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Concern over the reports of antibiotic-resistant bacterial infections in hospitals and in the community has been publicized in
the media, accompanied by comments on the risk that we may soon run out of antibiotics as a way to control infectious disease.
Infections caused by Enterococcus faecium, Staphylococcus aureus, Klebsiella species, Clostridium difficile, Acinetobacter baumannii,
Pseudomonas aeruginosa, Escherichia coli, and other Enterobacteriaceae species represent a major public health burden. Despite
the pharmaceutical sector’s lack of interest in the topic in the last decade, microbial natural products continue to represent one of
the most interesting sources for discovering and developing novel antibacterials. Research in microbial natural product screening
and development is currently benefiting from progress that has been made in other related fields (microbial ecology, analytical
chemistry, genomics, molecular biology, and synthetic biology). In this paper, we review how novel and classical approaches can
be integrated in the current processes for microbial product screening, fermentation, and strain improvement.

1. Introduction

Antibacterial therapy has saved millions of lives and consid-
erably reduced the rate of premature death from bacterial
infections. These achievements led to the assumption that
pathogenic bacteria and the high mortality due to infectious
diseases would be a thing of the past. Unfortunately, soon
after the introduction of antibiotics, reports concerning the
emergence of resistance started to accumulate. Antibiotic
resistance mechanisms, which appear de novo or are trans-
mitted among bacteria, have been well studied and described
in many reviews. These include detoxification of antibiotic
molecules and mutations in the designated target or, as
described recently, are mediated by population-level resis-
tancemechanisms [1]. It is now apparent that interspecies and
intraspecies horizontal gene transfer of both Gram-negative

and Gram-positive bacteria represent the dominant process
by which bacteria become multiresistant. The selective pres-
sure of antimicrobial use in hospitals, in communities, and in
agriculture comprises the engine driving this process. Nowa-
days we are aware that bacterial resistance to all currently
used antibiotics has emerged for both Gram-positive and
Gram-negative bacteria. This threatening situation urgently
calls for a concerted international effort among governments,
the pharmaceutical industry, biotechnology companies, and
the academic world to react and support the development
of new antibacterial agents. One example of such initiative
effort is the Infectious Diseases Society of America (IDSA)
call to develop 10 new systemic antibacterial drugs by 2020 [2]
by targeting drug development against both Gram-positive
and Gram-negative bacteria. Unless serious action is taken,
the acute and dangerous situation that exists today may send
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us back to the preantibiotic era, when there was no cure for
bacterial infections. If this happens, the prophecy of Louis
Pasteurwill be fulfilled and “microbeswill have the last word.”

2. Medical Needs for Novel Antibacterials

Multidrug-resistant bacterial infections represent a major
public health burden, not only in terms of morbidity and
mortality, but also in increased expenses for managing
patients and implementing extensive infection control mea-
sures. Mortality due to multidrug-resistant bacterial infec-
tions is high. In 2002 it was reported that 1.7 million health-
care-associated infections occur each year in American hos-
pitals and were associated with about 99,000 deaths [3]. This
represents a huge increase from a previous estimation, which
reported that in 1992 about 13,300 people died from hospital-
acquired infection [4]. It is estimated that in the EU, Iceland,
and Norway about 37,000 patients die as a direct result of a
hospital-acquired infection each year; an additional 111,000
die as an indirect result of hospital-acquired infection [5]; and
about 25,000 patients die from amultidrug-resistant bacterial
infection.

Presently, the most frequent multidrug resistance (MDR)
bacteria are Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomo-
nas aeruginosa, and Enterobacter spp. which therefore were
termed “ESKAPE” after initially being reported [6], with
several reports adding Clostridium difficile or other Enter-
obacteriaceae [7]. Gram-positive pathogens, such as Staphylo-
coccus, Streptococcus, Enterococcus, and Clostridium, account
for a large proportion of serious infections worldwide. An
increasing percentage of such Gram-positive isolates exhibit
reduced susceptibility to first-line therapies [8–10], resulting
in poor clinical outcomes in both community and hospital
settings [10–13]; this has a significant impact on overall
healthcare utilization and costs [10, 11]. Staphylococcus aureus
and Enterococcus spp. were found to be among the most
commonly isolated pathogens in the hospital environment,
and being frequently resistant to multiple drugs complicates
therapy.The representative hospital “superbugs,” methicillin-
resistant S. aureus (MRSA) and vancomycin-resistant ente-
rococci (VRE), frequently attract mass-media attention and,
in many countries, pressure is increasing to reduce MRSA
and VRE infection rates. Resistance to anti-MRSA and anti-
VRE drugs is uncommon; however, infections by MRSA
strains resistant to glycopeptides, daptomycin, or linezolid
(common anti-MRSA drugs) and by VRE strains resistant
to daptomycin or linezolid (common anti-VRE drugs) are
increasingly being reported, including reports of transferable
resistance mechanism to these drugs among staphylococci
and enterococci. In addition, reports regarding the emer-
gence and spread of virulent clones ofMRSA andClostridium
difficile in the community and in hospitals, respectively, have
been published often. Moreover, multidrug-resistant Strep-
tococcus pneumonia clones are currently considered major
community pathogens in many parts of the world, although
they are being challenged by new conjugate vaccines.

Although the prevalence of Gram-negative bacteria is
currently somewhat lower than that of Gram-positive bacte-
ria, it is well recognized that Gram-negative MDR infections
are emerging as a threat to hospitalized patients with a signif-
icant impact on length of hospitalization, mortality, and cost
[14, 15]. These include multiresistant nonfermenters, such as
Pseudomonas aeruginosa and Acinetobacter baumannii, or
multiresistant, extended-spectrum 𝛽-lactamase-producing
Enterobacteriaceae and more recently carbapenem-resistant
Enterobacteriaceae (CRE) of different types. Emerging resis-
tance is due to the spread of the Klebsiella pneumoniae carba-
penemase (KPC) and to the novel New Delhi metallo-𝛽-
lactamase (NDM-1). The rising crisis of multidrug-resistant
Gram-negative bacteria has prompted the use of salvage
therapywith colistin, an older polymyxin known to be neuro-
toxic and nephrotoxic [16, 17]. However, there are already
reports describing isolates of several Gram-negative bacteria
that are resistant to all available antibiotics, including poly-
myxins [18, 19].

3. Natural Product Discovery: The Screening
Ingredients to Exploit Microbial Diversity

Despite the pharmaceutical sector’s lack of interest in
addressing the topic in the last decade, microbial products
continue to represent one of the most interesting sources
for the discovery of novel antibacterials today and research
in the field is currently benefiting from progress that has
been made in other related fields (microbial ecology, metage-
nomics, metabolomics, or synthetic biology), fields which
have provided a deeper understanding of themicrobiome and
thus the development of new tools to foster the discovery of
novel compounds. Among living organisms,microorganisms
(actinobacteria, cyanobacteria, myxobacteria, and fungi)
represent one of the most prolific sources for the production
of antibiotics. For decades, exploitation of their specialized
(commonly termed secondary) metabolism has guaranteed
the discovery of novel antibiotics and other compounds with
unprecedented chemical characteristics and biological prop-
erties that do not exist in the screening libraries of synthetic
compounds [20, 21]. In this section, we examine the current
trends in microbial product screening for discovering novel
antibiotics. A flow diagram showing the overall screening
operation is reported in Figure 1.

