝑇 − �̃�))

= ∫
𝐴
�̃�
(𝑥)

(ℎ (𝜉, 𝑧; 𝑇 − 𝑡, 𝑡) − ℎ (𝜉, 𝑧; 𝑇 − �̃�, �̃�))
2

⋅ E [𝜎
2

𝑧
(𝜉)] 𝑐 (𝑑𝜉, 𝑑𝑧) ,

(49)

where 𝑐 is the covariance measure induced by 𝐿; see, for
example, [13], for a rigorous definition of covariance measure
induced by a Lévy basis.Thus, in order to obtain 𝐼

𝑡
(𝑇−�̃�) = 0,

we need that, for all 𝜉 > 0, 𝑧 ≤ �̃� ≤ 𝑡 ≤ 𝑇,

ℎ (𝜉, 𝑧; 𝑇 − 𝑡, 𝑡) = ℎ (𝜉, 𝑧; 𝑇 − �̃�, �̃�) . (50)

Note that there is only one class of functions which satisfy the
above condition, namely, functions of the form

ℎ (𝜉, 𝑧; 𝑇 − 𝑡, 𝑡) = ℎ̃ (𝜉, 𝑧; 𝑇) , (51)

for all 𝜉 > 0, 𝑧 ≤ �̃� ≤ 𝑡 ≤ 𝑇 and for some deterministic kernel
function ℎ̃.

Remark 20 (Lévy basis with mean different from zero). If we
would like to work with Lévy bases 𝐿which do not have zero-
mean, then themartingale condition has to be extended by an
additional drift condition.

Corollary 21 (martingale condition for 𝑓
𝑡
(𝑥)). One gets that

{𝑓
𝑡
(𝑇 − 𝑡)}

𝑡∈R is a martingale with respect to {F
𝑡
}
𝑡∈R if and

only if, for all 𝜉 > 0, 𝑧 ≤ 𝑡 ≤ 𝑇, the following holds:

𝑘 (𝜉, 𝑡 − 𝑧; 𝑇 − 𝑡) = �̃� (𝜉, 𝑇 − 𝑧) , (52)

for some deterministic kernel function �̃�; hence, the latter is a
special case of the factorisation given in (19).

Proof. This result follows directly fromTheorem 19 consider-
ing 𝑌

𝑡
(𝑇 − 𝑡) = 𝑓

𝑡
(𝑇 − 𝑡).

Clearly, the martingale condition is rather strong and it
is necessary to check whether there are actually any relevant
cases, not excluded by condition (52). Therefore, let us study
some examples.

Example 22 (exponential kernel function). If we choose 𝑘 to
be of the form

𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) = 𝑘 (𝜉, 𝑡 − 𝑧; 𝑇 − 𝑡) = 𝑒
−𝛼((𝜉+𝑥)+(𝑡−𝑧))

= 𝑒
−𝛼(𝜉+𝑇−𝑧)

,

(53)

for some 𝛼 > 0, then the abovemartingale condition is clearly
satisfied. Note that this choice of the kernel function belongs
to both factorisation classes (12) and (19).

Example 23 (factorisation (19)). Let us consider kernel func-
tions 𝑘 which factorise as in (19); that is,

𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) = Φ (𝜉)Ψ (𝑡 − 𝑧, 𝑥) ; (54)

then the choice of the function Φ does not have any impact
concerning whether the ambit field is a martingale; indeed
such a property is solely determined by the function Ψ. It
follows that every choice of the form

Ψ (𝑡 − 𝑧, 𝑇 − 𝑡) = Ψ̃ (𝑇 − 𝑧) (55)

satisfies the martingale condition.

