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This paper presents a switching strategy between the admission control and the pricing control policies in a queueing system with
two types of customers. For an arriving first-type customer, the decision maker has an option on which policy to choose between
the two control policies; that is, one determines whether or not to admit the customer’s request for the service (admission control)
or decides a price of the customer’s request and offers it to the customer (pricing control). The second-type customers are only
served when no first-type customers are present in the system in order to prevent the system from being idle. This would yield an
extra income, which we refer to as the sideline profit.The so-called search cost, which is a cost paid to search for customers, creates
the search option on whether to continue the search or not. We clarify the properties of the optimal switching strategy as well as
the optimal search policy in relation to the sideline profit in order to maximize the total expected net profit. In particular, we show
that when the sideline profit is sufficiently large, the two optimal switching thresholds exist with respect to the number of first-type
customers in the system.

1. Introduction

Both the admission and pricing control policies have been
widely investigated to improve the performance of queue-
ing system in the telecommunications and manufacturing
industries [1–6]. In the admission control [7–10], an arriving
customer proposes a price for his request, and the decision
maker decides the admission merely based upon the pro-
posed price of the customer. In general, it is assumed that the
customer has one’s ownmaximum permissible offering price,
which is also referred to as the reservation price, and the
stronger the customers’ desire to be served is, the closer to the
reservation price may be proposed. On the other hand, in the
pricing control [11–14], the decision maker suggests a price to
an arriving customer who has a service request.The customer
thenmakes a service request to the company if and only if this
suggested price is lower than or equal to the reservation price.
Hence the decision maker should determine the offering
price to maximize the expected profit.

Most of the prior researches have adopted exactly one
of the two forementioned polices in accordance with their
model’s characteristics. However, in what follows, both types
of policies were considered: first, Yoon and Lewis [15]
formulated and analyzed the problems involving both admis-
sion and pricing control policies but as distinct entities. Fur-
thermore, Gans and Savin [16] considered a rental firm with
two types of customers where one is controlled by the admis-
sion policy and the other by the pricing policy. Hew and
White [17] integrated a call admission and dynamic pricing
problem with handoffs and price-affected arrivals. In their
formulation, the former arrivals are controlled by only the
admission policy, while the latter ones are sequentially con-
trolled by both policies. Son [18] gave separate formulations
of the admission and the pricing control problems, yet
showing that both problems can be analyzed within an
identical framework.

So far, whether or not we consider these two policies
separately or within an identical framework, the switching
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strategy between the two has not been introduced. In reality,
a system manager is not restricted to use only one policy
to control the system capacity. One may switch the control
policy from one type to the other as long as a higher profit
is expected. As the competition gets tougher in business
nowadays, companies are open to new control strategies that
may have been considered unrealistic up to now if there are
chances of yielding higher profit.

Motivated by these observations, we propose a switching
strategy between admission control and pricing control poli-
cies.The research on a basic switching strategy in an𝑚/𝑚/1/𝑘

queueing system, introduced in [19], showed the existence
of switching thresholds in terms of the number of cus-
tomers in the system. It demonstrated that by employing the
switching strategy, the maximum total expected profit can be
improved significantly as high as 8.7%.

In this paper, we apply this switching strategy to a service
providing company with two types of customers where the
priority is given to the first type over the second. For
example, let us consider a manpower company with two
types of customers: the first-type customers request a person-
nel training, and the second type ask for a temporary staffing.
The crucial performance of the manpower company is
characterized by placing greater emphasis on providing the
personnel training service. Indeed, since their topmost pri-
ority is to serve the first-type customers, the company would
devote itself to meet their needs. Thus, the second-type cus-
tomers are served as a sideline to avoid idling the server when
no first-type customers are present in the system.This would
yield an extra income, which we will refer to as the sideline
profit.

We also introduce in the paper the so-called search cost;
that is, the cost a company would spend in order to find
customers. The search cost has been introduced in the con-
ventional optimal stopping problem ([20–22]) but not in the
conventional control problems like the one discussed in
[19]. By introducing the search cost in the system, it would
eventually create a search option on whether or not to
conduct the search.Therefore, the objective of this paper is to
examine the structure of an optimal switching strategy as well
as an optimal search policy in relation to the sideline profit
in order to maximize the total expected net profit over an
infinite planning horizon.

The paper is organized as follows: in Section 2, we present
a switchingmodel between the admission and pricing control
policies with the set of optimality equations of the model.
In Section 3, we transform these optimality equations to
produce the optimal switching and search strategies. In
Section 4, we examine the properties of the optimal switching
policies obtained in the preceding section and discuss some
important aspects of the model via numerical studies in
Section 5. Finally, a conclusion is given in Section 6.

2. Model Formulation

A discrete-time queueing model is defined on the following
seven assumptions.

(1) The model in the paper is defined as a single server
with the system capacity 𝑘 with two types of cus-
tomers.

(2) The first-type customer appears with the probability
𝜆 (0 < 𝜆 ≤ 1) only after the search cost 𝑐 ≥ 0 has been
paid at the previous point in time.

(3) The service for the admitted request is completedwith
the probability 𝑞 (0 < 𝑞 < 1) at the next point in time.

(4) Since the first-type customers are taken prior to the
second-type customers, the latter are served only
when no first-type customers are available. By 𝜌(≥ 0)

let us denote the sideline profit obtained by serving
the second-type customers for one unit time. Hence-
forth, the term “customer” will refer to a first-type
customer.

(5) The customers arriving sequentially are assumed to
have their reservation prices, 𝜉

1
, 𝜉
2
, . . ., which are i.i.d

random variables determined by a known distribu-
tion function𝐹

𝜉
(𝑥)with the expectation value 𝜇

𝜉
, and

the density function is defined as follows:

𝑓
𝜉
(𝑥) > 0, if 𝑎 ≤ 𝑥 ≤ 𝑏,

𝑓
𝜉
(𝑥) = 0, otherwise,

(1)

where 𝑎 and 𝑏 (0 < 𝑎 < 𝑏 < ∞) are certain given
numbers.

(6) If the admission control policy is adopted for an
arriving customer with the reservation price 𝜉, the
decision maker then has to determine whether or not
to admit the customer based on the price 𝑤 = 𝛼𝜉,
where 𝛼 ∈ [0, 1] is a ratio which denotes the cus-
tomer’s degree of desirability for the service; that is,
the greater the customer’s desirability is, the closer 𝛼
is to 1.These ratios𝛼

1
, 𝛼
2
, . . . are i.i.d randomvariables

from a known distribution function 𝐹
𝛼
(𝑥) with the

expectation 𝜇
𝛼
. Therefore, it is clear that 𝜇

𝑤
= 𝜇
𝛼
𝜇
𝜉
.

