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We characterize the weighted weak local Hardy spaces Wh𝑝

𝜌
(𝜔) related to the critical radius function 𝜌 and weights 𝜔 ∈ 𝐴

𝜌,∞

∞
(R𝑛

)

which locally behave as Muckenhoupt’s weights and actually include them, by the atomic decomposition. As an application, we
show that localized Riesz transforms are bounded on the weighted weak local Hardy spaces.

1. Introduction

The theory of classical local Hardy spaces, originally intro-
duced by Goldberg [1], plays an important role in various
fields of analysis and partial differential equations; see [2–7]
and their references. Huy Qui [2] studied the weighted ver-
sion ℎ𝑝

𝜔
of the local Hardy spaces ℎ𝑝 considered by Goldberg,

where the weighted 𝜔 belongs to the Muckenhoupt class. In
[8], Rychkov introduced and studied some properties of the
weighted Besov-Lipschitz spaces and Triebel-Lizorkin spaces
with weights that are locally in 𝐴𝑝(R

𝑛) (Muckenhoupt’s
weights, see [4, 9–11]) but may grow or decrease exponen-
tially. In [12], Tang established the weighted atomic decom-
position characterization of the weighted local Hardy space
ℎ
𝑝

𝜔
(R𝑛)with local weights. Recently, in [13], the authors estab-

lished weighted atomic decomposition characterizations for
weighted local Hardy spaces ℎ𝑝

𝜌
(𝜔) with 𝜔 ∈ 𝐴𝜌,𝜃

𝑝 (R𝑛).
On the other hand, the weak 𝐻1 space theory was first

introduced by Fefferman and Soria in [14].Then the weak𝐻𝑝

(0 < 𝑝 < 1) space theory was studied by Liu in [15]. Recently,
Tang [16] established the weighted weak local Hardy space
Wh𝑝

𝜔
(R𝑛) with local weights.
The purpose of this paper is twofold. The first goal is

to characterize weighted weak local Hardy spaces by atomic
decomposition. The second goal is to show that localized
Riesz transforms are bounded on weighted weak local Hardy
spaces.

The paper is organized as follows. In Section 2, we intro-
duce some notation and properties concerning weights and
grandmaximal functions. In Section 3, we establish weighted
atomic decomposition of weighted weak local Hardy spaces
with 𝜔 ∈ 𝐴

𝜌,𝜃

𝑝 (R𝑛). Finally, in Section 4, we show that local-
ized Riesz transforms are bounded on weighted weak local
Hardy spaces.

Throughout this paper, we let 𝐶 denote constants that
are independent of the main parameters involved but whose
value may differ from line to line. By 𝐴 ∼ 𝐵, we mean that
there exists a constant 𝐶 > 1 such that 1/𝐶 ≤ 𝐴/𝐵 ≤ 𝐶.
The symbol 𝐴 ≲ 𝐵 means that 𝐴 ≤ 𝐶𝐵. The symbol [𝑠] for
𝑠 ∈ R denotes the maximal integer no more than 𝑠. We also
set N ≡ {1, 2, . . .} and Z+ ≡ N ∪ {0}. The multiindex notation
is usual: for 𝛼 = (𝛼1, . . . , 𝛼𝑛) and 𝜕

𝛼 = (𝜕/𝜕𝑥1)
𝛼1 ⋅ ⋅ ⋅ (𝜕/𝜕𝑥

𝑛

)
𝛼
𝑛 .

2. Preliminaries

In this section, we review some notions and notations
concerning the weight classes𝐴𝜌,𝜃

𝑝 (R𝑛) introduced in [17–19].
Given 𝐵 = 𝐵(𝑥, 𝑟) and 𝜆 > 0, we will write 𝜆𝐵 for the 𝜆-dilate
ball, which is the ball with the same center 𝑥 and with radius
𝜆𝑟. Similarly,𝑄(𝑥, 𝑟) denotes the cube centered at 𝑥with side
length 𝑟 (here and below only cubes with sides parallel to the
axes are considered), and 𝜆𝑄(𝑥, 𝑟) = 𝑄(𝑥, 𝜆𝑟). Particulalry,
we will denote 2𝐵 by 𝐵∗ and 2𝑄 by 𝑄∗.
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LetL = −Δ + 𝑉 be a Schrödinger operator onR𝑛, 𝑛 ≥ 3,
where 𝑉 ̸≡ 0 is a fixed nonnegative potential. We assume
that 𝑉 belongs to the reverse Hölder class RH𝑠(R

𝑛) for some
𝑠 ≥ 𝑛/2; that is, there exists 𝐶 = 𝐶(𝑠, 𝑉) > 0 such that

(
1
|𝐵|

∫
𝐵

𝑉 (𝑥)
𝑠
𝑑𝑥)

1/𝑠
≤ 𝐶(

1
|𝐵|

∫
𝐵

𝑉 (𝑥) 𝑑𝑥) , (1)

for every ball 𝐵 ⊂ R𝑛. Trivially, RH𝑞(R
𝑛
) ⊂ RH𝑝(R

𝑛
)

provided that 1 < 𝑝 ≤ 𝑞 < ∞. It is well known that if
𝑉 ∈ RH𝑞(R

𝑛) for some 𝑞 > 1, then there exists 𝜀 > 0, which
depends only on 𝑑 and the constant 𝐶 in above inequality
such that 𝑉 ∈ RH𝑞+𝜀(R

𝑛) (see [20]). Moreover, the measure
𝑉(𝑥)𝑑𝑥 satisfies the doubling condition:

∫
𝐵(𝑦,2𝑟)

𝑉 (𝑥) 𝑑𝑥 ≤ 𝐶∫
𝐵(𝑦,𝑟)

𝑉 (𝑥) 𝑑𝑥. (2)

With regard to the Schrödinger operatorL, we know that
the operators derived from L behave “locally” quite similar
to those corresponding to the Laplacian (see [21, 22]). The
notion of locality is given by the critical radius function.
Consider

𝜌 (𝑥) =
1

𝑚𝑉 (𝑥)
= sup

𝑟>0
{𝑟 :

1
𝑟𝑛−2

∫
𝐵(𝑥,𝑟)

𝑉 (𝑦) 𝑑𝑦≤ 1} . (3)

Throughout the paper we assume that 𝑉 ̸≡ 0, so that 0 <

𝜌(𝑥) < ∞ (see [22]). In particular,𝑚𝑉(𝑥) = 1 with𝑉 = 1 and
𝑚𝑉(𝑥) ∼ (1 + |𝑥|) with 𝑉 = |𝑥|2.

Lemma 1 (see [22]). There exist 𝐶0 ≥ 1 and 𝑘0 ≥ 1 so that for
all 𝑥, 𝑦 ∈ R𝑛

𝐶
−1
0 𝜌 (𝑥) (1+

𝑥 − 𝑦


𝜌 (𝑥)
)

−𝑘0

≤ 𝜌 (𝑦)

≤ 𝐶0𝜌 (𝑥) (1+
𝑥 − 𝑦



𝜌 (𝑥)
)

𝑘0/(𝑘0+1)

.

(4)

In particular, 𝜌(𝑥) ∼ 𝜌(𝑦) when 𝑦 ∈ 𝐵(𝑥, 𝑟) and 𝑟 ≤ 𝐶𝜌(𝑥),
where 𝐶 is a positive constant.

A ball of the form 𝐵(𝑥, 𝜌(𝑥)) is called critical, and in what
follows we will call any positive continuous function 𝜌 that
satisfies (3) critical radius function, not necessarily coming
from a potential 𝑉. Clearly, if 𝜌 is such a function, so it is
𝛽𝜌 for any 𝛽 > 0. As a consequence of the above lemma we
acquire the following result.