3.6. Derivation of a Spot Model from the Forward One.
Under the absence of arbitrage assumption, the forward price
of a contract tends to be equal to the spot price of the
underlying as the time to maturity tends to zero. In this
subsection, we investigate in detail the nature of the spot
price model implied by the above modeling framework for
the forward price. Note that this study should be understood
as a theoretical exercise, since we do not observe convergence
of the electricity forward price to the electricity spot price in
real markets.
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Let 𝑓
𝑡
(𝑥) be the forward price and let 𝑆

𝑡
be the spot price

of the underlying. When the time to maturity 𝑥 = 𝑇− 𝑡 tends
to 0, we would have that 𝑓

𝑡
(𝑥) tends to 𝑆

𝑡
; hence, we define

the spot price as

𝑆
𝑡
:= ∫

𝑡

−∞

∫

∞

0

𝑘 (𝜉, 𝑡 − 𝑧; 0) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧) . (56)

Lemma 24 (convergence of 𝑓
𝑡
(𝑥) to 𝑆

𝑡
). Suppose that

lim
𝑥↓0

∫

𝑡

−∞

∫

∞

0

(𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) − 𝑘 (𝜉, 𝑡 − 𝑧; 0))
2

⋅ E [𝜎
2

𝑧
(𝜉)] 𝑑𝜉 𝑑𝑧 = 0;

(57)

then 𝑓
𝑡
(𝑥) → 𝑆

𝑡
in 𝐿2(Ω,F,P∗

) as time to maturity 𝑥 tends
to zero, where 𝑃∗ denotes the risk neutral probability measure.

Proof. The result follows immediately by applying the Itô
isometry, as proved byTheorem 2.5 in [13].

The previous lemma gives us that the forward price will
tend continuously in variance to the spot price as time to
maturity decreases to zero. Note also that whenever 𝜎

𝑧
(𝜉)

is a stationary field, the condition in the above lemma is
translated to convergence of 𝑘(⋅, ⋅; 𝑥) to 𝑘(⋅, ⋅; 0) in 𝐿2(R2

+
).

Using Proposition 8 for the forward price, we can easily
derive the conditional cumulant function for the implied spot
price.

Proposition 25 (conditional cumulant function of 𝑆
𝑡
). Let 𝐿

be a homogeneous Lévy basis. Then, for 𝑆
𝑡
defined as in (56),

the cumulant function conditioned to 𝜎 is given by

𝐶
𝜎
{𝜁 ‡ 𝑆

𝑡
}

= ∫

𝑡

−∞

∫

∞

0

𝐶 {𝜁𝑘 (𝜉, 𝑡 − 𝑧; 0) 𝜎
𝑧
(𝜉) ‡ 𝐿


} 𝑑𝜉 𝑑𝑧,

(58)

where 𝐿 is the Lévy seed associated with 𝐿.

Proof. This result is an immediate consequence of
Proposition 8.

A case of some special interest is given by considering the
driving Lévy basis 𝐿 of the ambit field to be a homogeneous
Gaussian Lévy basis; in fact, in this case, we get the following
result.

Corollary 26 (spot price when 𝐿 is a Gaussian Lévy basis).
Let 𝑆

𝑡
be as in (56) and let 𝐿 be a homogeneous Gaussian Lévy

basis with

𝐶 {𝜁 ‡ 𝐿

} = −

1

2
𝜁
2
, (59)

where 𝐿 is the Lévy seed associated with 𝐿.Then, the cumulant
function of 𝑆

𝑡
conditioned to 𝜎 is given by

𝐶
𝜎
{𝜁 ‡ 𝑆

𝑡
}

= −
1

2
𝜁
2
∫

𝑡

−∞

∫

∞

0

𝑘
2
(𝜉, 𝑡 − 𝑧; 0) 𝜎

2

𝑧
(𝜉) 𝑑𝜉 𝑑𝑧.

(60)

If the kernel function 𝑘 can be factorized as in (12), then

𝐶
𝜎
{𝜁 ‡ 𝑆

𝑡
} = −

1

2
𝜁
2
∫

𝑡

−∞

𝜓
2
(𝑡 − 𝑧) 𝜔

2

𝑧
(𝜉) 𝑑𝑧, (61)

where

𝜔
2

𝑧
= ∫

∞

0

𝜙
2
(𝜉, 0) 𝜎

2

𝑧
(𝜉) 𝑑𝜉, (62)

implying that 𝑆
𝑡
is equal in law to

𝑆
𝑡
= ∫

𝑡

−∞

𝜓
2
(𝑡 − 𝑧) 𝜔

𝑧−
(𝜉) 𝑑𝑊

𝑧
, (63)

where𝑊 is the standard Brownian motion.