3.1. Microbial Product Libraries. Microbial natural product
libraries rely on the quality and diversity of novel microbial
strains and the approaches used to exploit their metabolic
diversity. Access to microbial diversity traditionally focused
on intensive sampling and isolation using general methods
from a wide range of geographical locations and habitats,
with recurrent isolation and screening of the predominant
species and a low probability of isolating novel compounds.
Although estimates for the potential production of unknown
novel molecules by Streptomyces spp. [22] were high, the
reality is that species spread widely in different environ-
ments produce the same well-known and structurally related
antibacterial molecules. Current approaches oriented to
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Figure 1: Early stages of antibiotic discovery from microbial product libraries.

discovering novel molecules mostly aim to target specific
and minor microbial communities in unique or underex-
plored environments, including specific terrestrial niches,
plant host-microbe associations, and marine environments.
Environmental conditions comprise strong selecting factors
and the distribution of somemicrobial species, even in highly
occurring taxa, presents biogeographic patterns determined
by microenvironmental conditions that can be translated
into novel compounds. Many research groups have recently
emphasized the exploration of untapped microbial commu-
nities that are associatedwith rhizospheres, plant endophytes,
lichens, endolithic microbial communities, insect parasites,
and endosymbionts and marine sediments and inverte-
brates. These approaches have favored the isolation of novel
microbial communities potentially producing novel chemical
scaffolds [23–27]. The search for novel sources has been
combined with the use of novel isolation methods targeting
the cultivation of species underrepresented or previously not
cultivated under laboratory conditions [28–32].Most of these
methods are focused on selective isolation of the members
of minor occurring taxa by using poor nutritional media
devoid of carbon sources, subinhibitory concentrations of
antibiotics that might favor the development of slow-growing
representatives of these microbial communities after weeks
of incubation, alternative gelling substrates to agar shown to
prevent the growth of some microbial groups in laboratory
conditions, in situ incubation chambers, or isolating endo-
phytes that germinate directly on the substrate using humid
chambers or by surface sterilization.

3.2. Tools for Strain Selection. Strain selection criteria are
essential for building a strain collection and ensure the
uniqueness of the isolates and that the widest microbial
diversity is represented. Phenetic and molecular tools that
can be applied hierarchically on the large numbers of isolates
normally recovered from environmental samples have been
intensively developed. These can include a simple mor-
phological characterization of the growth and sporulating
characteristics of actinomycetes and filamentous fungi at the
macroscopic and microscopic levels, allowing preliminary
assignment to a taxonomic group that can be complemented
with the ribosomal gene sequencing of isolates in a large
proportion of the cases. Partial ribosomal rDNA sequencing
is frequently used to confirm the taxonomic affiliation and to
assess in molecular data the microbial diversity and individ-
ual phylogenetic relationships within strains in a collection.
The existing intraspecies heterogeneity in microbial taxa
cannot be resolved in phylogenetic inner branches, which
require the introduction of additional fingerprinting tools
for selection. Other methods currently used can include the
application of high-throughput chemotaxonomic profiling
methods such as those based on thewhole-cell fatty acid com-
position [33] and the use ofMALDI-TOFMS protein profiles,
a promising alternative to conventional identification tech-
niques [34], and molecular fingerprinting techniques based
on the random amplification of genome-conserved repetitive
regions (AFLPs, RAPDS, and REP fingerprinting) [35–37].
The generation of rapid fingerprints based on the restric-
tion pattern of amplified conserved sequences in polyketide
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synthase or nonribosomal peptide synthetase biosynthetic
systems provides additional information about the diversity
and the biosynthetic potential of the new isolates [38].

3.3. Cultivation and Extraction. Traditionally the generation
of microbial product libraries was based on the empiric cul-
tivation of microbial strains in several nutritional conditions
using different liquid and solid formats in varying volumes
and by extracting the fermentation broths to generate crude
extracts or semipurified fractions containing mixtures of
specialized metabolites. The use of a limited number of three
to four conditions at once, employing differentmedia compo-
sitions, cultivation formats, or incubation periods or temper-
atures, was generally accepted as being sufficient to produce
new, specialized metabolites, without real knowledge of the
nutritional requirements and physiology of most of the
groups of strains being screened and the key elements involved
in regulating their specialized metabolite production. Nowa-
days, the continuously increasing number of whole-genome
sequences of known producers shows that a large fraction of
the genome remains silent and that switching on cryptic path-
ways might trigger the production of novel molecules [39–
42]. The OSMAC (one strain, many compounds) approach
has been proposed as an alternative way of exploring each
strain inmultiple conditions to better exploit their specialized
metabolism and to trigger part of this microbial biosynthetic
potential [43]. The use of multiple nutritional conditions has
recently been explored by many groups to generate large
screening extracts libraries in different formats (tubes, flasks),
but miniaturized, parallel fermentation in deep-well plates
represented a major breakthrough in the scale and numbers
of conditions that can be tested [44]. All major taxonomic
groups of actinomycetes and filamentous fungi can be cul-
tivated in a large variety of complex and synthetic liquid
media of diverse composition in carbon sources, inorganic
or complex nitrogen sources, trace elements, and phosphate-
controlled levels [20]. By testing in parallel a high number
of nutritional conditions, minor groups of isolates can be
explored and screened for the production of antibiotic activ-
ities. Identifying production media that can further promote
their microbial biosynthetic potential increases the chances
of producing novel molecules and identifying active extracts
that can be then pursued on a larger scale in chemical isola-
tion projects [45, 46].

Theproduction of specialized bacterialmetabolites can be
stimulated by using known chemical inducers (e.g., sidero-
phores, rare earths, or metabolism intermediates) [47–50],
small, diffusible, bacterial, hormone-like molecules such as
the 𝛾-butyrolactones, and other butenolides [51]. Other elici-
tors of specializedmetabolism include N-acetyl-glucosamine
that when added to production media modulates the N-
acetyl-glucosamine-responsive protein DasR [52] or generat-
ing ribosomal mutations that result in altered ppGpp biosyn-
thesis and catabolite repression that favor biosynthesis [53].
Epigenetic modulation of fungal expression by histone acety-
lation and methylation has a strong influence on antibiotic
production [54], and small-molecule epigenetic inhibitors
of histone deacetylase (HDAC) or DNA methyltransferase
(DMAT) are used to activate silent, natural product pathways

in different fungal species [55, 56]. Similarly to fungi, HDAC
inhibitors such as sodium butyrate or splitomicin have
been reported to activate cryptic pathways in Streptomyces
coelicolor, and HDAC orthologues have been identified to
be broadly distributed in actinomycetes [57], offering new
avenues to induce cryptic or poorly expressed specialized
metabolites in these taxa and expand the chemical diversity
of microbial product libraries.