Lemma2 (see [23]). There exists a sequence of points 𝑥𝑗 ∈ R𝑛,
𝑗 ≥ 1, such that the family 𝐵𝑗 = 𝐵(𝑥𝑗, 𝜌(𝑥𝑗)), 𝑗 ≥ 1, satisfies
the fact that

(1) ⋃𝑗 𝐵𝑗 = R𝑛;
(2) for every 𝜎 ≥ 1 there exist constants𝐶 and𝑁1 such that

Σ𝑗𝜒𝜎𝐵
𝑗

≤ 𝐶𝜎𝑁1 .

In this paper, we write Ψ𝜃(𝐵) = (1 + 𝑟/𝜌(𝑥0))
𝜃, where 𝜃 ≥

0; 𝑥0 and 𝑟 denote the center and radius of 𝐵, respectively.

A weight always refers to a positive function which is
locally integrable. As in [17], we say that a weight𝜔 belongs to
the class 𝐴𝜌,𝜃

𝑝 (R𝑛) for 1 < 𝑝 < ∞ if there is a constant 𝐶 such
that for all balls 𝐵. One has

(
1

Ψ𝜃 (𝐵) |𝐵|
∫
𝐵

𝜔 (𝑦) 𝑑𝑦)

⋅ (
1

Ψ𝜃 (𝐵) |𝐵|
∫
𝐵

𝜔
−1/(𝑝−1)

(𝑦) 𝑑𝑦)

𝑝−1
≤ 𝐶.

(5)

We also say that a nonnegative function 𝜔 satisfies the
𝐴

𝜌,𝜃

1 (R𝑛) condition if there exists a constant 𝐶 such that

𝑀𝑉,𝜃 (𝜔) (𝑥) ≤ 𝐶𝜔 (𝑥) , a.e. 𝑥 ∈ R
𝑛
, (6)

where

𝑀𝑉,𝜃𝑓 (𝑥) ≡ sup
𝑥∈𝐵

1
Ψ𝜃 (𝐵) |𝐵|

∫
𝐵

𝑓 (𝑦)
 𝑑𝑦. (7)

When 𝑉 = 0, we denote 𝑀0𝑓(𝑥) by 𝑀𝑓(𝑥) (the standard
Hardy-Littlewood maximal function). It is easy to see that
|𝑓(𝑥)| ≤ 𝑀𝑉,𝜃𝑓(𝑥) ≤ 𝑀𝑓(𝑥) for a.e. 𝑥 ∈ R𝑛 and any 𝜃 ≥ 0.

Clearly, the classes 𝐴𝜌,𝜃

𝑝 are increasing with 𝜃, and we
denote 𝐴𝜌,∞

𝑝 = ⋃𝜃≥0 𝐴
𝜌,𝜃

𝑝 . By Hölder’s inequality, we see that
𝐴

𝜌,𝜃

𝑝1
⊂ 𝐴

𝜌,𝜃

𝑝2
, if 1 ≤ 𝑝1 < 𝑝2 < ∞, and we also denote 𝐴𝜌,∞

∞
=

⋃𝑝≥1 𝐴
𝜌,∞

𝑝 . In addition, for 1 ≤ 𝑝 ≤ ∞, denote by 𝑝 the
adjoint number of 𝑝; that is, 1/𝑝 + 1/𝑝 = 1.

Since Ψ𝜃(𝐵) ≥ 1 with 𝜃 ≥ 0, then 𝐴𝑝 ⊂ 𝐴
𝜌,𝜃

𝑝 for 1 ≤ 𝑝 <

∞, where𝐴𝑝 denotes the classical Muckenhoupt weights; see
[10, 24]. Moreover, the inclusions are proper. In fact, as the
example given in [18], let 𝜃 > 0 and 0 ≤ 𝛾 ≤ 𝜃; it is easy
to check that 𝜔(𝑥) = (1 + |𝑥|)−(𝑛+𝛾) ∉ 𝐴∞ = ⋃𝑝≥1 𝐴𝑝 and
𝜔(𝑥)𝑑𝑥 is not a doublingmeasure, but𝜔(𝑥) = (1+|𝑥|)−(𝑛+𝛾) ∈
𝐴

𝜌,𝜃

1 provided that 𝑉 = 1 and Ψ𝜃(𝐵(𝑥0, 𝑟)) = (1 + 𝑟)
𝜃.

In what follows, given a Lebesgue measurable set 𝐸 and
a weight 𝜔, |𝐸| will denote the Lebesgue measure of 𝐸 and
𝜔(𝐸) := ∫

𝐸
𝜔(𝑥)𝑑𝑥. For any 𝜔 ∈ 𝐴𝜌,∞

∞
, the space 𝐿𝑝

𝜔
(R𝑛) with

𝑝 ∈ (0,∞) denotes the set of all measurable functions 𝑓 such
that

𝑓
𝐿𝑝
𝜔
(R𝑛)

≡ (∫
R𝑛

𝑓 (𝑥)

𝑝
𝜔 (𝑥) 𝑑𝑥)

1/𝑝
< ∞, (8)

and 𝐿∞
𝜔
(R𝑛) ≡ 𝐿∞(R𝑛).The symbol 𝐿𝑝,∞

𝜔
(R𝑛) denotes the set

of all measurable functions 𝑓 such that

𝑓
𝐿𝑝,∞
𝜔

(R𝑛)
≡ (sup

𝜆>0
{𝜆

𝑝
𝜔 ({𝑥 ∈R

𝑛
:
𝑓 (𝑥)

 > 𝜆})})

1/𝑝

< ∞.

(9)

We define the local Hardy-Littlewood maximal operator by

𝑀
loc
𝑓 (𝑥) ≡ sup

𝑥∈𝐵(𝑥0 ,𝑟)
𝑟≤𝜌(𝑥0)

1
|𝐵|

∫
𝐵

𝑓 (𝑦)
 𝑑𝑦. (10)
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We remark that balls can be replaced by cubes in defi-
nition of 𝐴𝜌,𝜃

𝑝 and 𝑀𝑉,𝜃, since Ψ(𝐵) ≤ Ψ(2𝐵) ≤ 2𝜃Ψ(𝐵). In
fact, for the cube 𝑄 = 𝑄(𝑥0, 𝑟), we can also define Ψ𝜃(𝑄) =

(1 + 𝑟/𝜌(𝑥0))
𝜃.

Next, we give some properties of weights class 𝐴𝜌,𝜃

𝑝 for
𝑝 ≥ 1.

Lemma 3. Let 𝜔 ∈ 𝐴𝜌,∞

𝑝 = ⋃𝜃≥0 𝐴
𝜌,𝜃

𝑝 for 𝑝 ≥ 1. Then

(i) if 1 ≤ 𝑝1 < 𝑝2 < ∞, then 𝐴𝜌,𝜃

𝑝1
⊂ 𝐴

𝜌,𝜃

𝑝2
;

(ii) 𝜔 ∈ 𝐴
𝜌,𝜃

𝑝 if and only if 𝜔−1/(𝑝−1) ∈ 𝐴
𝜌,𝜃

𝑝
, where 1/𝑝 +

1/𝑝 = 1;

(iii) if 𝜔 ∈ 𝐴
𝜌,∞

𝑝 ; 1 < 𝑝 < ∞, then there exists 𝜖 > 0 such
that 𝜔 ∈ 𝐴𝜌,∞

𝑝−𝜖 ;

(iv) let 𝑓 ∈ 𝐿 𝑙𝑜𝑐(R
𝑛), 0 < 𝛿 < 1, then (𝑀𝑉,𝜃𝑓)

𝛿
∈ 𝐴

𝜌,𝜃

1 ;

(v) let 1 < 𝑝 < ∞, then 𝜔 ∈ 𝐴
𝜌,∞

𝑝 if and only if 𝜔 =

𝜔1𝜔
1−𝑝
2 , where 𝜔1, 𝜔2 ∈ 𝐴

𝜌,∞

1 ;

(vi) for 𝜔 ∈ 𝐴
𝜌,𝜃

𝑝 , 𝑄 = 𝑄(𝑥, 𝑟) and 𝜆 > 1, there exists a
positive constant 𝐶 such that

𝜔 (𝜆𝑄) ≤ 𝐶 (Ψ𝜃 (𝜆𝑄))
𝑝
𝜆
𝑛𝑝
𝜔 (𝑄) ; (11)

(vii) if 𝑝 ∈ (1,∞) and 𝜔 ∈ 𝐴
𝜌,𝜃

𝑝 (R𝑛), then the local Hardy-
Littlewood maximal operator 𝑀

𝑙𝑜𝑐 is bounded on
𝐿𝑝
𝜔
(R𝑛);

(viii) if 𝜔 ∈ 𝐴
𝜌,𝜃

1 (R𝑛), then𝑀𝑙𝑜𝑐 is bounded from 𝐿1
𝜔
(R𝑛) to

𝐿1,∞
𝜔
(R𝑛).