Proof. The result follows by straightforward calculations,
exploiting Proposition 25 and the definition of Gaussian Lévy
basis.

Remark 27 (modeling spot price). Note that 𝑆
𝑡
in (63) is a

Brownian semistationary process, which has been used as a
model for energy spot prices in [1].

3.6.1. The Samuelson Effect. Recall that the Samuelson effect
describes the empirical fact that the volatility of the forward
price increasingly converges to the volatility of the underlying
spot price when the time to maturity tends to zero. Here, we
show that this effect is naturally included in our modeling
framework.

Theorem 28 (nondecreasing of the conditional variance of
𝑓
𝑡
(𝑥)). Assume that the function 𝑥 → 𝑘(𝜉, 𝑢; 𝑥) is mono-

tonically nondecreasing in 𝑥 ≥ 0 for every (𝜉, 𝑢) ∈ R2

+
. The

conditional variance of the forward price 𝑓
𝑡
(𝑥) given by

V
𝑡
(𝑥) := 𝑐 ∫

𝑡

−∞

∫

∞

0

𝑘
2
(𝜉, 𝑡 − 𝑧; 𝑥) 𝜎

2

𝑧
(𝜉) 𝑑𝜉 𝑑𝑧 (64)

is monotonically nondecreasing in 𝑥, for 𝑡 ≥ 0, where the term
𝑐 is a suitable constant; see Section A.2 of [5] for a rigorous
definition of 𝑐.

Proof. For 𝑥 ≥ 0, we have

V
𝑡
(𝑥) = 𝑐∫

𝑡

−∞

∫

∞

0

𝑘
2
(𝜉, 𝑡 − 𝑧; 𝑥) 𝜎

2

𝑧
(𝜉) 𝑑𝜉 𝑑𝑧, (65)

and, taking 0 ≤ 𝑥 ≤ 𝑥, then

V
𝑡
(𝑥) − V

𝑡
(𝑥)

= ∫

𝑡

−∞

∫

∞

0

(𝑘
2
(𝜉, 𝑡 − 𝑧; 𝑥) − 𝑘

2
(𝜉, 𝑡 − 𝑧; 𝑥))

⋅ 𝜎
2

𝑧
(𝜉) 𝑑𝜉 𝑑𝑧 ≥ 0,

(66)

since 𝑘(𝜉, 𝑡 − 𝑧; 𝑥) is nondecreasing in 𝑥.

Remark 29 (Samuelson effect). The conditional variance of
the spot price is given by V

𝑡
(0) and from the above theorem
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it follows that V
𝑡
(𝑥) ≥ V

𝑡
(0) for 𝑥 ≥ 0. Since we can consider

V
𝑡
(𝑥) as a monotonically increasing sequence bounded from

below by V
𝑡
(0), there exists the limit lim

𝑥↓0
V
𝑡
(𝑥) = 𝑙. Under

the condition in Lemma 24, this limit is given by 𝑙 = V
𝑡
(0);

hence, it equals the conditional variance of spot price, which
implies that we have a Samuelson effect.

3.7. Simulation Algorithm. In what follows, we present a
possible algorithm, taken from [5], to simulate an ambit field
𝑌
𝑡
(𝑥) of the following type:

𝑌
𝑡
(𝑥) = ∫

𝑡

−∞

∫

∞

0

𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧) . (67)

A problem that we immediately note is that we perform
integration over an ambit set𝐴

𝑡
(𝑥) = (−∞, 𝑡]×[0,∞), which

is unbounded; hence, we have to truncate the ambit set before
performing any computations. Therefore, we introduce the
ambit field

𝑌
𝑡
(𝑥) = ∫

𝑡

𝑀
1

∫

𝑀
2

0

𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧) , (68)

where 𝑀
1
< 𝑡 and 𝑀

2
> 0. Obviously, if 𝑀

1
→ −∞ and

𝑀
2
→ ∞, then 𝑌

𝑡
(𝑥) converges to 𝑌

𝑡
(𝑥).