Whereas the production conditions are key to promot-
ing the biosynthetic potential, microbial product libraries
comprise a collection of extracts and are also defined by
the type of extraction used in their preparation. Extraction
procedures should be designed to ensure the widest diversity
of compound polarities in the extracts. These can range
from simple whole-broth extraction with solvents of differ-
ent polarity (from aqueous methanol or acetone miscible
with the broth to more nonpolar solvents such as ethyl
acetate or methyl-ethyl-ketone, providing cleaner extracts
of mid-polarity compounds) to solid-phase extraction with
ion exchange resins that directly enrich metabolites from
the broth (cross-linked polystyrene Diaion HP20 or XAD
resins) [58, 59]. Orthogonal fractionations that are used to
generate prefractionated libraries reduce the complexity of
the extracts, enabling screening at higher concentrations and
simplifying the following dereplication phase [60].

3.4. Antibacterial ScreeningAssays. Antibiotic screening strat-
egies of natural products have seen an important evolution in
the past few decades, from the low-throughput, early pheno-
typic assays—used to identify compounds only targeting path-
ogens without any previous potential mode of action
hypothesis—to high-throughput, whole-cell, target-based
assays and structured-based design derived from in silico
screening [61, 62]. High-throughput screening of microbial
product libraries continues to be commonly based on phe-
notypic assays that have the advantage of utilizing intact
bacteria and ensure that the active compound can penetrate
the bacterial membranes and reach their target. Nowadays,
these assays offer the possibility of integrating reporter genes
to run whole-cell, target-based screens, in liquid- or agar-
based format, including single- or two-plate assays, which
aim to identify differential activity. The different types of
assays targeting classical bacterial functions and essential
pathways, including DNA replication, cell wall biosynthesis,
and protein biosynthesis, have been extensively described
in recent papers [63, 64]. Among these approaches, one of
the breakthroughs is the use of Staphylococcus aureus genes
essential for growth to develop a series of screens based
on reducing the expression of targets to identify bacterial
inhibitors. The induction of antisense RNAs to selectively
decrease the production of intracellular gene products has
been developed as a primary screening procedure for discov-
ering new antibiotics [65] and was effectively employed to
find novel classes of inhibitors with novel modes of action,
such as the fatty acid synthesis inhibitors platensimycin and
platencin, and a long list of new protein synthesis and protein
secretion inhibitors [64]. An effective screening approach
has consisted in the use of mechanism-based profiling using
the S. aureus fitness test-based genome-wide screening for
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upfront empiric evaluation of the antimicrobial activities
derived from the screening of microbial product libraries
on a wide panel of bacterial pathogens [66]. The S. aureus
fitness test consists of a collection of inducible S. aureus
antisense RNA strains engineered for reduced expression of
a single target that corresponds to essential genes for which
inducible antisense RNA expression determines a growth
phenotype.This assay generates a profile of strain sensitivities
specific for themechanismof action (MOA) of the compound
being tested and it has been used to profile and reveal novel
activities in crude microbial product extracts [63].

3.5. Chemical Dereplication Process. Given that known mol-
ecules continue to be rediscovered in microbial product
extracts, all the HTS screening strategies have been accompa-
nied by the implementation of efficient, early LC-MS derepli-
cation platforms to identify known compounds in natural
products databases containing known antibiotic compound
spectra [67]. For identification of the bioactive compounds
inmicrobial products extracts, bioassay-guided fractionation
and further purification of the active molecule from new,
large-scale refermentation of the original microbial producer
are required. To miniaturize the production conditions in
HTS, the desired metabolites need to be reproduced in larger
fermentation formats (tubes, flasks, and bioreactors; see the
following section on fermentation) later on. After confirming
the original hit activity in the new extract, several rounds of
chromatographic separations following the biological activity
in the enriched fractions ensure that the active component
has been enriched. Analysis of the active fractions by LC-
MS in each round of fractionation permits dereplication of
any known components that can be recognized in reference
natural product databases and explains the observed activity.
Normally, three to four rounds of fractionation are needed to
obtain the desired molecule as a pure compound with >95%
purity [68, 69]. NMR and LC-MS analyticalmethods are then
applied not only to assess the purity of the compounds but
also to generate the dossier of spectra needed to elucidate the
structure of the novel compounds [60].

4. Fermentation Is Often the Only Way to
Produce Novel Natural Microbial Products

Antibiotics are themost important category of bioactive com-
pounds extracted from microorganisms using fermentation.
During the discovery process, which is based on biologically
guided screening (see the section above), sufficient amounts
of active fractions need to be produced by selected microbial
strains for the initial biological profiling and to elucidate
the chemical structure. During the development and clin-
ical phases, the large-scale production of antibiotics from
microbial fermentations is coupled with an intensive effort to
improve the strain (see the section below) in order to reduce
production volumes and costs and guarantee quality and
reproducibility of the drug bulks. Later, when marketing the
antibiotic, which is driven by profitability and competitive-
ness, lower operational costs with concurrently higher yields
are required for microbial production [21]. To achieve that
goal, manipulating and improvingmicrobial strains and their

growing conditions (upstreamprocess) remain themain tools
since any purification scheme (downstream) at this stage is
hard to improve and change due to the rigorous manufactur-
ing regulations.

For the majority of antibiotics, the only feasible supply
process continues to be fermentation, total synthesis being
too complicated or too expensive. Table 1 shows that the vast
majority of the antibiotic drugs introduced into the market
since 2000 are microbial products and are still produced
by fermentation. Most natural products are so complex and
contain so many centers of asymmetry that they probably
will never be produced commercially by chemical synthesis.
As an example, total chemical synthesis of the glycopeptide
teicoplanin was performed by substantially inventing a new
chemistry [70], but it is too expensive and microbial fermen-
tation remains the only way to produce this valuable drug [71,
72]. However, compared to synthetic processes, manufacture
by fermentation ismore difficult to control; thus, it can lead to
the formation of more variable antibiotic products with more
complicated and less predictable composition and impurity
profiles. This is due to the fact that (a) the purity of the active
substances is dependent on the fungal or bacterial strains that
produce the antibiotic; (b) the conditions under which strains
are processedmay vary; (c) the rawmaterials that are utilized,
including the quality of water in which the strains grow, may
also vary; and (d) the extraction and purification processes
may have limited selectivity [73].