Proof. (i)–(viii) have been proved in [17, 19].

For any 𝜔 ∈ 𝐴𝜌,∞

∞
(R𝑛), define the critical index of 𝜔 by

𝑞𝜔 ≡ inf {𝑝 ∈ [1,∞) : 𝜔 ∈𝐴
𝜌,∞

𝑝
(R

𝑛
)} . (12)

Obviously, 𝑞𝜔 ∈ [1,∞). If 𝑞𝜔 ∈ (1,∞), then 𝜔 ∉ 𝐴𝜌,∞

𝑞
𝜔

, but
𝜔 ∈ 𝐴

𝜌,∞

𝑞
𝜔
+𝜀 for any 𝜀 > 0.

The symbols D(R𝑛) = 𝐶∞

0 (R
𝑛), D(R𝑛) are the dual

space of D(R𝑛). For any 𝜑 ∈ D(R𝑛), let 𝜑𝑡(𝑥) = 𝑡−𝑛𝜑(𝑥/𝑡)

for 𝑡 > 0 and 𝜑𝑗(𝑥) = 2𝑗𝑛𝜑(2𝑗𝑥) for 𝑗 ∈ Z.

Lemma 4 (see [13]). Let 𝜔 ∈ 𝐴𝜌,∞

∞
(R𝑛) and 𝑞𝜔 be as in (12)

and 𝑝 ∈ (𝑞𝜔,∞].

(i) If 1/𝑝 + 1/𝑝 = 1, thenD(R𝑛) ⊂ 𝐿
𝑝


𝜔−1/(𝑝−1)
(R𝑛).

(ii) 𝐿𝑝
𝜔
(R𝑛) ⊂ D(R𝑛) and the inclusion is continuous.

We now introduce some local maximal functions. For
𝑁 ∈ Z+ and 𝑅 ∈ (0,∞), let

D𝑁,𝑅 (R
𝑛
) ≡ {𝜑 ∈D (R

𝑛
) : supp (𝜑)

⊂ 𝐵 (0, 𝑅) , 𝜑
D
𝑁
(R𝑛)

≡ sup
𝑥∈R𝑛

sup
𝛼∈Z𝑛
+
,|𝛼|≤𝑁

𝜕
𝛼
𝜑 (𝑥)

 ≤ 1} .

(13)

Definition 5. Let 𝑁 ∈ Z+ and 𝑅 ∈ (0,∞). For any 𝑓 ∈

D(R𝑛), the local nontangential grand maximal function
M̃𝑁,𝑅(𝑓) of 𝑓 is defined by setting, for all 𝑥 ∈ R𝑛,

M̃𝑁,𝑅 (𝑓) (𝑥) ≡ sup {𝜑𝑙 ∗ 𝑓 (𝑧)
 : |𝑥 − 𝑧| < 2

−𝑙

<𝜌 (𝑥) , 𝜑 ∈D𝑁,𝑅 (R
𝑛
)} ,

(14)

and the local vertical grand maximal functionM𝑁,𝑅(𝑓) of 𝑓
is defined by setting, for all 𝑥 ∈ R𝑛,

M𝑁,𝑅 (𝑓) (𝑥) ≡ sup {𝜑𝑙 ∗ 𝑓 (𝑥)
 : 0< 2

−𝑙
<𝜌 (𝑥) , 𝜑

∈D𝑁,𝑅 (R
𝑛
)} .

(15)

For convenience’s sake, when𝑅 = 1, we denoteD𝑁,𝑅(R
𝑛),

M̃𝑁,𝑅(𝑓), and M𝑁,𝑅(𝑓) simply by D0
𝑁
(R𝑛), M̃0

𝑁
(𝑓), and

M0
𝑁
(𝑓), respectively; when 𝑅 = max{𝑅1, 𝑅2, 𝑅3} > 1 (in

which 𝑅1, 𝑅2, and 𝑅3 are defined as in Lemmas 4.2, 4.4, and
4.8 in [13]), we denote D𝑁,𝑅(R

𝑛), M̃𝑁,𝑅(𝑓), and M𝑁,𝑅(𝑓)

simply by D𝑁(R
𝑛), M̃𝑁(𝑓), and M𝑁(𝑓), respectively. For

any𝑁 ∈ Z+ and 𝑥 ∈ R𝑛, obviously,

M
0
𝑁
(𝑓) (𝑥) ≤M𝑁 (𝑓) (𝑥) ≤ M̃𝑁 (𝑓) (𝑥) . (16)

Definition 6. Let

𝜓0 ∈ D (R
𝑛
) with ∫

R𝑛
𝜓0 (𝑥) 𝑑𝑥 ̸= 0. (17)

For every 𝑥 ∈ R𝑛, there exists an integer 𝑗𝑥 ∈ Z satisfying
2−𝑗𝑥 < 𝜌(𝑥) ≤ 2−𝑗𝑥+1, and then for 𝑗 ≥ 𝑗𝑥, 𝐴, 𝐵 ∈ [0,∞) and
𝑦 ∈ R𝑛, let𝑚𝑗,𝐴,𝐵,𝑥(𝑦) ≡ (1 + 2𝑗|𝑦|)𝐴2𝐵|𝑦|/𝜌(𝑥).

The local verticalmaximal function𝜓+

0 (𝑓) of𝑓 associated
with 𝜓0 is defined by setting, for all 𝑥 ∈ R𝑛,

𝜓
+

0 (𝑓) (𝑥) ≡ sup
𝑗≥𝑗
𝑥


(𝜓0)𝑗 ∗ 𝑓 (𝑥)


, (18)

the local tangential Peetre-type maximal function 𝜓∗∗

0,𝐴,𝐵(𝑓)
of 𝑓 associated with 𝜓0 is defined by setting, for all 𝑥 ∈ R𝑛,

𝜓
∗∗

0,𝐴,𝐵 (𝑓) (𝑥) ≡ sup
𝑗≥𝑗
𝑥
,𝑦∈R𝑛


(𝜓0)𝑗 ∗ 𝑓 (𝑥 − 𝑦)



𝑚𝑗,𝐴,𝐵,𝑥 (𝑦)
. (19)

Obviously, for any 𝑥 ∈ R𝑛, we have 𝜓+

0 (𝑓)(𝑥) ≲ 𝜓
∗∗

0,𝐴,𝐵(𝑓)(𝑥).
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For 𝑓 ∈ 𝐿1loc(R
𝑛), 𝐵 ∈ [0,∞), and 𝑥 ∈ R𝑛, let

𝐾𝐵𝑓 (𝑥) ≡
1

(𝜌 (𝑥))
𝑛 ∫

R𝑛

𝑓 (𝑦)
 2

−𝐵(|𝑥−𝑦|/𝜌(𝑥))
𝑑𝑦, (20)

and for the operator 𝐾𝐵, we have the following lemma.