Taking 𝑛,𝑚 ∈ N+, we construct a grid for [𝑀
1
, 𝑡]×[0,𝑀

2
]

by dividing the interval [𝑀
1
, 𝑡] into 𝑛 equidistant intervals of

length (𝑡 − 𝑀
1
)/𝑛, where 𝑡 = 𝑡

1
> 𝑡

2
> ⋅ ⋅ ⋅ > 𝑡

𝑛
= 𝑀

1
, and by

dividing [0,𝑀
2
] into𝑚 equidistant intervals of length𝑀

2
/𝑚,

where 0 = 𝑥
1
< 𝑥

2
< ⋅ ⋅ ⋅ < 𝑥

𝑚
= 𝑀

2
. Next, we simulate an

ambit field through the following steps:

(1) Simulate the stochastic field on the grid points (𝑡
𝑖
, 𝑥

𝑗
)

in order to obtain the values of stochastic volatility
𝜎
𝑡
𝑖

(𝑥
𝑗
) for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚. In case we

have no stochastic volatility, we set 𝜎
𝑡
𝑖

(𝑥
𝑗
) = 1, for all

𝑖 = 1, . . . , 𝑛 and for all 𝑗 = 1, . . . , 𝑚.

(2) Simulate 𝑛 ⋅𝑚 random variables𝑍
𝑖+𝑗

∼ 𝐿(Δ), where 𝐿
is the Lévy basis computed on

Δ = Δ (𝑛,𝑚,𝑀
1
,𝑀

2
) =

(𝑡 − 𝑀
1
)

𝑛

𝑀
2

𝑚
, (69)

for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚.

(3) Compute the approximated ambit field in this way:

�̂�
𝑡
(𝑥) =

𝑛−1

∑

𝑖=1

𝑚−1

∑

𝑗=1

𝑘 (𝑥
𝑗
, 𝑡 − 𝑡

𝑖
; 𝑥) 𝜎

𝑡
𝑖

(𝑥
𝑗
)𝑍

𝑖+𝑗
. (70)

We note that the previous algorithm can be used also to
simulate stochastic volatility. In the last step of the simulation
algorithm, we use the definition of stochastic integral in
the sense of Walsh for simple processes, which ensures the
convergence of (70) to the actual stochastic integral, when
Δ ↓ 0.

4. Empirical Study

In what follows, we exploit results and techniques developed
throughout previous sections to give a detailed analysis as
well as a forecast analysis concerning forward contracts
within the German energy markets, namely, within the
framework of the EEX. The latter ones are characterized by
various types of forward contracts whose structure mainly
depends on the characterizing time slots each of them takes
into consideration, the duration of the contract, whether
there are some lower or upper bounds in the quantity of
electricity exchanged, and so forth. We focus our attention
on a widely used forward contract that assures the supply
of electricity at a fixed price for a month from 9 a.m. to 8
p.m., but only duringworking days.The latter type of contract
is traded in the over-the-counter market and it is called a
monthly peak forward contract. Trades for such contracts
take place in the three months before the effective supply of
requested electricity. In particular, we analyze twelve peak
contracts, one for each month of the year, from April 2012
to March 2013.