Hence, the crude product obtained by fermentationmight
not be a single antibiotic substance or entity, but rather a
complex mixture of analogues, as is the case with teicoplanin
(a complex of five related compounds designated teicoplanins
A
2-1–A2-5 characterized by five different linear or branched

ten- or eleven-carbon fatty acids) [72], colistin (a multicom-
ponent polypeptide antibiotic, comprised mainly of colistins
A and B) [74], and gentamicin (oligosaccharide antibiotic
composed of amixture of three components designated as C,
Ca, and C2) [75]. Therefore, it might be difficult to compare
apparently identical active ingredients unless they originate
from the same manufacturer.

Theneed to improve the fermentation process (and reduce
the cost of a multistep process) is particularly demanding for
producing those natural scaffolds that undergo semisynthetic
modification, as in the case of the second-generation gly-
copeptides (dalbavancin: trade name Dalvance, DurataTher-
apeutics; oritavancin: trade name Orbactiv, The Medicins
Company; telavancin: trade name Vibativ, Theravance) re-
cently approved by the Food andDrugAdministration (FDA)
[76].

4.1. Antibiotic Fermentation Process. Notwithstanding the
key role of the fermentation process, not very much has
changed since the first submerged fermentation process was
developed tomeet the demand for penicillins after the Second
WorldWar and the processes for producing antibiotics today
are very similar to those employed 60 years ago. The fermen-
tation process usually starts with a working cell bank (WCB)
inoculated in a flask containing a vegetative medium (in
which production does not occur) to allow the strain to grow.
After a period that can vary depending on the strain, one or
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Table 1: Examples of natural products (NP), semisynthetic modified natural products (SNP), natural product-derived but produced by
chemical synthesis (NP-derived), or totally synthetic antibiotics (S) launched since 2000: production method, chemical class, activity against
Gram-positive and/or Gram-negative bacteria, lead source, and producing organism.

Production Class NP-lead source Lead source Antibacterial
spectrum Drug name Year approved

Chemical
synthesis Oxazolidinone S G+ Linezolid 2000

Fed-batch
fermentation Lipopeptide

Actinomycete
(Streptomyces
roseosporus)

SNP (A21978C) G+ Daptomycin 2003

Chemical
synthesis Carbapenem NP-derived G+/G− Doripenem 2005

Fed-batch
fermentation Pleuromutilin Fungus

(Pleurotus spp.)
SNP

(pleuromutilin) G+ Retapamulin 2007

Fed-batch
fermentation Glycopeptide Actinomycete

(Amycolatopsis spp.) SNP (vancomycin) G+ Telavancin 2009

Fed-batch
fermentation 𝛽-lactam

Fungus
(Cephalosporium
acremonium)

SNP
(cephalosporin) G+/G− Ceftaroline

fosamil 2010

Fed-batch
fermentation Tiacumicin

Actinomycete
(Dactylosporangium

aurantiacum)
NP G+ Fixadomicin 2011

Fed-batch
fermentation Glycopeptide Actinomycete

(Nonomuraea sp.) SNP (A40926) G+ Dalbavancin 2014

Frozen stock
(WCB)

Shake flask Pre-seed
fermentor

Seed fermentor Production fermentor

Figure 2: Flow diagram for the classical fermentation process: the number of seed stepsmay vary according to the final scale of the production
fermentor.

a series of increasing volume reactors containing vegetative
medium are serially inoculated to obtain enough material
to start the last-vessel fermentation within the production
medium (Figure 2). Submerged fermentations for producing
antibacterials are usually performed in stirred tank reactors
and are operated in batch or fed-batch mode. In batch
reactors all components, except gaseous substrates such as
oxygen, pH-controlling substances, and antifoaming agents,
are placed in the reactor at the beginning of the fermentation.

Batch processes are simple and robust, but the only way
to reach a high cell density is the fed-batch mode, which
is more complex but allows the metabolism of the strain
to be controlled [77]. In a fed-batch process, one or more
nutrients are added in order to control the reaction rate
according to its concentration, avoiding catabolite repression
(see below) [77]. Most antibiotics are produced with the fed-
batch system (e.g., teicoplanin [72], daptomycin [78], tylosin
[79], and 𝛽-lactams [80]) (see Table 1). Continuous culture
is not common in the pharmaceutical industry because the
probability of mutation and contamination is higher. Scaling

up the fermentation process usually constitutes the final
step in any research and development program for large-
scale industrial manufacture of fermentation products [81].
Production reactor sizes range from 40 to 100 cubic meters.
It is important to understand that the process of scaling up
a fermentation system is frequently governed by a number
of important engineering considerations and is not simply a
matter of increasing culture and vessel volume.

4.2. Regulation of Antibiotic Synthesis and Medium Composi-
tion. Antibiotics are usually not produced during the phase
of rapid growth but rather are synthesized during a subse-
quent stationary phase. Antibiotic production starts when
growth is limited after one key nutrient source is exhausted:
carbon, nitrogen, or phosphate. For example, penicillin
biosynthesis by Penicillium chrysogenum starts when there is
no longer any glucose in the culture medium and the fungus
starts consuming lactose, a less readily utilized sugar [82].

The main regulation effect in specialized metabolism is,
in fact, carbon catabolite repression, defined as the control
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(inactivation) of specific operons in favor of a primary and
efficient utilization of a simple carbon source (commonly, but
not always, glucose).The operons/genes/enzymes involved in
crucial steps of biosynthesizing specialized metabolites are
under catabolite repression. Catabolite repression is strictly
linked to growth rate and growth phases since only after
easily utilizable substrates have been consumed can the effi-
cient production of specialized metabolites begin. Therefore,
regulating metabolite biosynthesis ensures that precursors
and metabolic energy are invested in the manufacture of
specialized metabolites only under environmental circum-
stances and at developmental stages where those molecules
contribute to the fitness of the organism [83, 84].

Glucose represses the production of many antibiotics
(e.g., daptomycin [78], clavulanic acid [85], and aminoglyco-
side antibiotics such as streptomycin, kanamycin, neomycin,
and gentamicin), but the molecular mechanism underlying
glucose repression has resisted molecular analysis for a long
time, although more recently this topic was thoroughly
elucidated and widely covered in the literature [49, 84–87].
Readily utilizable nitrogen sources repress enzymes of spe-
cializedmetabolism during the biosynthesis of cephalosporin
[54, 88], cephamycin [89], tylosin [90], and erythromycin
[91]. Similarly, free inorganic phosphate depletion from
the growth medium is required to trigger production of
tetracyclines [92, 93], 𝛽-lactams, and glycopeptides [93, 94].
Whereas themolecularmechanism for PhoP-mediated phos-
phate control is partially understood at the molecular level
[93, 94], the signal sensors and signal transduction cascades
involved in regulatingmetabolismby other stress factors need
to be further elucidated [49].