Lemma 7 (see [13]). Let 𝑝 ∈ (1,∞) and 𝜔 ∈ 𝐴
𝜌,𝜃

𝑝 (R𝑛); then
there exist constants 𝐶 > 0 and 𝐵0 ≡ 𝐵0(𝜔, 𝑛) > 0 such that,
for all 𝐵 > 𝐵0/𝑝,

𝐾𝐵𝑓
𝐿𝑝
𝜔
(R𝑛)

≤ 𝐶
𝑓
𝐿𝑝
𝜔
(R𝑛)

, (21)

for all 𝑓 ∈ 𝐿𝑝
𝜔
(R𝑛).

Proposition 8. Let𝑁 ≥ 2. Then

(i) there exists a positive constant 𝐶 such that, for all 𝑓 ∈

𝐿1
𝑙𝑜𝑐
(R𝑛) ∩D(R𝑛) and almost every 𝑥 ∈ R𝑛,

𝑓 (𝑥)
 ≤M

0
𝑁
(𝑓) (𝑥) ≤ 𝐶𝑀

𝑙𝑜𝑐
(𝑓) (𝑥) ; (22)

(ii) if 𝜔 ∈ 𝐴𝜌,∞

𝑞
(R𝑛) with 𝑞 ∈ [1,∞),𝑁 ≥ [𝑛(𝑞𝜔/𝑝− 1)] +

1, and 𝑝 ∈ (0, 1], then

M

0
𝑁
𝑓
𝐿𝑝,∞
𝜔

(R𝑛)
∼
M𝑁𝑓

𝐿𝑝,∞
𝜔

(R𝑛)
∼

M̃𝑁𝑓

𝐿𝑝,∞
𝜔

(R𝑛)
. (23)

Proof. The proof of (i) is trivial. For (ii), since M0
𝑁
(𝑓)(𝑥) ≤

M𝑁(𝑓)(𝑥) ≤ M̃𝑁(𝑓)(𝑥), it is easy to see that

M

0
𝑁
𝑓
𝐿𝑝,∞
𝜔

(R𝑛)
≤
M𝑁𝑓

𝐿𝑝,∞
𝜔

(R𝑛)
≤

M̃𝑁𝑓

𝐿𝑝,∞
𝜔

(R𝑛)
. (24)

Hence, it suffices to prove that there exists a positive constant
𝐶 such that


M̃𝑁𝑓

𝐿𝑝,∞
𝜔

(R𝑛)
≤ 𝐶


M

0
𝑁
𝑓
𝐿𝑝,∞
𝜔

(R𝑛)
. (25)

By (3.19) of [13], for any 𝜓 ∈ D0
𝑁
(R𝑛), 0 < 𝑟 < 1 satisfying

𝐴 > 𝑛/𝑟 and 𝑥 ∈ R𝑛, we have

[𝜓
∗∗

0,𝐴,𝐵 (𝑓) (𝑥)]
𝑟

≲ 𝑀
loc
([𝜓

+

0 (𝑓)]
𝑟
) (𝑥)

+𝐾𝐵𝑟 ([𝜓
+

0 (𝑓)]
𝑟
) (𝑥) .

(26)

By (3.28) of [13], we know that

M̃𝑁 (𝑓) (𝑥) ≲ 𝜓
∗∗

0,𝐴,𝐵 (𝑓) (𝑥) . (27)

Therefore, by (26), (27), and𝜓+

0 (𝑓)(𝑥) ≤M0
𝑁
𝑓(𝑥), to get (25),

it suffices to prove that for 0 < 𝑟 < 𝑝 ≤ 1 and 𝑞 < 𝑝/𝑟 there
exists a constant 𝐵 depending only on 𝑛, 𝑟, 𝑝, 𝜔 such that


(𝑀

loc
(𝑔

𝑟
))

1/𝑟𝐿𝑝,∞
𝜔

(R𝑛)
≲
𝑔
𝐿𝑝,∞
𝜔

(R𝑛)
, (28)


(𝐾𝐵𝑟 (𝑔

𝑟
))

1/𝑟𝐿𝑝,∞
𝜔

(R𝑛)
≲
𝑔
𝐿𝑝,∞
𝜔

(R𝑛)
. (29)

We first prove (28). For any 𝑡 > 0, we set 𝑔 = 𝑔1 + 𝑔2, and
𝑔1(𝑥) = 𝑔(𝑥) if |𝑔(𝑥)| ≤ 𝑡/2, otherwise is zero. Without loss

of generality, we can assume that 𝑞 > 1. By the boundedness
of𝑀loc (see (vii) of Lemma 3) and the fact that 𝑟𝑞 < 𝑝, we get

𝜔({𝑥 ∈R
𝑛
: (𝑀

loc
(𝑔

𝑟
) (𝑥))

1/𝑟
> 𝑡})

≤ 𝜔({𝑥 ∈R
𝑛
: 𝑀

loc
(𝑔

𝑟

2) (𝑥) > (
𝑡

2
)
𝑟

})

≲ 𝑡
−𝑟𝑞

∫
{𝑥∈R𝑛:|𝑔(𝑥)|≥𝑡/2}

𝑔 (𝑥)

𝑟𝑞
𝜔 (𝑥) 𝑑𝑥

≲ 𝑡
−𝑟𝑞

∫
∞

𝑡/2
𝜔 ({𝑥 ∈R

𝑛
:
𝑔 (𝑥)

 > 𝜆}) 𝑑𝜆
𝑟𝑞

+ 𝑡
−𝑟𝑞

∫
𝑡/2

0
𝜔({𝑥 ∈R

𝑛
:
𝑔 (𝑥)

 >
𝑡

2
}) 𝑑𝜆

𝑟𝑞

≲ 𝑡
−𝑟𝑞

∫
∞

𝑡/2
𝜆
𝑟𝑞−1−𝑝

𝜆
𝑝
𝜔 ({𝑥 ∈R

𝑛
:
𝑔 (𝑥)

 > 𝜆}) 𝑑𝜆
𝑟𝑞

+ 𝑡
−𝑝 𝑔


𝑝

𝐿
𝑝,∞

𝜔
(R𝑛)

≲ 𝑡
−𝑝 𝑔


𝑝

𝐿
𝑝,∞

𝜔
(R𝑛)

.

(30)

Next we prove (29). By Lemma 7, we have

𝐾𝐵𝑟𝑔
𝐿𝑞
𝜔
(R𝑛)

≲
𝑔
𝐿𝑞
𝜔
(R𝑛)

, (31)

when 𝐵𝑟 is taken to be sufficiently large. Then by (31) and the
same method of proof of (28), we obtain (29). The proof of
lemma is complete.

3. The Decomposition Theorem

Let 0 < 𝑝 ≤ 1, 1 ≤ 𝑞 < ∞, 𝜔 ∈ 𝐴𝜌,∞

𝑞
(R𝑛), and𝑁 ≥ [𝑛(𝑞𝜔/𝑝−

1)] + 1 with 𝑞𝜔 as in (12). The weighted local Hardy spaces
ℎ𝑝
𝜌
(𝜔) can be defined by

ℎ
𝑝

𝜌
(𝜔) ≡ {𝑓 ∈D


(R

𝑛
) :M𝑁 (𝑓) ∈ 𝐿

𝑝

𝜔
(R

𝑛
)} , (32)

and ‖𝑓‖
ℎ
𝑝

𝜌
(𝜔)

= ‖M𝑁(𝑓)‖𝐿𝑝
𝜔
(R𝑛). For ℎ

𝑝

𝜌
(𝜔), we have following

lemma.

Lemma 9 (see [13]). Let 𝜔 ∈ 𝐴𝜌,∞

∞
(R𝑛), then what follows are

equivalent:

(i) 𝑓 ∈ ℎ𝑝
𝜌
(𝜔);

(ii) 𝑓 ∈ D(R𝑛) and M̃𝑁(𝑓) ∈ 𝐿
𝑝

𝜔
(R𝑛);

(iii) 𝑓 ∈ D(R𝑛) and M̃0
𝑁
(𝑓) ∈ 𝐿𝑝

𝜔
(R𝑛);

(iv) 𝑓 ∈ D(R𝑛) andM0
𝑁
(𝑓) ∈ 𝐿𝑝

𝜔
(R𝑛).