4.1. Model Specification and Parameters Calibration. Follow-
ing the approach presented in Section 3.1, we model the
forward price 𝑓

𝑡
(𝑥) as an ambit process for each fixed 𝑥;

namely,

𝑓
𝑡
(𝑥) = ∫

𝑡

−∞

∫
𝐼(𝜉)

𝑘 (𝜉, 𝑡 − 𝑧; 𝑥) 𝜎
𝑧
(𝜉) 𝐿 (𝑑𝜉, 𝑑𝑧) , (71)

where 𝑡 ∈ R denotes the current time, 𝐼(𝜉) ⊂ [0,∞) is
an interval that depends on the peak contract considered,
𝜎
𝑧
(𝜉) > 0 denotes the volatility of the forward market as a

whole, 𝐿 is a Lévy basis, and 𝑘 is the kernel function. We
also suppose that 𝑓

𝑡
(𝑥) satisfies conditions (i)–(vi) stated in

Section 3.1, and 𝑇 > 0 being the maturity time, we model the
fact that the forward price depends also on time to maturity
𝑥 := 𝑇 − 𝑡; hence, we use the spatial variable 𝑥 to define a
second time variable, namely, the time to maturity one.

There are three components of the model which we have
to specify, namely, the Lévy basis 𝐿, the kernel function 𝑘,
and the volatility 𝜎.The choices wemade aremainly based on
qualitative analysis of the market of interest, but also taking
into consideration analytical as well as numerical tractability
of the resulting model and, last but not least, the empirical
evidence.

4.1.1. Kernel Function. Every demand in general, and elec-
tricity consumption in particular, is affected by seasonality,
which is also the case for forward prices. In fact, they depend
on the period of the year; indeed it is easy to recognize a
cyclic behaviour for such values. In order to depict this kind
of periodicity, in (71), we consider a kernel function of the
following type:

𝑘 (𝜉, 𝑡 − 𝑧; 𝑇 − 𝑡) = 𝑓
0
+ Φ (𝜉)Ψ (𝑡 − 𝑧, 𝑇 − 𝑡) , (72)

where 𝑓
0
is the price of the forward contract at time 0 taken

from the data, Φ takes into account the seasonal influences
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Table 1: In the first column, we have themonths of electricity supply
of the peak contracts considered, while in the second one we have
the interval 𝐼(𝜉) relative to each contract. Note that a contract traded
for 3 months is integrated in an interval of length 3.

Month 𝐼(𝜉)

April [0, 3]

May [1, 4]

June [2, 5]

July [3, 6]

August [4, 7]

September [5, 8]

October [6, 9]

November [7, 10]

December [8, 11]

January [9, 12]

February [10, 13]

March [11, 14]

that affect electricitymarkets, andΨmodels the average price
trend over the peak contracts considered, which are relative
to one year. Clearly, the periodicity acts solely on the average
trend of forward contracts and this is the reason why Φ

multiplies only Ψ and not also 𝑓
0
in (72).

Exploiting related time series data and the fact that in
winter the demand for electricity is greater than in summer,
we choose the following bell-shaped function to model the
effect of seasonality on forward prices:

Φ (𝜉) = 1 + 𝐾(𝜇 + 𝛼𝑒
−(𝜉−𝛽)

2
/𝛾
2

) , (73)

where 𝜇 = 0.8, 𝛼 = 2.4, 𝛽 = 8.5, and 𝛾 = 1.5, while 𝐾 is
a constant that depends only on the length of the forecast.
Short-term forecasts are less influenced by seasonality than
long-term ones; therefore, the parameter𝐾 takes care of such
phenomenon. In particular, we choose 𝐾 = 𝑙/𝑇, where 𝑙 is
the length of the forecast, so that the periodicity function
Φ is significant only in medium- or long-term previsions.
Moreover, the variable 𝜉 spans the different months of the
year; therefore, the integration interval 𝐼(𝜉) is different for
every peak contract considered (see Table 1).

Before entering into details concerning the specification
of Ψ, let us note that, as a rather general rule, forward
contracts tend to depreciate getting close to maturity time.
Even if the behaviour of peak contracts considered is not the
same, based on the latter ones, it seems reasonable to choose
a concave function Ψ. In particular, we choose the following
exponential function:

Ψ (𝑡 − 𝑧, 𝑇 − 𝑡) =

{

{

{

𝜂𝑒
−𝜆(𝑇−𝑧)

, if 𝑧 ≥ 0,

0, if 𝑧 < 0,
(74)

where 𝜂 is a constant computed as the average daily price
variation of all peak contracts, which is equal to −0.063, times
the length of the forecast 𝑙 and 𝜆 is a constant that models
the price fall. We have estimated this parameter studying the
average fall in price over the peak contracts and the trends

Table 2: In the first column,we have themonths of electricity supply
of the peak contracts considered, while in the next five columns
we have the mean absolute percentage errors (MAPE) obtained in
the forecasts of the contracts value at 1, 2, 3, 4, and 5 days ahead,
respectively.