Now the distribution function of 𝑤 will be

𝐹
𝑤
(𝑥) = Pr (𝑤 ≤ 𝑥) = Pr (𝛼𝜉 ≤ 𝑥) = Pr(𝜉 ≤ 𝑥

𝛼

)

= ∫

∞

0

𝐹
𝜉
(

𝑥

𝛼

)𝑓
𝛼
(𝛼) 𝑑𝛼 = 𝐸

𝛼
[𝐹
𝜉
(

𝑥

𝛼

)] ,

(2)

and the density function becomes

𝑓
𝑤
(𝑥) = 𝐸

𝛼
[

1

𝛼

𝑓
𝜉
(

𝑥

𝛼

)] . (3)

(7) If the pricing control policy is adopted, the decision
maker then proposes a price 𝑧 to the customer’s
request and the customer makes a service request if
and only if the proposed price 𝑧 is less than or equal
to his own reservation price 𝜉. Accordingly, the prob-
ability that the customer requests the service will be
𝑝(𝑧) = Pr(𝑧 ≤ 𝜉).

Let us denote by 𝑖 the number of customers in the system,
and let𝑉(𝑖) represent themaximum expected net profit in the
current state 𝑖. In such case, by using the Markovian decision



Advances in Operations Research 3

processwe can describe the optimality equations of themodel
as follows:

𝑉(0) = max {C :𝛽 (𝜆max {𝐸
𝑤 [

max {𝑤 + 𝑉(1) , 𝑉(0)}] ,

max
𝑧

{𝑝 (𝑧) (𝑧 + 𝑉(1))

+ (1 − 𝑝 (𝑧)) 𝑉(0)}}

+ (1 − 𝜆)𝑉(0)) − 𝑐,

K :𝛽𝑉 (0)} + 𝜌,

(4)
𝑉(𝑖)

= max {C :𝛽 (1 − 𝑞)

⋅ ((𝜆max {𝐸
𝑤 [

max {𝑤 + 𝑉(𝑖 + 1) , 𝑉 (𝑖)}] ,

max
𝑧

{𝑝 (𝑧) (𝑧 + 𝑉 (𝑖 + 1))

+ (1 − 𝑝 (𝑧)) 𝑉(𝑖)}}

+ (1 − 𝜆)𝑉(𝑖)) 𝐼
(1≤𝑖<𝑘)

+ 𝑉(𝑖) 𝐼
(𝑖=𝑘)

)

+ 𝛽𝑞 (𝜆max {𝐸
𝑤 [

max {𝑤 + 𝑉(𝑖) , 𝑉(𝑖 − 1)}] ,

max
𝑧

{𝑝 (𝑧) (𝑧 + 𝑉(𝑖))

+ (1 − 𝑝 (𝑧)) 𝑉(𝑖 − 1)}}

+ (1 − 𝜆)𝑉(𝑖 − 1)) − 𝑐,

K :𝛽 (1 − 𝑞)𝑉(𝑖) + 𝛽𝑞𝑉(𝑖 − 1)}

for 1 ≤ 𝑖 ≤ 𝑘,

(5)

where 𝛽 and 𝐼
(⋅)

represent the discount factor and the
indicator function, respectively.The letters C and K denote the
decision of conducting the search and skipping the search,
respectively.

To explain this model in more details, suppose that a
customer appears with the probability 𝜆 in the state 𝑖 having
paid the search cost 𝑐. When adopting the admission control
policy, in the case that the customer proposes the price 𝑤 for
the service and the company admits it, the profit 𝑤 would be
obtained and the state would increase to 𝑖 + 1; otherwise, the
state would remain as 𝑖. When the pricing control policy is
employed instead, as we mentioned before we first assume
that the decision maker offers the price 𝑧 to an arriving
customer in state 𝑖. If the customer requests his service with

probability 𝑝(𝑧), the company obtains the profit 𝑧 and the
state becomes 𝑖 + 1; otherwise, the state remains as 𝑖. Hence,
the decision maker should offer a price 𝑧 that pertains to the
maximization of {𝑝(𝑧)(𝑧 + 𝑉(𝑖 + 1)) + (1 − 𝑝(𝑧))𝑉(𝑖)}. Note
that when 𝑖 = 0, the service for a second-type customer will
be provided and the reward 𝜌 is obtained for one unit time.
Furthermore, when 𝑖 = 𝑘, if the current service is not yet
completed with the probability (1 − 𝑞), due to the service
capacity an arriving customer’s request can not be met and
so the state remains as 𝑖.

3. Transformation of the Optimality Equations

In this section, we transform the optimality equations
described in the preceding section and present the optimal
switching and search policies. Let us begin by defining

ℎ
𝑖
= 𝑉(𝑖) − 𝑉(𝑖 + 1) , 0 ≤ 𝑖 ≤ 𝑘 − 1. (6)

For concise expression and for the convenience of model
analysis, let us further define the following functions:

𝑇
𝑝
(𝑥) = max

𝑧
𝑝 (𝑧) (𝑧 − 𝑥) , (7)

𝑇
𝑤
(𝑥) = 𝐸

𝑤 [
max {𝑤 − 𝑥, 0}] , (8)

𝐽 (𝑥) = 𝑇
𝑤
(𝑥) − 𝑇

𝑝
(𝑥) , (9)

𝐾 (𝑥) = max {𝑇
𝑤
(𝑥) , 𝑇

𝑝
(𝑥)} = max {𝐽 (𝑥) , 0} + 𝑇

𝑝
(𝑥) .