Moreover, for all 𝑓 ∈ ℎ𝑝
𝜌
(𝜔),

𝑓
ℎ𝑝
𝜌
(𝜔)

∼

M̃𝑁 (𝑓)

𝐿𝑝
𝜔
(R𝑛)

∼

M̃

0
𝑁
(𝑓)

𝐿𝑝
𝜔
(R𝑛)

∼

M

0
𝑁
(𝑓)

𝐿𝑝
𝜔
(R𝑛)

,

(33)

where the implicit constants are independent of 𝑓.
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Similarly, the weighted weak local Hardy spaces Wh𝑝
𝜌
(𝜔)

can be defined by

Wh𝑝
𝜌
(𝜔) ≡ {𝑓 ∈D


(R

𝑛
) :M𝑁 (𝑓) ∈ 𝐿

𝑝,∞

𝜔
(R

𝑛
)} , (34)

and ‖𝑓‖Wh𝑝
𝜌
(𝜔)

= ‖M𝑁(𝑓)‖𝐿𝑝,∞
𝜔

(R𝑛).
In this section, we establish a decomposition theorem of

weighted weak local Hardy spaces Wh𝑝
𝜌
(𝜔).

We first recall the Calderón-Zygmund decomposition of
𝑓 of degree 𝑠 and height 𝜆 associated with M𝑁(𝑓) as in [12,
13, 25].

Let 𝜔 ∈ 𝐴𝜌,∞

∞
(R𝑛) and 𝑞𝜔 be as in (12). Throughout this

section, we consider a distribution 𝑓 so that for all 𝜆 > 0

𝜔 ({𝑥 ∈R
𝑛
:M𝑁 (𝑓) (𝑥) > 𝜆}) < ∞. (35)

For a given 𝜆 > inf𝑥∈R𝑛M𝑁(𝑓)(𝑥), we set

Ω𝜆 ≡ {𝑥 ∈R
𝑛
:M𝑁 (𝑓) (𝑥) > 𝜆} . (36)

It is obvious that Ω𝜆 is a proper open subset of R𝑛. As in [4],
we give the usualWhitney decomposition ofΩ𝜆.Thus we can
find closed cubes𝑄𝑘 withΩ𝜆 = ⋃𝑘 𝑄𝑘, and their interiors are
away fromΩ

∁

𝜆
and

diam (𝑄𝑘) ≤ 2−(6+𝑛) dist (𝑄𝑘, Ω
∁

𝜆
) ≤ 4 diam (𝑄𝑘) . (37)

In what follows, fix 𝑎 ≡ 1 + 2−(11+𝑛) and 𝑏 ≡ 1 + 2−(10+𝑛), and
if we denote 𝑄𝑘 = 𝑎𝑄𝑘, 𝑄

∗

𝑘
= 𝑏𝑄𝑘, we have 𝑄𝑘 ⊂ 𝑄𝑘 ⊂ 𝑄∗

𝑘
.

Moreover,Ω𝜆 = ⋃𝑘 𝑄
∗

𝑘
, and {𝑄∗

𝑘
}𝑘 have the bounded interior

property; namely, every point inΩ𝜆 is contained in at most a
fixed number of {𝑄∗

𝑘
}𝑘.

Now we take a function 𝜉 ∈ D(R𝑛) such that 0 ≤ 𝜉 ≤ 1,
supp(𝜉) ⊂ 𝑎𝑄(0, 1), and 𝜉 ≡ 1 on 𝑄(0, 1). For 𝑥 ∈ R𝑛, set
𝜉𝑘(𝑥) ≡ 𝜉((𝑥 − 𝑥𝑘)/𝑙𝑘), where, and in what follows, 𝑥𝑘 is
the center of the cube 𝑄𝑘 and 𝑙𝑘 is its side length. Obviously,
by the construction of {𝑄∗

𝑘
}𝑘 and {𝜉𝑘}𝑘, for any 𝑥 ∈ R𝑛, we

have 1 ≤ ∑𝑘 𝜉𝑘(𝑥) ≤ 𝑀, where𝑀 is a fixed positive integer
independent of 𝑥. Let 𝜂𝑘 ≡ 𝜉𝑘/(∑𝑗 𝜉𝑗). Then {𝜂𝑘}𝑘 form a
smooth partition of unity for Ω𝜆 subordinate to the locally
finite covering {𝑄∗

𝑘
}𝑘 of Ω𝜆; namely, 𝜒Ω

𝜆

= ∑𝑘 𝜂𝑘 with each
𝜂𝑘 ∈ D(R𝑛) supported in 𝑄𝑘.

Let 𝑠 ∈ Z+ be some fixed integer andP𝑠(R
𝑛) denote the

linear space of polynomials in 𝑛 variables of degrees no more
than 𝑠. For each 𝑖 ∈ N and 𝑃 ∈ Ps(R

𝑛), set

‖𝑃‖𝑖 ≡ [
1

∫
R𝑛
𝜂𝑖 (𝑦) 𝑑𝑦

∫
R𝑛
|𝑃 (𝑥)|

2
𝜂𝑖 (𝑥) 𝑑𝑥]

1/2

. (38)

Then it is easy to see that (P𝑠(R
𝑛), ‖⋅‖𝑖) is a finite dimensional

Hilbert space. Let 𝑓 ∈ D(R𝑛), since 𝑓 induces a linear
functional onP𝑠(R

𝑛) via

𝑃 →
1

∫
R𝑛
𝜂𝑖 (𝑦) 𝑑𝑦

⟨𝑓, 𝑃𝜂𝑖⟩ (39)

by the Riesz representation theorem; there exists a unique
polynomial 𝑃𝑖 ∈ P𝑠(R

𝑛) for each 𝑖 such that, for all 𝑄 ∈

P𝑠(R
𝑛),

⟨𝑓,𝑄𝜂𝑖⟩ = ⟨𝑃𝑖, 𝑄𝜂𝑖⟩ = ∫
R𝑛
𝑃𝑖 (𝑥)𝑄 (𝑥) 𝜂𝑖 (𝑥) 𝑑𝑥. (40)

For each 𝑖, define the distribution 𝑏𝑖 ≡ (𝑓 − 𝑃𝑖)𝜂𝑖 when 𝑙𝑖 ∈
(0, 𝐿3𝜌(𝑥𝑖)) (where 𝐿3 = 2𝑘0𝐶0 and 𝑥𝑖 is the center of the
cube 𝑄𝑖) and 𝑏𝑖 ≡ 𝑓𝜂𝑖 when 𝑙𝑖 ∈ [𝐿3𝜌(𝑥𝑖),∞).

As in [13], we can show that for suitable choices of 𝑠
and𝑁, the series ∑𝑖 𝑏𝑖 converge inD(R𝑛), and, in this case,
we define 𝑔 ≡ 𝑓 − ∑𝑖 𝑏𝑖 in D(R𝑛). We point out that the
representation 𝑓 = 𝑔 + ∑𝑖 𝑏𝑖, where 𝑔 and 𝑏𝑖 are as above, is
called a Calderón-Zygmund decomposition of 𝑓 of degree 𝑠
and height 𝜆 associated withM𝑁(𝑓).

To obtain the main theorem, we need the following
lemmas (Lemmas 10–13) about Calderón-Zygmund decom-
position which have been given in Section 4 of [13].