To improve the production of antibiotics, slow-metabo-
lizing carbon, nitrogen, and phosphorous sources are used:
complex substrates such as polysaccharides (e.g., starch), olig-
osaccharides (e.g., lactose), and oils (e.g., soybean oil) are
often preferred to glucose, and yeast extract, corn steep liquor,
and soybean flour are commonly essential components for
supplying nitrogen, phosphorous, vitamins, and trace ele-
ments to antibiotic-producing strains. In media containing a
mixture of rapidly used carbon, nitrogen, and phosphorous
sources and slowly used sources, the former are used first
to produce cells and the latter employed once the rapidly assim-
ilated compounds are depleted to sustain the production of
specializedmetabolites during the stationary phase of growth.
Recent examples of how optimization of medium compo-
sition contributes to improving the final product concen-
tration, yield, and volumetric productivity have been
reported on daptomycin, nisin, cephalosporin C, clavulanic
acid, andA40926, the precursor of semisynthetic dalbavancin
[72, 78, 95–100]. In the case of daptomycin produced by
Streptomyces roseosporusNRRL11379, Ng and coworkers have
successfully established a cost-effective medium and feed-
back-controlling approach by utilizing dextrin as the major
carbon source in fed-batch fermentation [78]. For glycopep-
tide antibiotics such as A40926 and teicoplanin, optimized
media and processes have recently been proposed [65, 98–
100]. The increasing list of specialized metabolism elicitors
and chemical inducers, such as siderophores, rare earths,
metabolism intermediates, diffusible bacterial hormone-like

molecules, andN-acetyl-glucosamine, epigeneticmodulators
that are being used to activate cryptic or silent gene clusters
during the screening processes (see previous paragraph
on cultivation and extraction), can be also added to the
production media to improve antibiotic production [47–57].
Limits in their use during scaling up of the fermentation
process and product development consist in their cost and in
the risk of chemical cross-contamination during the purifica-
tion phase (downstream). Recent molecular studies have
provided new insight into the role of catabolite carbon
control.They demonstrated a relationship between antibiotic
production and morphological development involving
N-acetyl-glucosamine, which, when added to production
media, modulates the N-acetyl-glucosamine-responsive
protein DasR and pleiotropic regulation of both antibiotic
synthesis and spore formation [52]. Molecular investigations
also elucidated the role of ribosomal/RNA polymerase muta-
tions resulting in altered ppGpp biosynthesis and in stringent
response interplaying with catabolite repression [49, 101].
A thorough understanding of how global regulators (see
section below on strain improvement) respond to a variety
of nutritional or environmental stress signals, for example,
phosphate, carbon, nitrogen starvation, heat shock, pH stress,
and cell wall damage, is currently providing a more rational
approach for defining medium and process conditions for
antibiotic production [49, 91, 93].

5. Strain Improvement in the Postgenomic Era

With the development and advent of genome sequencing
technologies [102, 103], it became obvious that most bacterial
genomes contain a hidden wealth of clusters responsible for
the biosynthesis of potential bioactive compounds [39–41]
that await discovery. The main reason for the existence of
such a plethora of undiscovered biosynthetic pathways is
that many gene clusters are dormant or not expressed in
sufficient quantities to be detected under typical fermentation
conditions [104–106]. As discussed above, this is related
to the existence of tight regulatory networks that precisely
orchestrate specializedmetabolite production in bacteria and
respond to different environmental and intracellular signals
[49, 86, 107]. Undoubtedly, a low yield of natural products
represents a serious hurdle on theway to commercial produc-
tion. Therefore, exploring and understanding the interplay
between antibiotic production, regulatory networks, environ-
mental and intracellular signals will provide us with keys to
understanding specialized metabolite overproduction.

Nowadays, numerous strategies for improving strains
have been and continue to be developed. Classical approaches
for strain improvement were based on recursive rounds of
mutagenesis and further selection [108, 109]. Despite the
drawbacks (unwanted mutations and being time consuming
and laborious), this strategy was successful and widely used
for rapidly increasing the production yield of antibiotic-
producing microbes. Most of the industrial overproducers
currently in use were developed in this way [110, 111]. How-
ever, with the development of molecular biology, biotechnol-
ogy, bioinformatics, sequencing technologies, and synthetic
biology, new strategies have come to the scene and provide
the opportunity for rational strain improvement (Figure 3).
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Figure 3: Approaches used for improving secondary metabolite production in actinobacteria. Solid arrows indicate strategies described in
this review; dash-dotted arrows denote other strategies that are used.

Overall, all of these relatively new approaches are based
on spatial, temporal, and quantitative regulation of gene
expression at the transcriptional or translational level, or
both, thereby enabling production of higher amounts of spe-
cialized metabolites by overcoming bottlenecks, optimizing
expression of genes, and redirecting the flux of precursors.
Therefore, titer can be elevated by overexpressing positive
regulators or deleting repressors [94, 104, 112, 113]; amplifying
gene clusters [114]; redirecting the flux of primarymetabolites
and precursors [104–115]; overexpressing structural genes
that constitute bottlenecks on the way to metabolite produc-
tion [116, 117];manipulating resistance genes and transporters
responsible for the flux of antibiotic [118–120]; ribosomal
engineering [101, 105]; and so forth. Substituting native pro-
moters in a clusterwithwell-defined, strong promoters, either
constitutive or inducible, gives an opportunity to bypass exist-
ing regulatory machinery of the host strain and improve pro-
duction [121, 122]. In some cases appreciable yields ofmetabo-
lites can be obtained by expressing gene clusters in surrogate
hosts which are easy to manipulate (Streptomyces lividans,
Streptomyces albus) or which are industrial strains (Strep-
tomyces avermitilis) or which are genetically engineered,
versatile hosts with reduced genomes (S. avermitilis SUKA,
Streptomyces coelicolor M1154) [123–125]. In the following
section of the review, only some examples of using regulatory

genes, promoters, and heterologous hosts for rational strain
improvement will be reported. Many superb and in-depth
reviews have been published recently that describe different
approaches for metabolic engineering of actinobacteria [104,
112, 113, 126, 127]. We refer the readers to them for a further
comprehensive introduction to these topics.

5.1. Regulatory Genes as Basic Keys to Metabolite Overpro-
duction. Genes involved in the production of antibiotics are
located together on a chromosome or plasmid and form
biosynthetic clusters. Such clusters usually contain struc-
tural, resistance, transporter, and regulatory genes.Therefore,
regulatory genes that are associated with cluster and con-
trol biosynthesis of certain compound are named pathway-
specific or cluster-situated regulators (CSR). They form
the lowest level in the hierarchically organized regulatory
network of antibiotic production in bacteria [49]. Since
production of specialized metabolites is tightly connected
to morphological differentiation and depends on a plethora
of environmental conditions, expression of CSRs hinges on
a variety of other pleiotropic, higher-level regulators that
sense and transmit signals to them. In turn, CSRs, which are
usually final checkpoints, transfer these signals to structural
genes and switch biosynthesis of natural products on and off
[49, 86]. However, like for every rule, there are exceptions
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in the structure of biosynthetic gene clusters. Elucidation of
the genetic organization of numerous biosynthetic pathways
revealed that there are somewhich lackCSRs [128, 129].These
findings indicate that the cluster-situated layer of regulation is
notmandatory and is absent in some clusters. In such clusters,
the expression of structural genes is controlled by ubiquitous
regulatory genes that occupy higher levels in the regulatory
web [128, 129].