(10)

Moreover, we will denote the value 𝑧 which maximizes
𝑝(𝑧)(𝑧 − 𝑥) by 𝑧(𝑥) in (7). Corresponding to (8), we will also
define

𝑏
𝑜
= sup {𝑥 | 𝑇

𝑤
(𝑥) > 0} . (11)

Since the expectation of immediate reward at any point in
time is finite, by using the conventional method outlined in
a Markovian decision process [23], we can easily verify that
𝑉(𝑖) ≤ 𝑀/(1 − 𝛽) for a sufficiently large 𝑀 > 0; that is,
𝑉(𝑖) is finite. Hence, we can see that the system of (4) and
(5) has a unique solution, regardless of the details of the
optimal decisions. Now, the termsmax{𝑤+𝑉(𝑖+1), 𝑉(𝑖)} and
max
𝑧
{𝑝(𝑧)(𝑧+𝑉(𝑖+1))+(1−𝑝(𝑧))𝑉(𝑖)} can be represented as

max{𝑤+𝑉(𝑖+1)−𝑉(𝑖), 0}+𝑉(𝑖) andmax
𝑧
𝑝(𝑧)(𝑧+𝑉(𝑖+1)−

𝑉(𝑖)) + 𝑉(𝑖), respectively, that is, max{𝑤 − ℎ
𝑖
, 0} + 𝑉(𝑖) and
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max
𝑧
𝑝(𝑧)(𝑧 − ℎ

𝑖
) + 𝑉(𝑖) via the definition in (6). Hence, (4)

and (5) now become

𝑉(0) = 𝛽𝑉(0)

+max {𝛽𝜆max {𝐸
𝑤
[max {𝑤 − ℎ

0
, 0}] ,

max
𝑧

𝑝 (𝑧) (𝑧 − ℎ
0
)} − 𝑐, 0} + 𝜌,

𝑉(𝑖)

= 𝛽 (1 − 𝑞)𝑉(𝑖) + 𝛽𝑞𝑉(𝑖 − 1)

+ 𝛽𝜆max {(1 − 𝑞)max {𝐸
𝑤
[max {𝑤 − ℎ

𝑖
, 0}] ,

max
𝑧

𝑝 (𝑧) (𝑧 − ℎ
𝑖
)} 𝐼
(1≤𝑖<𝑘)

+ 𝑞max {𝐸
𝑤
[max {𝑤 − ℎ

𝑖−1
, 0}] ,

max
𝑧

𝑝 (𝑧) (𝑧 − ℎ
𝑖−1

)} − 𝑐, 0} ,

1 ≤ 𝑖 ≤ 𝑘.

(12)

Then using (7) to (10), we rearrange these equations as
follows:

𝑉(0) =

(max {𝛽𝜆 (max {𝐽 (ℎ
0
) , 0} + 𝑇

𝑝
(ℎ
0
)) − 𝑐, 0} + 𝜌)

(1 − 𝛽)

,

𝑉(𝑖)

= 𝛾𝛽𝑞𝑉(𝑖 − 1)

+ 𝛾max {𝛽 (1 − 𝑞) 𝜆 (max {𝐽 (ℎ
𝑖
) , 0} + 𝑇

𝑝
(ℎ
𝑖
)) 𝐼
(1≤𝑖<𝑘)

+ 𝛽𝑞𝜆 (max {𝐽 (ℎ
𝑖−1

) , 0} + 𝑇
𝑝
(ℎ
𝑖−1

)) − 𝑐, 0} ,

1 ≤ 𝑖 ≤ 𝑘,

(13)

where 𝛾 = (1 − 𝛽(1 − 𝑞))
−1

> 1, which lead to the following
optimality equations:

𝑉(0) =

(max {𝑄
0
, 0} + 𝜌)

(1 − 𝛽)

, (14)

𝑉(𝑖) = 𝛾𝛽𝑞𝑉(𝑖 − 1) + 𝛾max {𝑄
𝑖
, 0} , 1 ≤ 𝑖 ≤ 𝑘, (15)

where 𝑄
0
= 𝛽𝜆𝐾(ℎ

0
) − 𝑐 and 𝑄

𝑖
= 𝛽(1 − 𝑞)𝜆𝐾(ℎ

𝑖
)𝐼
(1≤𝑖<𝑘)

+

𝛽𝑞𝜆𝐾(ℎ
𝑖−1

) − 𝑐 for 1 ≤ 𝑖 ≤ 𝑘.
In what comes below, we derive some equations related

to ℎ
𝑖
. By setting 𝑖 = 0 in (6), we obtain ℎ

0
= 𝑉(0) − 𝑉(1),

and replacing 𝑉(1) by (15) with 𝑖 = 1 produces ℎ
0
= (1 −

𝛾𝛽𝑞)𝑉(0) − 𝛾max{𝑄
1
, 0}. Since 1 − 𝛾𝛽𝑞 = 𝛾(1 − 𝛽), this can

be rewritten as ℎ
0
= 𝛾(1−𝛽)𝑉(0) − 𝛾max{𝑄

1
, 0}. Combining

this with (14) now leads to

ℎ
0
= 𝛾max {𝑄

0
, 0} − 𝛾max {𝑄

1
, 0} + 𝛾𝜌. (16)

In a similar way, for 1 ≤ 𝑖 ≤ 𝑘 − 1, we obtain the following
equation:

ℎ
𝑖
= 𝛾𝛽𝑞ℎ

𝑖−1
+ 𝛾max {𝑄

𝑖
, 0} − 𝛾max {𝑄

𝑖+1
, 0} , 1 ≤ 𝑖 < 𝑘.

(17)

Based upon our discussions so far, we are now ready to
describe the optimal policies with respect to the switching
strategy and the search option for a given state as follows.

Optimal Policies

(a) Optimal Switching Strategies. For 0 ≤ 𝑖 < 𝑘, we have the
following.

(1) If 𝐽(ℎ
𝑖
) > 0, adopt the admission control policy

(see (13)). In this case, if the proposed price 𝑤 of an
arriving customer is greater than ℎ

𝑖
, then it is optimal

to admit the customer is optimal in state 𝑖; otherwise
rejection is optimal (see (12)).

(2) If 𝐽(ℎ
𝑖
) ≤ 0, adopt the pricing control policy (see (13)).

In this case, the optimal price to offer to an arriving
customer is determined by 𝑧(ℎ

𝑖
) which maximizes

𝑝(𝑧)(𝑧 − ℎ
𝑖
) in state 𝑖 (see (12)).

(b) Optimal Search Strategies. For 0 ≤ 𝑖 ≤ 𝑘, it is optimal to
conduct the search if𝑄

𝑖
> 0, and to skip it otherwise (see (14)

and (15)).

4. Results

In what follows, we examine the structure of the optimal
policies described above and consider their implications.

Theorem 1. If 𝛽𝜆𝐾(0) ≤ 𝑐, then 𝑄
𝑖
≤ 0 for 0 ≤ 𝑖 ≤ 𝑘.