Month 1 2 3 4 5
April 2012 1.10% 1.81% 2.12% 2.42% 2.87%
May 2012 0.84% 1.28% 1.62% 1.90% 2.01%
June 2012 0.72% 0.97% 1.13% 1.24% 1.33%
July 2012 0.69% 1.05% 1.25% 1.48% 1.54%
August 2012 0.62% 0.84% 1.13% 1.35% 1.51%
September 2012 0.73% 1.13% 1.42% 1.60% 1.70%
October 2012 0.44% 0.62% 0.79% 0.88% 0.95%
November 2012 0.59% 0.82% 0.92% 1.00% 1.07%
December 2012 0.60% 0.80% 0.99% 1.11% 1.17%
January 2013 0.62% 0.88% 1.09% 1.25% 1.39%
February 2013 0.68% 1.09% 1.54% 1.89% 2.19%
March 2013 0.61% 0.82% 1.09% 1.30% 1.61%

Table 3: In the first column, we have themonths of electricity supply
of the peak contracts considered, while in the second column we
have the mean absolute percentage errors obtained in the long-term
forecasts of the contracts value.

Month MAPE
April 2012 2.96%
May 2012 1.94%
June 2012 1.73%
July 2012 1.88%
August 2012 2.86%
September 2012 2.36%
October 2012 1.97%
November 2012 1.99%
December 2012 1.79%
January 2013 2.79%
February 2013 4.15%
March 2013 4.95%

of the latter ones, obtaining 𝜆 = 0.04. This choice of kernel
function is also motivated by the empirical studies in [1],
where the authors show that such a specification in a model
based on Lévy semistationary processes effectively forecasts
spot price dynamics on the German EEX market.

4.1.2. Lévy Basis. Several publications (see, e.g., [2, 5, 19, 20])
have shown the applicability of the generalised hyperbolic
distribution, in particular the subfamily consisting of the
normal inverse Gaussian distributions, to describe appropri-
ately financial datasets. Exploiting these results, we choose
a normal inverse Gaussian Lévy basis plugging it in the
model described by (71). This kind of Lévy basis can be
obtained starting from a normal inverse Gaussian Lévy
process of parameters 𝜃, 𝑘, and 𝜔, and the latter is the result
of subordination of an inverse Gaussian Lévy process, which
has variance 𝑘, with a Brownian motion with volatility 𝜔 and
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Figure 1: In this figure, we present the price curves obtained by simulating the peak contract of June 2012 using (71) with the specification
above stated. The graphics in the figure present forecasts of the contract value at 1, 2, 3, and 4 days ahead.

drift 𝜃. In order to use the right parameters, note that the
prices of peak contracts are quite stable, being characterized
by small daily variation; hence, in general, there are no fat tail
phenomena to be taken into account, at least at such a time
scale. Latter observation suggests taking small values of𝜔 and
𝑘. In particular, also using lines of empirical evidence coming
from the analysis of related time series, we take 𝜔 = 0.01 and
𝑘 = 0.2, also setting 𝜃 = 1, since we model the entire forward
curve.

4.1.3. Stochastic Volatility. The time series of monthly peak
forward contracts we have taken into consideration show
a rather regular trend. Therefore, there is no empirical
evidence that causes us to consider this term. Furthermore,

the complexity of the resulting model increases by intro-
ducing stochastic volatility; hence, we have followed what is
suggested in [5], and we have not introduced it, instead fixing
𝜎
𝑧
(𝜉) ≡ 1 in (71).