According to how specialized metabolite production is
influenced, all regulators can be conventionally classified into
two groups: positive regulators, which activate, and negative
regulators, which repress the biosynthesis of natural prod-
ucts. With the aim of enhancing the titer, both pleiotropic
and CSRs, native and heterologous ones, are used. CSRs
usually give an opportunity to manipulate one biosynthetic
pathway, whereas global regulators might affect production
of several specialized metabolites and/or morphological dif-
ferentiation. Therefore, the effect of a pleiotropic regulatory
gene very often depends on its position in the hierarchically
organized regulatory network and in some cases might be
unpredictable.

5.2. Manipulations with Positive Cluster-Situated Regulatory
Genes. Overexpression of positive, pathway-specific regula-
tors mainly enhances the transcription of structural genes
responsible for the production of certain metabolites and
therefore is a commonly used, single-step strategy for
improving antibiotic yield. Herein, we will describe examples
demonstrating the effectiveness of this approach for rational
strain improvement.

Streptomyces globisporus 1912 is used to produce the
angucycline antibiotic landomycin E (LaE). The landomycin
biosynthetic gene cluster contains only one regulator gene,
lndI, whose product is highly similar to the OmpR-PhoB
subfamily of proteins. By inactivating it, antibiotic production
was prevented in the I2-1 mutant, which confirms the role of
LndI as an activator of LaE biosynthesis. Complementation
of the I2-1 mutant with three additional copies of lndI gene
resulted in 15-fold increase in LaE production in comparison
to thewild-type strain 1912 [130], demonstrating the effective-
ness of such an approach for improving the strain.

Simocyclinone D8 is an aminocoumarin compound that
is produced by Streptomyces antibioticus Tü6040. simReg1,
which belongs to the OmpR-PhoB subfamily of regula-
tors, is one of three regulatory genes in the simocyclinone
biosynthetic gene cluster. Its inactivation abolished antibiotic
production, while overexpression of simReg1 in an integrative
pSET152-derived plasmid increased the simocyclinone titer
2.5-fold [131].

Other examples are as follows: (a) the C-1027 titer in
S. globisporus was improved 5-fold after overexpressing the
sgcR1 gene, coding for a StrR-like protein [132]; (b) amplifying
the claR gene encoding the LysR family protein in multicopy
plasmids resulted in a threefold increase in clavulanic acid
biosynthesis and in a sixfold increase in alanylclavam pro-
duction [133]; (c) inserting a single copy of pimM, a LuxR
type regulator, into the S. natalensis wild-type strain ele-
vated pimaricin production 2.4-fold [134]; (d) overexpressing
fdmR1, the encoding pathway-specific activator of the SARP

family, led to a 5.6-fold increased production of frederi-
camycin A in S. griseus [135]; (e) amplifying the tcp28 or
tcp29 genes, which encode StrR and LuxR family regulators,
respectively, in the Actinoplanes teichomyceticus wild-type
strain boosted teicoplanin production 1.5-3-fold [136, 137].

5.3. Manipulations with Negative Cluster-Situated Regulatory
Genes. An effective and promising alternative method to
overexpressing cluster-situated activators to boost antibiotic
production is to inactivate pathway-specific repressors. This
is exemplified by the disruption of the lipReg3 gene coding
for the MarR-type regulator that controls lipomycin export
in S. aureofaciensTü117, which led to a 4-fold improvement in
lipomycin production in comparison to the wild-type strain
[138].

Other examples that have proven the effectiveness of this
strategy are as follows: (a) inactivation of the jadR2 gene,
coding a “pseudo” 𝛾-butyrolactones receptor, in S. venezue-
lae generated the mutant that produces jadomycin without
stress treatments (toxic concentration of ethanol, etc.) [139,
140]; (b) inactivation of another deduced 𝛾-butyrolactone
receptor coding gene tylP led to a 1.5-fold improvement
in tylosin production in S. fradiae [141]; (c) deletion of
the ptmR1, encoding GntR type repressor, in S. platensis
MA7327 resulted in, on average, 100-fold overproduction
of platensimycin and platencin compared to the wild-type
strain [142]; and (d) inactivation of the TetR type regulator
alpW in S. ambofaciens triggered constitutive production
of kinamycin, a compound with antibacterial activity [143].
Thus, inactivation of repressor coding genes is useful not only
for elevating antibiotic production, but, in some cases, for
wakening silent gene clusters.

5.4. Manipulations with Pleiotropic Regulatory Genes. Suc-
cessful application of omnipresent positive pleiotropic regu-
lators to improve the titer of compounds whose biosynthetic
gene clusters contain CSRs, or which are free of them, has also
been shown. In most cases, a positive effect of their overex-
pression is due to the activation of cluster-situated regulatory
gene expression or direct activation of the expression of
structural genes in the cluster. For instance, overexpression of
the pleiotropic regulator afsRsv in S. venezuelae, S. peucetius,
and S. lividans TK24 led to a 4.85-, 8-, and 1.5-fold increase
in pikromycin, doxorubicin, and actinorhodin production,
respectively, relative to the wild type [144]. In the case of
S. venezuelae, the increase in pikromycin production was
caused by enhanced expression of the pathway-specific regu-
lator gene pikD and the ketosynthase gene [144]. By introduc-
ing additional copies of the afsR or afsS genes into S. coelicolor,
actinorhodin production could also be increased [145].

Streptomyces ghanaensis is a producer of phosphogly-
colipid antibiotic moenomycin A [146]. The moenomycin
biosynthetic gene cluster does not contain CSRs; therefore,
different pleiotropic regulators were used to improve the
moenomycin titer. Overexpression of the adpAgh gene, a plei-
otropic regulator of antibiotic production andmorphological
development, led to a 2.5-fold improvement in moenomycin
production in S. ghanaensis compared to the wild-type strain
[129]. Introduction of the second copy of bldAgh, a leucyl
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tRNA coding gene, into the wild-type strain S. ghanaensis
led to a 1.6-fold increase in moenomycin production [129].
Overexpression of the relA, a ppGpp synthetase gene from
S. coelicolor, led to a 2-fold improvement in moenomycin
production in S. ghanaensis relative to the wild type [147].

Similarly, inactivation of negative pleiotropic regulators
in S. ghanaensis increasedmoenomycin production.The gene
absB codes for the RNAseIII endoribonuclease involved in
global regulation ofmorphological differentiation and antibi-
otic production in S. coelicolor [148]. By deleting it, moeno-
mycin production was improved 2.7-fold compared with the
parental strain [129]. Inactivation of another global regulator
gene, wblA(gh), encoding a homologue of the WhiB-family
of proteins, produced a 2.3-fold increase in moenomycin
biosynthesis in S. ghanaensis [149].