Proof. Assume 𝛽𝜆𝐾(0) ≤ 𝑐. Then from Lemmas A.2 and
A.1(b) we have 0 ≥ 𝛽𝜆𝐾(0) − 𝑐 ≥ 𝛽𝜆𝐾(ℎ

0
) − 𝑐 = 𝑄

0
, 0 ≥

𝛽𝜆𝐾(0) − 𝑐 = (1 − 𝑞)(𝛽𝜆𝐾(0) − 𝑐)+ 𝑞(𝛽𝜆𝐾(0) − 𝑐) ≥ (1 −

𝑞)(𝛽𝜆𝐾(ℎ
𝑖
) − 𝑐)+ 𝑞(𝛽𝜆𝐾(ℎ

𝑖
− 1) − 𝑐) = 𝑄

𝑖
for 1 ≤ 𝑖 < 𝑘, and

0 ≥ 𝛽𝜆𝐾(0) − 𝑐 > 𝛽𝑞𝜆𝐾(ℎ
𝑘−1

) − 𝑐 = 𝑄
𝑘
.

This result indicates that when the search cost 𝑐 is
sufficiently large as 𝑐 ≥ 𝛽𝜆𝐾(0), it is optimal not to conduct
the search for customers; hence no first-type customers are
present in the system. As a result the company will provide
the service only for the second-type customers.

Therefore, we consider only the nontrivial case 𝛽𝜆𝐾(0) >

𝑐 in remainder of this section.

Theorem 2. Suppose ℎ
𝑖−1

≤ ℎ
𝑖
for a given 𝑖 (1 ≤ 𝑖 < 𝑘). Then

one has 𝑄
𝑗
> 0 for 𝑗 with 𝑖 ≤ 𝑗 < 𝑘 and

(a) ℎ
𝑖−1

≤ ℎ
𝑖
≤ ⋅ ⋅ ⋅ ≤ ℎ

𝑛−1
< 𝑏,

(b) 𝑧(ℎ
𝑖−1

) ≤ 𝑧(ℎ
𝑖
) ≤ ⋅ ⋅ ⋅ ≤ 𝑧(ℎ

𝑛−1
) < 𝑏.
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Proof. (a) Let ℎ
𝑖−1

< ℎ
𝑖
for a given 𝑖 (1 ≤ 𝑖 < 𝑘); hence ℎ

𝑖−1
≤

ℎ
𝑖
. Then from the contrapositions of Lemma A.3 we get 𝑄

𝑖
>

0; accordingly, using Lemma A.1(b) we have

0 < 𝑄
𝑖
= 𝛽 (1 − 𝑞) 𝜆𝐾 (ℎ

𝑖
) + 𝛽𝑞𝜆𝐾 (ℎ

𝑖−1
) − 𝑐

≤ 𝛽 (1 − 𝑞) 𝜆𝐾 (ℎ
𝑖−1

) + 𝛽𝑞𝜆𝐾 (ℎ
𝑖−1

)

= 𝛽𝜆𝐾 (ℎ
𝑖−1

) − 𝑐,

(18)

which gives 𝐾(ℎ
𝑖−1

) > 𝑐/𝛽𝜆 ≥ 0, and hence ℎ
𝑖−1

< 𝑏 due to
Lemma A.1(c). Further, from (17) we have

ℎ
𝑖
= 𝛾𝑞𝛽ℎ

𝑖−1
+ 𝛾𝛽 (1 − 𝑞) 𝜆𝐾 (ℎ

𝑖
) + 𝛾𝛽𝑞𝜆𝐾 (ℎ

𝑖−1
)

− 𝛾𝑐 − 𝛾max {𝑄
𝑖+1

, 0}

≤ 𝛾𝑞𝛽 (ℎ
𝑖−1

+ 𝜆𝐾 (ℎ
𝑖−1

)) + 𝛾𝛽 (1 − 𝑞) 𝜆𝐾 (ℎ
𝑖
) − 𝛾𝑐.

(19)

Assume ℎ
𝑖
≥ 𝑏. Then the above inequality becomes ℎ

𝑖
≤

𝛾𝑞𝛽(ℎ
𝑖−1

+𝜆𝐾(ℎ
𝑖−1

))−𝛾𝑐due to𝐾(ℎ
𝑖
) = 0 fromLemma A.1(c).

Since ℎ
𝑖−1

< 𝑏, using Lemma A.1(d), we have ℎ
𝑖
≤ 𝛾𝑞𝛽(𝑏 +

𝐾(𝑏)) − 𝛾𝑐 = 𝛾𝑞𝛽(𝑏 − 0) − 𝛾𝑐 ≤ 𝛾𝑞𝛽𝑏 < 𝑏 due to 𝛾𝑞𝛽 < 1,
which is a contradiction. Hence, it must be ℎ

𝑖−1
< (≤)ℎ

𝑖
<

𝑏. Noting this result and Lemma A.1(d), we arrange (19) as
ℎ
𝑖
≤ 𝛾𝑞𝛽ℎ

𝑖
+ 𝛾𝛽𝜆𝐾(ℎ

𝑖
) − 𝛾𝑐, and this inequality becomes

(1−𝛾𝑞𝛽)ℎ
𝑖
≤ 𝛾𝛽𝜆𝐾(ℎ

𝑖
)−𝛾𝑐. Since ℎ

𝑖−1
≥ 0 from Lemma A.2,

we have ℎ
𝑖
> 0 due to the assumption ℎ

𝑖−1
< (≤)ℎ

𝑖
. From this

and the fact that 1 > 𝛾𝑞𝛽 we obtain (1 − 𝛾𝑞𝛽)ℎ
𝑖
> 0 ⋅ ⋅ ⋅ (1

∗
);

hence 𝛾(𝛽𝜆𝐾(ℎ
𝑖
) − 𝑐) > 0 ⋅ ⋅ ⋅ (2

∗
). Now, suppose 𝑄

𝑖+1
≤ 0.

Then Lemma A.3 and the above result give ℎ
𝑖+1

≤ ℎ
𝑖
< 𝑏.