Lemma 10. There exists a constant 𝐶 > 0 such that

M
0
𝑁
𝑏𝑖 (𝑥) ≤ 𝐶M𝑁𝑓 (𝑥) 𝑓𝑜𝑟 𝑥 ∈ 𝑄

∗

𝑖
. (41)

Lemma 11. Suppose 0 ≤ 𝑠 < 𝑁. Then there exist positive
constants 𝐶1 so that for 𝑖 ∈ N

M
0
𝑁
(𝑏𝑖) (𝑥) ≤ 𝐶

𝜆𝑙𝑛+𝑠+1
𝑖

(𝑙𝑖 +
𝑥 − 𝑥𝑖

)
𝑛+𝑠+1𝜒{|𝑥−𝑥𝑖|<𝐶1𝜌(𝑥)}

(𝑥)

𝑖𝑓 𝑥 ∉ 𝑄
∗

𝑖
.

(42)

Lemma 12. Let 𝜔 ∈ 𝐴𝜌,∞

∞
(R𝑛) and 𝑞𝜔 be as in (12). If 𝑝 ∈

(0, 1], 𝑠 ≥ [𝑛(𝑞𝜔/𝑝 − 1)], and𝑁 > 𝑠 then there exists a positive
constant 𝐶 such that, for all 𝑓 ∈ ℎ𝑝

𝜌
(𝜔), 𝜆 > inf𝑥∈R𝑛M𝑁𝑓(𝑥),

and 𝑖 ∈ N,

∫
R𝑛
(M

0
𝑁
(𝑏𝑖) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥

≤ 𝐶∫
𝑄∗
𝑖

(M𝑁 (𝑓) (𝑥))
𝑝
𝜔 (𝑥) 𝑑𝑥.

(43)

Moreover the series ∑𝑖 𝑏𝑖 converges in ℎ
𝑝

𝜌
(𝜔) and

∫
R𝑛
(M

0
𝑁
(∑

𝑖

𝑏𝑖) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥

≤ 𝐶∫
Ω

(M𝑁 (𝑓) (𝑥))
𝑝
𝜔 (𝑥) 𝑑𝑥.

(44)

Lemma 13. Let 𝜔 ∈ 𝐴𝜌,∞

∞
(R𝑛) and 𝑞𝜔 be as in (12), 𝑞 ∈

(𝑞𝜔,∞), and 𝑝 ∈ (0, 1].

(i) If 𝑁 > 𝑠 ≥ [𝑛(𝑞𝜔/𝑝 − 1)] and 𝑓 ∈ ℎ𝑝
𝜌
(𝜔), then

M0
𝑁
(𝑔) ∈ 𝐿𝑞

𝜔
(R𝑛) and there exists a positive constant

𝐶, independent of 𝑓 and 𝜆, such that

∫
R𝑛
[M

0
𝑁
(𝑔) (𝑥)]

𝑞

𝜔 (𝑥) 𝑑𝑥

≤ 𝐶𝜆
𝑞−𝑝

∫
R𝑛
[M𝑁 (𝑓) (𝑥)]

𝑝
𝜔 (𝑥) 𝑑𝑥.

(45)

(ii) If𝑁 ≥ 2 and 𝑓 ∈ 𝐿𝑞
𝜔
(R𝑛), then 𝑔 ∈ 𝐿∞

𝜔
(R𝑛) and there

exists a positive constant 𝐶, independent of 𝑓 and 𝜆,
such that ‖𝑔‖𝐿∞

𝜔

≤ 𝐶𝜆.
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Theorem 14. Let 0 < 𝑝 ≤ 1, 1 ≤ 𝑞 < ∞, and 𝜔 ∈

𝐴𝜌,∞

𝑞
(R𝑛), then, for any 𝑓 ∈ 𝑊ℎ𝑝

𝜌
(𝜔), there exists a sequence

of bounded function {𝑓𝑚}
+∞

𝑚=𝑚
with the following properties, in

which 𝑚 ∈ Z such that 2𝑚


−1 ≤ inf𝑥∈R𝑛M𝑁𝑓(𝑥) < 2𝑚


, and
if inf𝑥∈R𝑛M𝑁𝑓(𝑥) = 0, one writes𝑚 = −∞.

(i) 𝑓 = ∑+∞

𝑚=𝑚
𝑓𝑚 is in the sense of distribution.

(ii) Each 𝑓𝑚 can be further decomposed as 𝑓𝑚 = ∑𝑖 ℎ
𝑚

𝑖
,

where {ℎ𝑚
𝑖
}𝑖 satisfy the fact that

(1) each ℎ𝑚
𝑖
is supported in a cube 𝑄𝑚

𝑖
= 𝑄(𝑥𝑚

𝑖
, 𝑟𝑚

𝑖
)

with 𝑟𝑚
𝑖
≤ 𝐿1𝜌(𝑥

𝑚

𝑖
), ∑𝑖 𝜔(𝑄

𝑚

𝑖
) ≤ 𝐴2−𝑚𝑝, and

∑𝑖 𝜒𝑄𝑚
𝑖

≲ 1, where 𝐿1 ≡ 4𝐶0(3√𝑛)
𝑘0 , 𝐴 is a

constant depending on 𝑓, and 𝜒𝑄𝑚
𝑖

denote the
characteristic functions;

(2) ‖ℎ𝑚
𝑖
‖𝐿∞ ≲ 2𝑚 and ∫

R𝑛
ℎ𝑚
𝑖
(𝑥)𝑥𝛼𝑑𝑥 = 0 for 𝛼 ∈

(Z+)
𝑛 with |𝛼| ≥ [𝑛(𝑞𝜔/𝑝 − 1)] + 1, when 𝑟𝑚

𝑖
<

𝐿2𝜌(𝑥
𝑚

𝑖
) and 𝐿2 ≡ 1/𝐶2

0(3√𝑛)
𝑘0+1.

Conversely, if a distribution𝑓 satisfies (i) and (ii), then𝑓 ∈
𝑊ℎ𝑝

𝜌
(𝜔).
Moreover, one has ‖𝑓‖𝑝

𝑊ℎ
𝑝

𝜌
(𝜔)

∼ 𝐴.

Proof. We first suppose 𝑓 ∈Wh𝑝
𝜌
(𝜔), and setΩ𝑚 ≡ {𝑥 ∈ R𝑛 :

M𝑁𝑓(𝑥) > 2𝑚}. As above, let Ω𝑚 = ⋃𝑖 𝑄
𝑚

𝑖
= ⋃𝑖 𝑄(𝑥

𝑚

𝑖
, 𝑟𝑚

𝑖
)

be theWhitney decomposition, and we write {𝑄𝑖}𝑖, {𝜂𝑖}𝑖, {𝑃𝑖}𝑖,
and {𝑏𝑖}𝑖, respectively, as {𝑄

𝑚

𝑖
}𝑖, {𝜂

𝑚

𝑖
}𝑖, {𝑃

𝑚

𝑖
}𝑖, and {𝑏

𝑚

𝑖
}𝑖; that is,

𝑏𝑚
𝑖
≡ (𝑓−𝑃𝑚

𝑖
)𝜂𝑚

𝑖
if 𝑟𝑚

𝑖
< 𝐿3𝜌(𝑥

𝑚

𝑖
), 𝑏𝑚

𝑖
≡ 𝑓𝜂𝑚

𝑖
if 𝑟𝑚

𝑖
≥ 𝐿3𝜌(𝑥

𝑚

𝑖
),

and 𝜂𝑚
𝑖
is a smooth function supported in 𝑄𝑚∗

𝑖
≡ 𝑏𝑄𝑚

𝑖
. Then

by Lemmas 10 and 11, there exists a constant 𝐶1 such that for
any 𝑖 ∈ N

M
0
𝑁
(𝑏

𝑚

𝑖
) (𝑥)

≲M𝑁𝑓 (𝑥) 𝜒�̃�𝑚∗
𝑖

(𝑥)