4.2. Short-Term Analysis. In this short-term analysis, we take
the price of the peak contract at a day to forecast the value
of the contract from 1 to 5 days ahead. We perform this
study simulating numerically the trajectories of (71) using the
algorithm presented in Section 3.7. The results are listed in
Table 2 and are discussed in Section 4.5.

4.3. Long-Term Analysis. In the short-term analysis, we have
taken the price at a day to forecast the value of the contract
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Figure 2: In this figure, we present the price curves obtained by simulating the peak contract of November 2012 using (71) with the
specification above stated. The graphics in the figure present forecasts of the contract value at 1, 2, 3, and 4 days ahead.

some days ahead; instead, in order to study the long-term
behaviour, we use the first observed price of each peak
contract to predict the whole trend of it. In this case, a
very important role is played by seasonality. We perform this
study simulating numerically the trajectories of (71), using the
algorithm presented in Section 3.7. The results are listed in
Tables 3 and 4 and are discussed in Section 4.5.

4.4. Ambit Approach versus a Standard Approach. In order to
assess whether the ambit approach proposed is convenient
compared to a standard approach, we have performed the
same analyses proposed in Sections 4.2 and 4.3 modeling
the peak contracts with a geometric Brownian motion, that is,

the stochastic process 𝑆
𝑡
that satisfies the following stochastic

differential equation:
𝑑𝑆

𝑡
= 𝜇𝑆

𝑡
𝑑𝑡 + 𝜎𝑆

𝑡
𝑑𝑊

𝑡
, (75)

where 𝑊
𝑡
is a standard Brownian motion, 𝜇 is a constant

called percentage drift, and 𝜎 is a constant called percentage
volatility. For an arbitrary initial value 𝑆

0
, (75) has the

following analytic solution:

𝑆
𝑡
= 𝑆

0
𝑒
(𝜇−𝜎
2
/2)𝑡+𝜎𝑊

𝑡 . (76)

In these analyses, we have estimated the parameters 𝜇 and 𝜎
using themethod of moments estimation.The results are listed
in Tables 5, 6, and 7 and are discussed in Section 4.5.
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Figure 3: In this figure, we present the price curves obtained by simulating all the peak contracts using (71) with the specification above stated.
The graphics in the figure present long-term forecasts of the contracts value and themonthwritten above each graph refers to electricity supply
of the contract considered.

4.5. Conclusions and Remarks. In the short-term framework,
the forecasts are very little affected by seasonality and the
model presented in this section reflects this fact. Looking
closely at Table 2, we note that in the short-term prediction
the error tends to grow when the length of the forecast
increases, as we can expect, but it remains very small. The
forecasts obtained for the first day ahead case have always
an error less than 1.1% and forecasts on 5 days ahead
only once overtake a 2.5% error. Such good performances
gained by our approach are slightly facilitated by the small
variance characterizing the chosen Lévy basis. We also note
that in such short-term analysis the trend of the simulated
trajectories is very close to the one of real data (see Figures 1
and 2).

Usually, the error increases enlarging the period to fore-
cast, but in the above long-term analysis the mean absolute
percentage errors are all less than 5% (see Table 3), hence
showing that our model provides robust and effective results

in the presence of seasonality. In fact, the model often
forecasts the behavior of the price some week ahead, even if
not always the trend presented by the model is strictly close
to the one shown by real data (see Figure 3 and Table 4). The
latter result is not surprising since it is related to a “three
months from now” forecast, a framework in which energy
markets tend to be characterized by small sensitivity from
initial data. However, the contracts with a bigger error are
the ones which are more complicated to forecast such as, for
example, that of February 2013.

Comparing the errors obtained using the proposedmodel
with those obtained exploiting the geometric Brownian
motion, we notice that the first are significantly lower over
all the performed analysis, as shown in Tables 2, 3, 4, 5,
6, and 7. Accordingly, the ambit approach turns out to
give better results than the standard one. We would like to
underline that the results obtained by ourmodel provide both
good approximations and effective forecasts concerning real
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Table 4: In the first column,we have themonths of electricity supply
of the peak contracts considered, while in the next three columns we
have the mean absolute percentage errors obtained in the long-term
forecasts of the contracts value during the first, second, and third
month of trading, respectively.