Moreover, from Lemma A.1(c) we have

0 ≥ 𝑄
𝑖+1

= 𝛽 (1 − 𝑞) 𝜆𝐾 (ℎ
𝑖+1

) + 𝛽𝑞𝜆𝐾 (ℎ
𝑖
) − 𝑐

≥ 𝛽 (1 − 𝑞)𝐾 (ℎ
𝑖
) + 𝛽𝑞𝜆𝐾 (ℎ

𝑖
) − 𝑐

= 𝛽𝜆𝐾 (ℎ
𝑖
) − 𝑐,

(20)

which contradicts (2∗); thus 𝑄
𝑖+1

> 0. Because both 𝑄
𝑖
and

𝑄
𝑖+1

are positive, we can rewrite (17) as ℎ
𝑖
= 𝛾𝛽𝑞(ℎ

𝑖−1
+

𝜆𝐾(ℎ
𝑖−1

)) + 𝛾𝛽(1 − 2𝑞)𝐾(ℎ
𝑖
) − 𝛾𝛽(1 − 𝑞)𝐾(ℎ

𝑖+1
). Noting the

assumption ℎ
𝑖−1

< (≤)ℎ
𝑖
, from Lemma A.1(d) we get

ℎ
𝑖
≤ 𝛾𝛽𝑞 (ℎ

𝑖
+ 𝜆𝐾 (ℎ

𝑖
)) + 𝛾𝛽 (1 − 2𝑞) 𝜆𝐾 (ℎ

𝑖
)

− 𝛾𝛽 (1 − 𝑞)𝐾 (ℎ
𝑖+1

)

= 𝛾𝛽𝑞ℎ
𝑖
+ 𝛾𝛽 (1 − 𝑞) (𝐾 (ℎ

𝑖
) − 𝐾 (ℎ

𝑖+1
)) ,

(21)

which leads to (1 − 𝛾𝛽𝑞)ℎ
𝑖
≤ 𝛾𝛽(1 − 𝑞)(𝐾(ℎ

𝑖
) − 𝐾(ℎ

𝑖+1
)).

Since (1 − 𝛾𝑞𝛽)ℎ
𝑖
> 0 from (1

∗
), we get 𝐾(ℎ

𝑖+1
) ≤ 𝐾(ℎ

𝑖
),

implying that ℎ
𝑖
≤ ℎ
𝑖+1

due to Lemma A.1(b). Repeating the
same procedure leads to the completion of the induction.

(b) It is immediate from the fact that 𝑧(𝑥) is increasing in
𝑥 ([24]).

From the above result we see that if ℎ
𝑖−1

< ℎ
𝑖
for a given

state 𝑖 (1 ≤ 𝑖 < 𝑘), then the optimal admission threshold
ℎ
𝑗
and the optimal pricing 𝑧(ℎ

𝑗
) are given as increasing

functions in the number of customers 𝑗 with 𝑖 ≤ 𝑗 < 𝑘.
Therefore, ℎ

𝑖
and 𝑧(ℎ

𝑖
) appear as one of the following

functions. (1) Both ℎ
𝑖
and 𝑧(ℎ

𝑖
) are decreasing in 𝑖. (2) For

some value 𝑚 > 0, both ℎ
𝑖
and 𝑧(ℎ

𝑖
) are decreasing in 𝑖 < 𝑚

and increasing in 𝑖 ≥ 𝑚, which means that both ℎ
𝑖
and 𝑧(ℎ

𝑖
)

are convex unimodal in 𝑖. (3) Both ℎ
𝑖
and 𝑧(ℎ

𝑖
) are increasing

in 𝑖.

Theorem 3. If 𝑄
𝑖
> 0 for a given 𝑖 (0 ≤ 𝑖 < 𝑘), then 𝑄

𝑗
> 0

for 𝑖 ≤ 𝑗 < 𝑘.

Proof. Let 𝑄
𝑖
> 0 for a given 𝑖 (1 ≤ 𝑖 < 𝑛). First, assume

ℎ
𝑖−1

< ℎ
𝑖
. Then 𝑄

𝑖+1
> 0 fromTheorem 2. Next, let ℎ

𝑖−1
≥ ℎ
𝑖
.

Then since 𝐾(ℎ
𝑖−1

) ≤ 𝐾(ℎ
𝑖
) due to Lemma A.1(c), we get 0 <

𝑄
𝑖
= 𝛽(1−𝑞)𝜆𝐾(ℎ

𝑖
)+𝛽𝑞𝜆𝐾(ℎ

𝑖−1
)−𝑐 ≤ 𝛽𝜆𝐾(ℎ

𝑖
)−𝑐. Suppose

𝑄
𝑖+1

≤ 0. Then ℎ
𝑖
≥ ℎ
𝑖+1

due to Lemma A.3. Noting 𝐾(𝑥) is
convex on (−∞,∞) from Lemma A.1(b), we have 𝛽𝜆𝐾((1 −

𝑞)ℎ
𝑖+1

+ 𝑞ℎ
𝑖
) − 𝑐 ≤ 𝛽𝜆((1 − 𝑞)𝐾(ℎ

𝑖+1
) + 𝑞𝐾(ℎ

𝑖
)) − 𝑐 ≤ 0 <

𝛽𝜆𝐾(ℎ
𝑖
)−𝑐, implying𝐾((1−𝑞)ℎ

𝑖+1
+𝑞ℎ
𝑖
) < 𝐾(ℎ

𝑖
), and hence

(1−𝑞)ℎ
𝑖+1

+𝑞ℎ
𝑖
> ℎ
𝑖
due to Lemma A.1(b).Therefore, ℎ

𝑖
< ℎ
𝑖+1

due to the assumption 𝑞 < 1, which is a contradiction. Thus,
𝑄
𝑖+1

> 0. We can complete the induction by repeating the
same procedure. Now, if 𝑄

0
> 0 and 𝑄

1
≤ 0, we get to a

contradiction in quite the same way as above, so it must be
that 𝑄

1
> 0.

The above result states that if it is optimal to continue the
search in a given state 𝑖, then it will be so in all states 𝑗 ≥ 𝑖.
This means that, starting from the initial state 0, if 𝑄

0
> 0,

then the optimal policy is to conduct the search in all states.

Theorem 4. Let 𝜌 = 0. If 𝛽𝜆𝐾(0) > 𝑐, one has

(a) 𝑄
𝑖
> 0 for 0 ≤ 𝑖 < 𝑘,

(b) ℎ
𝑖
and 𝑧(ℎ

𝑖
) are increasing in 𝑖 (0 ≤ 𝑖 < 𝑘).