+
2𝑚 (𝑟𝑚

𝑖
)
𝑛+𝑁

(𝑟𝑚
𝑖
+
𝑥 − 𝑥

𝑚
𝑖

)
𝑛+𝑁

𝜒
{|𝑥−𝑥𝑚

𝑖
|<𝐶1𝜌(𝑥

𝑚

𝑖
)}∩(�̃�𝑚∗

𝑖
)𝑐
(𝑥) ,

(46)

where𝑁 ≥ [𝑛(𝑞𝜔/𝑝 − 1)] + 2.
Then by Lemma 9 and using the similar method of proof

of Lemma 12, we have


∑
𝑖

𝑏
𝑚

𝑖



𝑝0

ℎ
𝑝0
𝜌
(𝜔)

≲ ∫
R𝑛
(M

0
𝑁
(∑

𝑖

𝑏𝑖) (𝑥))

𝑝0

𝜔 (𝑥) 𝑑𝑥

≲ ∫
Ω
𝑚

(M𝑁 (𝑓) (𝑥))
𝑝0 𝜔 (𝑥) 𝑑𝑥

≲ ∫
∞

2𝑚
𝜔 ({𝑥 ∈R

𝑛
:M𝑁 (𝑓) (𝑥) > 𝜆}) 𝑑𝜆

𝑝0

+∫
2𝑚

0
𝜔 ({𝑥 ∈R

𝑛
:M𝑁 (𝑓) (𝑥) > 2

𝑚
}) 𝑑𝜆

𝑝0

≲
𝑓

𝑝

Wh𝑝
𝜌
(𝜔)

2𝑚(𝑝0−𝑝),
𝑛

𝑛 + 𝑁
< 𝑝0 < 𝑝.

(47)

Hence,∑𝑖 𝑏
𝑚

𝑖
converges in the sense of distributions, and

we have the Calderón-Zygmund decomposition 𝑓 = 𝑔𝑚 +

∑𝑖 𝑏
𝑚

𝑖
. By using the similar method of proof of Lemma 13(ii),

we have ‖𝑔𝑚‖𝐿∞
𝜔

≲ 2𝑚. Let𝑓𝑚 = 𝑔𝑚+1−𝑔𝑚; then∑𝑖 𝜂
𝑚

𝑖
𝑏𝑚+1
𝑗

=

𝜒Ω
𝑚

𝑏𝑚+1
𝑗

= 𝑏𝑚+1
𝑗

for all 𝑗 and

𝑔
𝑚+1

−𝑔
𝑚
= (𝑓−∑

𝑗

𝑏
𝑚+1
𝑗

)−(𝑓−∑
𝑖

𝑏
𝑚

𝑖
)

= ∑
𝑖

𝑏
𝑚

𝑖
−∑

𝑗

𝑏
𝑚+1
𝑗

= ∑
𝑖

[

[

𝑏
𝑚

𝑖
− ∑

𝑗∈𝐹𝑚1

𝑏
𝑚+1
𝑗

𝜂
𝑚

𝑖
+ ∑

𝑗∈𝐹𝑚2

𝑏
𝑚+1
𝑗

𝜂
𝑚

𝑖
]

]

≡ ∑
𝑖

ℎ
𝑚

𝑖
,

(48)

where 𝐹𝑚

1 ≡ {𝑖 ∈ N : 𝑟𝑚
𝑖
≥ 𝐿3𝜌(𝑥

𝑚

𝑖
)}, 𝐹𝑚

2 ≡ {𝑖 ∈ N : 𝑟𝑚
𝑖
<

𝐿3𝜌(𝑥
𝑚

𝑖
)}, and all the series converges inD(R𝑛).

We set suppℎ𝑚
𝑖

⊂ 𝑄𝑚

𝑖
≡ 𝑄(𝑥𝑚

𝑖
, 𝑟𝑚

𝑖
). By the similar

method of Lemma 5.4 in [13], if 𝑟𝑚
𝑖

< 𝐿2𝜌(𝑥
𝑚

𝑖
), it is easy

to see that ℎ𝑚
𝑖
satisfy all conditions in (ii); if 𝑟𝑚

𝑖
≥ 𝐿2𝜌(𝑥

𝑚

𝑖
),

we can decompose 𝑄𝑚

𝑖
into a finite number of disjoint

cubes {𝑄𝑗

𝑖,𝑚
}
𝑁
𝑖𝑚

𝑗=1 , and the side length of each cube is between
𝐿2𝜌(𝑥

𝑚

𝑖
) and 𝐿1𝜌(𝑥

𝑚

𝑖
), and then {ℎ𝑚

𝑖
𝜒
𝑄
𝑗

𝑖,𝑚

}
𝑁
𝑖𝑚

𝑗=1 satisfy all con-
ditions in (b). Obviously, 𝑓 = ∑

+∞

𝑚=𝑚
𝑓𝑚 is also in the sense

of distribution.
For the converse, take 𝜆 > 0 and𝑚0 ∈ Z such that 2𝑚0 ≤

𝜆 < 2𝑘0 . Without loss of generality, we assume that𝑚 = −∞

and write

𝑓 =

𝑚0

∑

𝑚=𝑚

𝑓𝑚 +

+∞

∑
𝑚=𝑚0+1

𝑓𝑚 ≡ 𝐹1 +𝐹2. (49)

Then we haveM0
𝑁
𝐹1(𝑥) ≲ 𝜆, and we only need to prove

𝜔 ({𝑥 ∈R
𝑛
:M

0
𝑁
𝐹2 (𝑥) > 𝜆}) ≲ 𝐴𝜆

−𝑝
. (50)

Taking 𝑎1 = √𝑛𝐿1 + 𝐶2
02

𝑘0(1 + 𝐿1), where 𝐶0 and 𝑘0 are
constants given in Lemma 1, then let 𝑄𝑚

𝑖
= 𝑄(𝑥𝑚

𝑖
, 𝑙𝑚
𝑖
), where

𝑙𝑚
𝑖
= min{2(3/2)(𝑚−𝑚0)𝑝/𝑞𝑛𝑟𝑚

𝑖
, 𝑎1𝜌(𝑥

𝑚

𝑖
)} and set

Ω
𝑚0 ≡

+∞

⋃
𝑚=𝑚0+1

⋃
𝑖

𝑄
𝑚

𝑖
. (51)

By the properties of 𝐴𝜌,∞

𝑞
(R𝑛), we have

𝜔 (𝑄
𝑚

𝑖
) ≲ (

3
2
)
(𝑚−𝑚0)𝑝

𝜔 (𝑄
𝑚

𝑖
) ; (52)
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then by (1) of (ii), we get

𝜔 (Ω
𝑚0) ≲

+∞

∑
𝑚=𝑚0+1

∑
𝑖

(
3
2
)
(𝑚−𝑚0)𝑝

𝜔 (𝑄
𝑚

𝑖
)

≲

+∞

∑
𝑚=𝑚0+1

2−(𝑚−𝑚0)𝑝 (
3
2
)
(𝑚−𝑚0)𝑝

2−𝑚0𝑝𝐴

≲ 𝜆
−𝑝
𝐴.