Disruption of the (p)ppGpp synthetase gene, relA, in S.
clavuligerus boosted clavulanic acid production 3- to 4-fold
and that of cephamycin C increased about 2.5-fold [150],
confirming that there might be a pleiotropic effect of global
regulator amplification or inactivation.

5.5. Promoters as Bio-Bricks for Titer Improvement. Another
common metabolic engineering approach to induce or
enhance the expression of silent or poorly expressed pathways
is based on replacing native promoters in a cluster with well-
defined, strong promoters, decoupling themetabolic pathway
from the existing cellular regulatory networks. Examples
described below clearly prove the effectiveness of the combi-
nation of two metabolic engineering strategies: amplification
of positive regulators and their expression under the control
of heterologous promoters of various strengths.

For this purpose different natural or synthetic constitutive
or inducible promoters may be used [137, 151]. One of the
most widely employed promoters in streptomycetes is the
erythromycin resistance gene ermEp from Saccharopolyspora
erythraea or its upregulated variant 𝑒𝑟𝑚𝐸𝑝∗ [152]. For exam-
ple, simultaneous overexpression of the dnrN, dnrI, and afsR
regulatory genes under the control of 𝑒𝑟𝑚𝐸𝑝∗ in S. peucetius
led to a 4.3-fold increase in doxorubicin production [153].
Another prominent example of the use of this promoter is the
improvement in tylosin production in S. fradiae. Biosynthesis
of tylosin is orchestrated by the complicated interplay of
five regulators [154]. To bypass existing regulatory network-
positive regulators, tylS or tylR was placed under the control
of the 𝑒𝑟𝑚𝐸𝑝∗ and overexpressed in the S. fradiae wild-
type strain.This boosted tylosin production 3.8- and 5.0-fold,
respectively [154]. Production of teicoplanin in the nonstrep-
tomycetes actinomyceteA. teichomyceticuswas improved 2.8-
fold and 10-fold by overexpressing the StrR-type regulator
tcp28under the control of the promoter of the SARP regulator
gene actII-ORF4 and apramycin gene resistance promoter
(aac(3)IVp), respectively, which appeared to be stronger in
this strain than the widely used ermEp [136, 137]. This
reflects the necessity to test the activity of heterologous
promoters in a particular strain since their activity might
differ in various species.Therefore, the repertoire of available
promoters should be extended.

5.6. Heterologous Expression of Clusters as a Way to Overpro-
duction. With the advent of genome sequencing andmetage-
nomics, a plethora of clusters coding for putative biologi-
cally active compounds which previously eluded discovery
because of silencing or low product yield have become and
continue to become available. In addition, there are growing
numbers of actinobacteria that are difficult to culture and to
manipulate genetically but which produce or might produce
interesting chemical compounds.The reasons outlined above
drove the development of a new approach in metabolic
engineering for developing surrogate high-producing hosts
for the heterologous expression of gene clusters. There are a
number of potential surrogate hosts. Some of them derive
from well-studied Streptomyces strains such as S. lividans,
S. coelicolor, or S. albus; others are obtained from industrial
strains or are genetically engineered, versatile hosts with
reduced genomes. However, the main aim of this approach
is still relevant and aims to build an ideal and universal
surrogate host that will be easy to genetically manipulate,
is fast growing and devoid of competitive sinks of carbon
and nitrogen and antibiotic activity, and will be suitable for
overproduction of different specialized metabolites.

To improve moenomycin production, several Strepto-
myces strains were used as heterologous hosts, namely, S.
coelicolor M145, M512 (ΔactII-ORF4, ΔredD), S. lividans
TK24, 1326, S. albus J1074, S. venezuelae ATCC10712, and
S. thermospinosisporus NRRL B24318. The highest moeno-
mycin titer was found in S. albus strains, the lowest in S.
coelicolor [147]. These data show a high variation between
different hosts. Worthy of note is that the yield of antibiotic
in S. albus was on average 4 times higher than in the native
producer S. ghanaensis [147].

There are several genetically engineered heterologous
hosts that were obtained by controlled minimization of
genomes. For example, S. coelicolor M1154 was constructed
by deleting four gene clusters (actinorhodin, prodiginine,
calcium-dependent antibiotic, and cryptic polyketide) and
subsequently introducing point mutations in the rpoB and
rpsL genes that enhance specialized metabolite production
[125]. Expression of the gene clusters for chloramphenicol or
congocidine in this strain led to a 40- and 30-fold increase
in production, respectively, in comparison to the S. coelicolor
M145 strain. Another surrogate host was developed on the
basis of the industrial strain S. avermitilis [124]. A region
of more than 1.4Mb that contains nonessential genes and
gene clusters was deleted stepwise from the chromosome
of S. avermitilis. Expression of cephamycin C, streptomycin,
and pladienolide biosynthetic gene clusters was tested in the
obtained strains. Production level of streptomycin in SUKA5
strain was approximately 3 times higher than in the native
producer. Biosynthesis of cephamycin C was also greatly
improved. However, the biosynthesis was switched on only
in the presence of the activator CcaR. Substitution of the
native promoter of the ccaR gene with the alternative rpsJ
promoter led to an additional increase in cephamycin C
production [124], underscoring the urgency and need to use
the approaches outlined above to further improve antibiotic



BioMed Research International 11

production in genetically engineered heterologous hosts.The
production of pladienolide in S. avermitilis engineered strains
was also higher than in the S. avermitilis wild type [124].

Attempts to use well-studied, fast-growing, easy-to-
manipulate, versatile, andwidely used heterologous host such
as Escherichia coli for the expression of actinobacterial gene
clusters have also been made. This is exemplified by the
production of the important antibacterial drug rifamycin.
The starter unit for the RifA megasynthases is 3-amino-5-
hydroxybenzoic acid (AHBA).The latter requires seven genes
for biosynthesis, which are present in the rifamycin gene clus-
ter [155]. First of all, the ability to synthesize the AHBA inter-
mediate was reconstituted in E. coli BAP1. Afterwards, RifA
was expressed in the AHBA-producing strain in the form of
two bimodular proteins. As a result, the rifamycin intermedi-
ate P8 1-OG was synthesized at a quantity of 2.5mg/L [155].
Other attempts to express erythromycin and oxytetracycline
gene clusters in E. coli have also been described [156, 157].
Despite several successful tries, numerous attempts to over-
express Streptomyces gene clusters in E. coli failed. Currently,
the main obstacles on the way to the desired metabolites in
E. coli are high GC content of genes, absence of starter and
extender units necessary for production, and differences in
regulatory networks that generate an inability to effectively
transcribe heterologous pathways. However, despite these
drawbacks and taking into account a number of advantages,
E. coli continues to be an appealing host for heterologous
expression of actinobacterial gene clusters.