Proof. (a) Since 𝑉(𝑖) ≥ 0 from (14) and (15), we have
𝑉(0) ≥ max{𝛽𝜆max{𝐸

𝑤
[max{𝑤, 0}],max

𝑧
𝑝(𝑧)𝑧}−𝑐, 0}+𝜌 =

max{𝛽𝜆𝐾(0) − 𝑐, 0} + 𝜌 = 𝛽𝜆𝐾(0) − 𝑐 > 0 from (4) due
to the assumptions that 𝛽𝜆𝐾(0) > 𝑐 and 𝜌 = 0. Therefore,
𝑉(0) > 0. If 𝑄

0
≤ 0 in (14), then 𝑉(0) = 𝜌/(1 − 𝛽) = 0 (note

𝛽 < 1), which contradicts 𝑉(0) > 0. Hence, 𝑄
0
> 0. This and

Theorem 3 give the stated result.
(b) From (16) we have ℎ

0
= 𝛾(𝑄

0
− 𝑄
1
) = 𝛾𝛽(1 −

𝑞)𝜆(𝐾(ℎ
0
)−𝐾(ℎ

1
)) due to (a). If ℎ

0
= 0, then𝐾(ℎ

1
) = 𝐾(ℎ

0
) =

𝐾(0); thus ℎ
0
= ℎ
1
= 0. And if ℎ

0
> 0, then 𝐾(ℎ

0
) > 𝐾(ℎ

1
);

thus ℎ
0
< ℎ
1
due to Lemma A.1(b). Applying Theorem 2 on

this completes the proof.

An implication of the result (a) is that when 𝜆𝛽𝐾(0) >

𝑐 and no profit is obtained from a sideline, it is optimal to
search for customers in all states. The result (b) means that
as 𝑖 increases, the decision maker will become more selective
whether to choose the admission control policy or the pricing
control policy.

5. Numerical Studies

In this section, we demonstrate cases where the switching
occurs between the admission and the pricing control policies
and examine the optimal search policies through some
numerical experiments. The experiments have been made
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Figure 1: Graphs of 𝐽(𝑥) and ℎ
𝑖
. If 𝐽(ℎ

𝑖
) > 0, adopting the admission control policy is optimal; otherwise, the pricing control policy is optimal.

Table 1: Optimal search policies.

𝑖 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝜌 = 0.0 C C C C C C C C C C C C C C C K
𝜌 = 0.4 K K K K K K C C C C C C C C C K

under the following conditions: 𝛽 = 0.97, 𝜆 = 0.99, 𝑐 = 0.05,
and 𝑘 = 15, and𝐹

𝜉
(𝑥) and𝐹

𝛼
(𝑥) are the uniformdistributions

on [0, 1] and [0.5, 0.9], respectively. Note that 𝛽𝜆𝐾(0) − 𝑐 ≅

0.29 > 0 in this case.

5.1. Optimal Switching Strategy. In Figure 1, we present the
graphs of 𝐽(𝑥) and ℎ

𝑖
, where if 𝐽(ℎ

𝑖
) > 0, adopting the

admission control policy is optimal; otherwise, the pricing
control policy is optimal.The graph in Figure 1(a) depicts the
function 𝐽(𝑥) on [0, 1], where 𝐽(𝑥) is less than zero and is
increasing on (0.89, 1) (note 𝑏

𝑜
= 0.89) by Lemma A.1(a).

There exists 𝑥⋆ = 0.27 a solution of 𝐽(𝑥) = 0, such that
𝐽(𝑥) > 0 if 𝑥 < 𝑥

⋆, and 𝐽(𝑥) ≤ 0 otherwise.
Figure 1(b) demonstrates the fact that when 𝜌 = 0, ℎ

𝑖

indeed increases in 𝑖 as expected from Theorem 4(b). This
creates a switching threshold 𝑖

⋆(= 9) such that if 𝑖 < 𝑖
⋆, since

ℎ
𝑖
< 𝑥
⋆, we have 𝐽(ℎ

𝑖
) > 0, and hence it is optimal to adopt

the admission control policy. On the other hand, if 𝑖 ≥ 𝑖
⋆,

since ℎ
𝑖
≥ 𝑥
⋆, we get 𝐽(ℎ

𝑖
) ≤ 0; thus it is optimal to employ

the pricing control policy. Therefore, when 𝑖 < 𝑖
⋆ (𝑖 ≥ 𝑖

⋆),
since adopting the admission control (pricing control) policy
is optimal, the optimal threshold ℎ

𝑖
(optimal pricing 𝑧(ℎ

𝑖
))

should be set in such a way that it increases in the number of
customers in the system.The implications of the monotonic-
ity of ℎ

𝑖
and 𝑧(ℎ

𝑖
) are discussed in [18].

On the contrary, Figure 1(c) shows that when the sideline
profit is sufficiently large as 𝜌 = 0.3, for example, ℎ

𝑖
is

convex unimodal in 𝑖. In other words, there exists an �̂�(= 4)

such that if 𝑖 < �̂�, then ℎ
𝑖
decreases, and if 𝑖 ≥ �̂�, then ℎ

𝑖

increases. Because of this unimodality, we discover the two

switching thresholds 𝑖∗(= 2) and 𝑖

∗

(= 11) with respect to 𝑖,
the number of customers in the system. Therefore, if 𝑖 ≤ 𝑖

∗,
since ℎ

𝑖
≥ 𝑥
∗, we have 𝐽(ℎ

𝑖
) ≤ 0, and hence it is optimal to

employ the pricing control policy. When 𝑖
∗
< 𝑖 < 𝑖

∗, then
ℎ
𝑖
< 𝑥
∗, which gives 𝐽(ℎ

𝑖
) > 0; thus it is optimal to employ the

admission control policy. Yet on 𝑖 ≥ 𝑖

∗, we note that it is again
optimal to employ the pricing control policy. These facts cre-
ate the following admission and pricing policies. When 𝑖 ≤ 𝑖

∗

and 𝑖

∗

≤ 𝑖, the pricing control policy will be chosen, and
hence the optimal pricing 𝑧(ℎ

𝑖
) should be set, respectively, to

be decreasing and increasing in 𝑖. The movement of 𝑧(ℎ
𝑖
) in

case of 𝑖 ≤ 𝑖
∗ has arisen to obtain sufficiently large sideline

profit by rejecting an arriving first-type customer. Now, when
𝑖
∗

< 𝑖 < 𝑖

∗, the admission policy should be chosen, and
as a by-product the optimal admission threshold ℎ

𝑖
is convex

unimodal in 𝑖. The convex unimodality creates the following
DRV- (double critical value-) property. Assume that an
arriving customer proposes the price 𝑤 = 0.19. In this case if
𝑖 ≤ 3, then 𝑤 > ℎ

𝑖
; therefore admitting the customer is opti-

mal; if 3 < 𝑖 ≤ 6, then 𝑤 ≤ ℎ
𝑖
; thus rejecting is optimal; and

in neither of the above cases, since 𝑤 > ℎ
𝑖
, admission again

becomes optimal. The values 𝑖
1
= 3 and 𝑖

2
= 6 will be the two

critical values in this example.