Month 1st month 2nd month 3rd month
April 2012 3.98% 2.25% 2.65%
May 2012 2.10% 1.30% 2.39%
June 2012 0.97% 2.42% 1.79%
July 2012 0.68% 0.75% 3.99%
August 2012 2.24% 3.90% 2.44%
September 2012 1.40% 0.75% 4.69%
October 2012 0.62% 3.25% 2.02%
November 2012 1.44% 0.97% 3.49%
December 2012 0.83% 2.49% 2.03%
January 2013 0.70% 1.87% 5.79%
February 2013 2.20% 4.99% 5.15%
March 2013 0.74% 4.39% 9.48%

Table 5: In the first column,we have themonths of electricity supply
of the peak contracts considered, while in the next five columns
we have the mean absolute percentage errors (MAPE) obtained in
the forecasts of the contracts value at 1, 2, 3, 4, and 5 days ahead,
respectively, using a geometric Brownian motion.

Month 1 2 3 4 5
April 2012 4,00% 3,96% 3,98% 3,98% 4,04%
May 2012 3,04% 3,03% 3,02% 3,05% 3,09%
June 2012 2,61% 2,62% 2,63% 2,66% 2,68%
July 2012 2,04% 2,05% 2,04% 2,10% 2,08%
August 2012 1,97% 1,98% 1,98% 2,01% 2,02%
September 2012 3,62% 3,66% 3,67% 3,69% 3,71%
October 2012 2,03% 2,03% 2,04% 2,05% 2,10%
November 2012 3,13% 3,15% 3,18% 3,23% 3,26%
December 2012 2,15% 2,17% 2,17% 2,19% 2,22%
January 2013 2,24% 2,26% 2,29% 2,32% 2,33%
February 2013 5,05% 5,04% 5,10% 5,14% 5,21%
March 2013 5,21% 5,28% 5,32% 5,41% 5,52%

electricity forward prices.Moreover, comparedwith standard
approaches, our model, due to the high flexibility of the
ambit stochastic setting, allows considering more easily the
characteristics of the energy markets.
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Table 6: In the first column,we have themonths of electricity supply
of the peak contracts considered, while in the second column we
have the mean absolute percentage errors obtained in the long-term
forecasts of the contracts value using a geometric Brownian motion.

Month MAPE
April 2012 4,60%
May 2012 4,22%
June 2012 3,76%
July 2012 2,12%
August 2012 2,44%
September 2012 4,27%
October 2012 2,21%
November 2012 4,25%
December 2012 3,10%
January 2013 2,07%
February 2013 5,23%
March 2013 7,83%

Table 7: In the first column,we have themonths of electricity supply
of the peak contracts considered, while in the next three columns we
have the mean absolute percentage errors obtained in the long-term
forecasts of the contracts value during the first, second, and third
month of trading, respectively, using a geometric Brownian motion.

Month 1st month 2nd month 3rd month
April 2012 4,13% 3,98% 5,69%
May 2012 4,33% 3,58% 4,72%
June 2012 4,16% 2,87% 4,21%
July 2012 1,94% 1,91% 2,48%
August 2012 2,07% 2,94% 2,32%
September 2012 4,12% 3,51% 5,11%
October 2012 1,81% 2,42% 2,40%
November 2012 3,95% 3,41% 5,35%
December 2012 3,49% 2,54% 3,27%
January 2013 1,61% 1,78% 2,84%
February 2013 3,69% 4,22% 7,53%
March 2013 7,50% 6,09% 9,79%
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[19] F. E. Benth and J. Šaltyte-Benth, “The normal inverse gaussian
distribution and spot price modelling in energy markets,”
International Journal of Theoretical and Applied Finance, vol. 7,
no. 2, pp. 177–192, 2004.

[20] E. Eberlein, “Application of generalized hyperbolic Lévy
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