6. Conclusions

Despite the diverse classes of antibacterials that have been
discovered from microbial natural product screening, there
is an urgent medical need for novel molecules endowed with
novel mechanisms of action to counteract emerging and
multiresistant Gram-positive and Gram-negative pathogens.
The microbial diversity at the origin of these novel drugs
will continue to guarantee those unprecedented chemical
characteristics and biological properties that did not emerge
from screening libraries of synthetic compounds. Classical
biological activity-based screening for novel antibacterials
also relies on previous knowledge of the ecology and genome
information of microbial isolates to assess their potential
to produce different compounds under different cultiva-
tion conditions. Fermentation media and other parameters
are being changed, taking into consideration knowledge-
based use of different elicitors and tailored carbon, nitrogen,
and phosphorous sources. The dramatic advances made in
exploring and understanding the interplay between antibiotic
production, regulatory networks, and environmental and
intracellular signals are now providing us with keys to
discover and overproduce new antibiotics. Currently, a wide
range of genetic engineering approaches offer a large choice
of tools for rational strain and fermentation improvement
that might speed up the discovery and development of
new, effective drugs. Combination of a growing body of
knowledge in modern technologies, such as whole-genome
sequencing, transcription, and metabolite profiling, offers
the opportunity to make bioinformatics-based predictions

of possible ways for discovering and improving specialized
metabolites. Undoubtedly, further developments in func-
tional genomics and other analytic techniques that lead to
the discovery of many new signal transduction pathways and
new transcription factors will reveal new, attractive targets
for strain improvement approaches in the near future. In
addition, approaches used inmetabolic engineering continue
to provide an excellent basis not only for creating overpro-
ducers, but to ensure further exploration and exploitation of
the hidden part of microbial wealth. The main goal today
is to develop a suite of technologies that could be used to
induce the production of crypticmetabolic genes and identify
previously unreported molecules, with sufficient yields to
overcome one of the major problems of this century: the lack
of new antibiotics.
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scriptomic studies of phosphate control of primary and sec-
ondary metabolism in Streptomyces coelicolor,” Applied Micro-
biology and Biotechnology, vol. 95, no. 1, pp. 61–75, 2012.

[94] J.-F. Mart́ın and P. Liras, “Engineering of regulatory cascades
and networks controlling antibiotic biosynthesis in Strepto-
myces,” Current Opinion in Microbiology, vol. 13, no. 3, pp. 263–
273, 2010.

[95] X.-X. Zhou, Y.-J. Pan, Y.-B. Wang, and W.-F. Li, “Optimization
of medium composition for nisin fermentation with response
surface methodology,” Journal of Food Science, vol. 73, no. 6, pp.
M245–M249, 2008.

[96] W. A. Lotfy, “The utilization of beet molasses as a novel carbon
source for cephalosporin C production by Acremonium chryso-
genum: optimization of process parameters through statistical
experimental designs,” Bioresource Technology, vol. 98, no. 18,
pp. 3491–3498, 2007.

[97] Y. H. Wanga, B. Yangb, J. Renb, M. L. Donga, D. Lianga,
and A. L. Xua, “Optimization of medium composition for
the production of clavulanic acid by Streptomyces clavuligerus,”
Process Biochemistry, vol. 40, no. 3-4, pp. 1161–1166, 2005.

[98] N. Gunnarsson, P. Bruheim, and J. Nielsen, “Production of
the glycopeptide antibiotic A40926 by Nonomuraea sp. ATCC
39727: influence of medium composition in batch fermenta-
tion,” Journal of Industrial Microbiology and Biotechnology, vol.
30, no. 3, pp. 150–156, 2003.

[99] F. Beltrametti, S. Jovetic, M. Feroggio, L. Gastaldo, E. Selva, and
F. Marinelli, “Valine influence production and complex com-
position of glycopeptide antibiotic A40926 in fermentations of
Nonomuraea sp. ATCC 39727,” Journal of Antibiotics, vol. 57, no.
1, pp. 37–44, 2004.

[100] S. Jovetic, M. Feroggio, F. Marinelli, and G. Lancini, “Factors
influencing cell fatty acid composition and A40926 antibiotic
complex production in Nonomuraea sp. ATCC 39727,” Journal
of Industrial Microbiology and Biotechnology, vol. 35, no. 10, pp.
1131–1138, 2008.

[101] K. Ochi, S. Okamoto, Y. Tozawa et al., “Ribosome engineering
and secondary metabolite production,” Advances in Applied
Microbiology, vol. 56, pp. 155–184, 2004.



BioMed Research International 15

[102] C. S. Pareek, R. Smoczynski, and A. Tretyn, “Sequencing tech-
nologies and genome sequencing,” Journal of Applied Genetics,
vol. 52, no. 4, pp. 413–435, 2011.

[103] E. Shapiro, T. Biezuner, and S. Linnarsson, “Single-cell sequen-
cing-based technologies will revolutionize whole-organism sci-
ence,” Nature Reviews Genetics, vol. 14, no. 9, pp. 618–630, 2013.

[104] R. H. Baltz, “Strain improvement in actinomycetes in the
postgenomic era,” Journal of Industrial Microbiology and
Biotechnology, vol. 38, no. 6, pp. 657–666, 2011.

[105] K. Ochi and T. Hosaka, “New strategies for drug discovery:
activation of silent or weakly expressedmicrobial gene clusters,”
AppliedMicrobiology and Biotechnology, vol. 97, no. 1, pp. 87–98,
2013.

[106] K. Ochi, Y. Tanaka, and S. Tojo, “Activating the expression of
bacterial cryptic genes by rpoB mutations in RNA polymerase
or by rare earth elements,” Journal of IndustrialMicrobiology and
Biotechnology, vol. 41, no. 2, pp. 403–414, 2014.

[107] J. F. Mart́ın, A. Sola-Landa, F. Santos-Beneit, L. T. Fernández-
Mart́ınez, C. Prieto, and A. Rodŕıguez-Garćıa, “Cross-talk of
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[112] C. Olano, F. Lombó, C. Méndez, and J. A. Salas, “Improving
production of bioactive secondarymetabolites in actinomycetes
by metabolic engineering,”Metabolic Engineering, vol. 10, no. 5,
pp. 281–292, 2008.

[113] Y. Chen, M. J. Smanski, and B. Shen, “Improvement of sec-
ondary metabolite production in Streptomyces by manipulating
pathway regulation,” Applied Microbiology and Biotechnology,
vol. 86, no. 1, pp. 19–25, 2010.

[114] K. Yanai, T.Murakami, andM. Bibb, “Amplification of the entire
kanamycin biosynthetic gene cluster during empirical strain
improvement of Streptomyces kanamyceticus,” Proceedings of the
National Academy of Sciences of theUnited States of America, vol.
103, no. 25, pp. 9661–9666, 2006.

[115] W. Wohlleben, Y. Mast, G. Muth, M. Röttgen, E. Stegmann,
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