5.2. Optimal Search Strategy. Table 1 represents the optimal
search policies for a given 𝜌 in state 𝑖 (0, 1, . . . , 15). As proven
in Theorem 4(a), when 𝜌 = 0.0, it is always optimal to con-
duct the search for customers in all states except the state 𝑖 =
𝑘, where the system capacity is full. In state 𝑖 = 𝑘, both C and
K can be optimal even though it appears in the table to
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skip the search. When the sideline profit is large enough as
𝜌 = 0.4, there exists an 𝑖

∗(= 6) such that if 𝑖 < 𝑖
∗, it is

optimal to skip, and otherwise to continue the search. This
result reflects the fact that it is profitable to obtain a large
sideline profit like in this case by skipping the search for the
first-type customers. Therefore, it can be inferred that, as the
sideline profit gets larger, the number of state changes from
continuing to skipping in the optimal search policies would
increase.

6. Concluding Remarks

We proposed a switching model between the admission and
pricing control policies in relation to the sideline profits
as well as the search costs. In this research we clarified
the structural properties of the optimal switching strategies
and the optimal search policies. According to our results,
the optimal switching strategy depends on the shape of
the function 𝐽(𝑥), and the optimal switching threshold
exists in terms of the number of customers in the system
under a certain condition. In particular, when the sideline
profit is sufficiently large, switching between the policies has
happened twice in two different states 𝑖

1
and 𝑖
2
(> 𝑖
1
) in terms

of the number of customers. This fact gives the following
considerations. Let the number of customers, 𝑖, be sufficiently
large as 𝑖 > 𝑖

2
. Then in order to avoid the system being full,

the decision maker should reject customers with low price by
setting the offering price high in pricing control. As a result,
the number of customers in the system gradually decreases
and reaches the switching threshold 𝑖

2
, where the decision

maker should switch the policy into the admission control
policy. Now, let the number of customers, 𝑖, become suffi-
ciently small. Then in order to obtain the sideline profit by
rejecting low price of offers, the decision maker should set
the admission threshold high. As a result, the number of
customers gradually decreases and reaches the switching
threshold 𝑖

1
, where the decision maker should switch back to

the pricing control policy.
The optimal search policies that were not introduced

in [19] were also demonstrated here. If the search cost is
sufficiently large, it is optimal to skip the search. However,
when the search cost is sufficiently small, is it always optimal
to continue the search?We showed that the answer is no! Even
though the search cost is sufficiently small, yet the sideline
profit is sufficiently large, it is optimal to skip the search as
shown in Section 5.

As a general framework for the derivation of monotonic-
ity properties, Koole [25] proposes a unified treatment of
the various queueing models by concentrating on system
events and the form of the value function instead of focusing
on the value function itself. To investigate in what extent
our model with the notion of search skipping fit within the
Koole’s framework would be an interesting topic for a further
research.

Moreover, one could incorporate the following conditions
whichwouldmake ourmodelmore practical: (1) future avail-
ability of once rejected customers, (2) customer’s reneging
from the queue, and (3) strategic interaction between the

customer and the decisionmaker by introducing game theory
and further investigate them.

Appendix

Some Lemmas

Here we arrange some lemmas that are used in the proofs of
the theorems. We start with the lemma that represents the
properties of the functions of 𝐾(𝑥) and 𝐽(𝑥), both of which
play an important role in clarifying the characteristics of the
optimal policies.

Lemma A.1. (a) 𝐽(𝑥) = 0 on [𝑏,∞), and if 𝑏𝑜 < 𝑏, then
𝐽(𝑥) is negative and increasing on (𝑏𝑜, 𝑏) (the properties of 𝐽(𝑥)-
function were proven in [19]. We however introduce the proofs
here because of linguistic inaccessibility to the paper.).

(b)𝐾(𝑥) is convex and decreasing on (−∞,∞) and strictly
decreasing on (−∞, 𝑏).

(c) 𝐾(𝑥) > 0 on (−∞, 𝑏) and 𝐾(𝑥) = 0 on [𝑏,∞).
(d) 𝑥 + ]𝐾(𝑥) is increasing on (−∞,∞), where 0 ≤ ] ≤ 1.

Proof. (a) From (3) and the definition of 𝑇
𝑤
(𝑥) given in (8),

we have 𝑇
𝑤
(𝑥) = ∫

∞

0
max{𝑤 − 𝑥, 0}𝐸

𝛼
[(1/𝛼)𝑓

𝜉
(𝑤/𝛼)]𝑑𝑤.

Substituting 𝑤 = 𝛼𝜉 into this equation leads to

𝑇
𝑤
(𝑥) = 𝐸

𝛼
[𝛼∫

∞

0

max {𝜉 − 𝑥

𝛼

, 0}𝑓
𝜉
(𝜉) 𝑑𝜉]

= 𝐸
𝛼
[𝛼𝑇
𝜉
(

𝑥

𝛼

)] ,

(A.1)

where 𝑇
𝜉
(𝑥) = 𝐸

𝜉
[max{𝜉 − 𝑥, 0}]. Here we note that if 𝑏 ≤ 𝑥,

then 𝑏 ≤ 𝑥/𝛼 due to the inequality 0 < 𝛼 ≤ 1. Subsequently,
𝑇
𝜉
(𝑥/𝛼) = 0 from (1). Hence from (A.1) we have 𝑇

𝑤
(𝑏) =

𝐸
𝛼
[𝛼𝑇
𝜉
(𝑏/𝛼)] = 0. Furthermore, if 𝑏 ≤ 𝑥, we have 𝑧(𝑥) = 𝑏

maximizing 𝑝(𝑧)(𝑧 − 𝑏); hence 𝑇
𝑝
(𝑥) = max𝑝(𝑧)(𝑧 − 𝑥) =

𝑝(𝑏)(𝑏 − 𝑥) = 0 because 𝑝(𝑏) = 0 from (1). Therefore we get
𝐽(𝑥) = 0 on (𝑏,∞) from (9). Now, from the definition of 𝑏𝑜
in (11) and the fact that 𝑇

𝑤
(𝑥) is decreasing in 𝑥, we see that

if 𝑥 < 𝑏
𝑜, then 𝑇

𝑤
(𝑥) > 0 and 𝑇

𝑤
(𝑥) = 0 otherwise. This

validates the relation 𝑏
𝑜
≤ 𝑏. Suppose that 𝑏𝑜 ≤ 𝑥 < 𝑏, then

𝑇
𝑤
(𝑥) = 0 as shown above and 𝑇

𝑝
(𝑥) > 0 due to (7) and

(1). Thus, from (9) we have 𝐽(𝑥) = −𝑇
𝑝
(𝑥) < 0, which is

increasing on (𝑏𝑜, 𝑏) because𝑇
𝑝
(𝑥) is decreasing on (−∞,∞)

from (7).
(b) This is immediate from (10) and the fact that both

𝑇
𝑝
(𝑥) and𝑇

𝑤
(𝑥) are convex and decreasing on (−∞,∞) from

(7) and (8).
(c) The proof follows from (a) (10) and the fact that

𝑇
𝑝
(𝑥) > 0 for 𝑥 < 𝑏 and 𝑇

𝑝
(𝑥) = 0 for 𝑏 ≤ 𝑥, as shown in

the proof of (a).
(d)We note that 𝑥+]𝐾(𝑥) = max{𝑥+]𝑇

𝑤
(𝑥), 𝑥+]𝑇

𝑝
(𝑥)}.

Accordingly, we can prove the assertion by showing that each



8 Advances in Operations Research

of 𝑥+ ]𝑇
𝑤
(𝑥) and 𝑥+ ]𝑇

𝑝
(𝑥) are increasing in 𝑥. Let 𝑥

1
< 𝑥
2
.

Since 𝑇
𝑤
(𝑥) = 𝐸

𝛼
[𝛼𝑇
𝜉
(𝑥/𝛼)] from (A.1), we have

]𝑇
𝑤
(𝑥
2
) + 𝑥
2
− ]𝑇
𝑤
(𝑥
1
) − 𝑥
1

= (𝑥
2
− 𝑥
1
) + ]𝐸

𝛼
[𝛼 (𝑇

𝜉
(

𝑥
2

𝛼

) − 𝑇
𝜉
(

𝑥
1

𝛼

))]

= (𝑥
2
− 𝑥
1
) + ]𝐸

𝛼

⋅ [𝛼 (∫

∞

0

max {𝜉 − 𝑥
2

𝛼

, 0} 𝑑𝐹 (𝜉)

− ∫

∞

0

max {𝜉 − 𝑥
1

𝛼

, 0} 𝑑𝐹 (𝜉))]

≥ (𝑥
2
− 𝑥
1
) + ]𝐸

𝛼

⋅ [𝛼 (∫

∞

𝑥
1
/𝛼

(𝜉 −

𝑥
2

𝛼

)𝑑𝐹 (𝜉)

−∫

∞

𝑥
1
/𝛼

(𝜉 −

𝑥
1

𝛼

)𝑑𝐹 (𝜉))]

= (𝑥
2
− 𝑥
1
) − ]𝐸

𝛼

⋅ [𝛼 (

𝑥
2

𝛼

−

𝑥
1

𝛼

)(1 − 𝐹
𝜉
(

𝑥
1

𝛼

))]

= (𝑥
2
− 𝑥
1
) (1 − ]) 𝐸

𝛼
[1 − 𝐹

𝜉
(

𝑥
1

𝛼

)] ≥ 0,

(A.2)

and so𝑇
𝑤
(𝑥
1
)+𝑥
1
≤ 𝑇
𝑤
(𝑥
2
)+𝑥
2
.Thus𝑇

𝑤
(𝑥)+𝑥 is increasing

on (−∞,∞).The proof for𝑇
𝑝
(𝑥)+𝑥 can be found in [24].

The lemma given below guarantees the property of
nonnegativity of ℎ

𝑖
.

Lemma A.2. ℎ
𝑖
≥ 0 for 𝑖 (0 ≤ 𝑖 ≤ 𝑘).

Proof. Since ℎ
𝑖
is given by (6), to prove that the assertion is

true we will show that 𝑉(𝑖) is decreasing in all 𝑖. Consider a
value iteration algorithm corresponding to (4) and (5) for 𝑡 ≥
1 with 𝑉

0
(𝑖) = 0 for all 𝑖. Clearly, 𝑉

0
(𝑖) is decreasing in 𝑖. If we

assume that𝑉
𝑡−1

(𝑖) is decreasing in 𝑖, then it is immediate that
𝑉
𝑡
(𝑖) is decreasing in 𝑖 as well; hence the assertion holds.

LemmaA.3. If𝑄
𝑖
≤ 0 for a given 𝑖 (1 ≤ 𝑖 < 𝑘), then ℎ

𝑖−1
≥ ℎ
𝑖
.

Proof. Let 𝑄
𝑖
≤ 0 for a given 𝑖 (1 ≤ 𝑖 < 𝑘). Then from (15)

we have 𝑉(𝑖) = 𝛾𝑞𝛽𝑉(𝑖 − 1), and hence 𝑉(𝑖 + 1) = 𝛾𝑞𝛽𝑉(𝑖) +

𝛾max{𝑄
𝑖+1

, 0} = (𝛾𝑞𝛽)
2
𝑉(𝑖−1)+𝛾max{𝑄

𝑖+1
, 0}. Accordingly,

we get
ℎ
𝑖
− ℎ
𝑖−1

= 2𝑉(𝑖) − 𝑉 (𝑖 − 1) − 𝑉 (𝑖 + 1)

= 2𝛾𝑞𝛽𝑉 (𝑖 − 1) − 𝑉 (𝑖 − 1) − (𝛾𝑞𝛽)
2

𝑉 (𝑖 − 1)

− 𝛾max {𝑄
𝑖+1

, 0}

= − (1 − 𝛾𝑞𝛽)
2

𝑉 (𝑖 − 1) − 𝛾max {𝑄
𝑖+1

, 0} ≤ 0

(A.3)
due to𝑉(𝑖−1) ≥ 0 from (14) and (15) and the fact that 1 > 𝛾𝑞𝛽.
Therefore ℎ

𝑖−1
≥ ℎ
𝑖
.
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