(53)

Hence, to prove (50), it suffices to prove

∫
(Ω𝑚0 )∁

(M
0
𝑁
𝐹2 (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥 ≲ 𝐴. (54)

Then, we just need to estimate

∫
(𝑄
𝑚

𝑖
)∁
(M

0
𝑁
ℎ
𝑚

𝑖
(𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥. (55)

In fact, let 𝑥 ∈ (𝑄𝑚

𝑖
)
∁; we have the following estimate:

M
0
𝑁
ℎ
𝑚

𝑖
(𝑥)

≲ 2𝑚 (𝑟𝑚
𝑖
)
𝑛+𝑁 𝑥 − 𝑥

𝑚

𝑖


−(𝑛+𝑁)

𝜒{|𝑥−𝑥𝑚
𝑖
|<𝑎1𝜌(𝑥

𝑚

𝑖
)} (𝑥) ,

(56)

where 𝑁 ≥ [𝑛(𝑞𝜔/𝑝 − 1)] + 1. From this, and note that 𝜔 ∈

𝐴
𝜌,∞

𝑞
𝜔
+𝜀, for any 𝜀 > 0, we obtain

∫
(𝑄
𝑚

𝑖
)∁
(M

0
𝑁
ℎ
𝑚

𝑖
(𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥

≲ ∫
(3/2)(𝑚−𝑚0)𝑝/𝑞𝑛𝑟𝑚

𝑖
<|𝑥−𝑥𝑚

𝑖
|<𝑎1𝜌(𝑥

𝑚

𝑖
)

2𝑚𝑝 (𝑟𝑚
𝑖
)
𝑝(𝑛+𝑁)

𝑥 − 𝑥
𝑚
𝑖


𝑝(𝑛+𝑁)

𝜔 (𝑥) 𝑑𝑥

≲ 2𝑚𝑝
(
2
3
)
𝑙
𝑁
(𝑚−𝑚0)𝑝/𝑞𝑛

𝜔 (𝑄
𝑚

𝑖
) ,

(57)

when 𝜀 is small enough such that 𝑙𝑁 ≡ 𝑝(𝑛+𝑁)−𝑛(𝑞𝜔+𝜀) > 0.
Therefore, we get

∫
(Ω𝑚0 )∁

(M
0
𝑁
𝐹2 (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥

≲

∞

∑
𝑚=𝑚0+1

2𝑚𝑝
(∑

𝑖

(
2
3
)
𝑙
𝑁
(𝑚−𝑚0)𝑝/𝑞𝑛

𝜔 (𝑄
𝑚

𝑖
))

≲

∞

∑
𝑚=𝑚0+1

2𝑚𝑝
(
2
3
)
𝑙
𝑁
(𝑚−𝑚0)𝑝/𝑞𝑛

(2−𝑚𝑝
𝐴) ≲ 𝐴,

(58)

which infers (54), and the proof is complete.

4. Application

In this section, we will show the boundedness of localized
Riesz transforms onWh𝑝

𝜌
(𝜔) spaces. As in [13, 26], for all 𝑗 ∈

{1, 2, . . . , 𝑛}, and 𝑥 ∈ R𝑛, define localized Riesz transforms as

�̂�𝑗 (𝑓) (𝑥)

≡ p.v. 𝑐𝑛 ∫
R𝑛

𝑥𝑗 − 𝑦𝑗
𝑥 − 𝑦


𝑛+1 𝜂(

𝑥 − 𝑦


𝜌 (𝑥)
)𝑓 (𝑦) 𝑑𝑦,

(59)

where and, in what follows, 𝑐𝑛 ≡ Γ((𝑛 + 1)/2)/[𝜋(𝑛+1)/2], 𝜂 ∈
𝐶1(R𝑛) supported in (−1, 1), and 𝜂(𝑡) = 1 if |𝑡| ≤ 1/2.

As in [12], we can obtain the following lemma. Its proof is
similar to Lemma 8.2 in [12], and we omit the details here.

Lemma 15. Let �̂�𝑗 be localized Riesz transforms, where 𝑗 ∈

{1, 2, . . . , 𝑛}; then

(i) ‖�̂�𝑗(𝑓)‖𝐿𝑝
𝜔
(R𝑛) ≤ 𝐶𝑝,𝜔‖𝑓‖𝐿𝑝

𝜔
(R𝑛), for 1 < 𝑝 < ∞ and

𝜔 ∈ 𝐴
𝜌,∞

𝑝 (R𝑛);

(ii) ‖�̂�𝑗(𝑓)‖𝐿1,∞
𝜔

(R𝑛) ≤ 𝐶𝜔‖𝑓‖𝐿1
𝜔
(R𝑛), for 𝜔 ∈ 𝐴

𝜌,∞

1 (R𝑛).

Now let us state the main result of this section.

Theorem 16. Let 𝜔 ∈ 𝐴𝜌,∞

∞
(R𝑛), 0 < 𝑝 ≤ 1, and �̂�𝑗 be

localized Riesz transforms, where 𝑗 ∈ {1, 2, . . . , 𝑛}; then there
is a constant 𝐶𝜔 independent of 𝑓 ∈ 𝑊ℎ

𝑝

𝜌
(𝜔) such that


�̂�𝑗𝑓

𝑊ℎ
𝑝

𝜌
(𝜔)

≤ 𝐶𝜔

𝑓
𝑊ℎ
𝑝

𝜌
(𝜔)
. (60)

Proof. By the definition of Wh𝑝
𝜌
(𝜔), to get (60), it suffices to

prove

𝜔 ({𝑥 ∈R
𝑛
:M

0
𝑁
(�̂�𝑗𝑓) (𝑥) > 𝜆})

≤ 𝐶𝜔𝜆
−𝑝 𝑓


𝑝

Wh𝑝
𝜌
(𝜔)
,

(61)

for any 𝜆 > 0. Let 𝑓 ∈ Wh𝑝
𝜌
(𝜔); then we have the decom-

position of 𝑓 as inTheorem 14. Particularly, we have

𝑓 =

+∞

∑

𝑚=𝑚

𝑓𝑚, (62)

without loss of generality; we always assume that 𝑚 = −∞.
Fix 𝜆 > 0, and take𝑚0 ∈ Z such that 2𝑚0 ≤ 𝜆 < 2𝑘0 ; then we
write

𝑓 =

𝑚0

∑
𝑚=−∞

𝑓𝑚 +

+∞

∑
𝑚=𝑚0+1

𝑓𝑚 ≡ 𝐹1 +𝐹2. (63)

For𝐹1, since𝜔 ∈ 𝐴
𝜌,∞

𝑞
, for some 1 < 𝑞 < ∞, by Proposition 8

andTheorem 14, we have

𝐹1
𝐿𝑞
𝜔
(R𝑛)

≤ 𝐶

𝑚0

∑
𝑚=−∞

2𝑚𝜔 (Ω𝑚)
1/𝑞

≤ 𝐶
𝑓

𝑝/𝑞

Wh𝑝
𝜌
(𝜔)

𝑚0

∑
𝑚=−∞

2𝑚(1−𝑝/𝑞)

≤ 𝐶𝜆
1−𝑝/𝑞 𝑓


𝑝/𝑞

Wh𝑝
𝜌
(𝜔)
.

(64)

Hence, since �̂�𝑗 is bounded on 𝐿
𝑞

𝜔
(R𝑛

) by (i) of Lemma 15, we
get

𝜔 ({𝑥 ∈R
𝑛
:M

0
𝑁
(�̂�𝑗𝐹1) (𝑥) > 𝜆}) ≤ 𝐶


�̂�𝑗𝐹1



𝑞

𝐿
𝑞

𝜔
(R𝑛)

𝜆𝑞

≤ 𝐶

𝐹1

𝑞

𝐿
𝑞

𝜔
(R𝑛)

𝜆𝑞
≤ 𝐶𝜆

−𝑝 𝑓

𝑝

Wh𝑝
𝜌
(𝜔)
.

(65)
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Then we just need to prove that

𝜔 ({𝑥 ∈R
𝑛
:M

0
𝑁
(�̂�𝑗𝐹2) (𝑥) > 𝜆})

≤ 𝐶𝜔𝜆
−𝑝 𝑓


𝑝

Wh𝑝
𝜌
(𝜔)
.

(66)

For each 𝑓𝑚, by Theorem 14, 𝑓𝑚 has decomposition 𝑓𝑚 =

∑𝑖 ℎ
𝑚

𝑖
, and each ℎ𝑚

𝑖
is supported in a cube 𝑄𝑚

𝑖
= 𝑄(𝑥𝑚

𝑖
, 𝑟𝑚

𝑖
)

with 𝑟𝑚
𝑖

≤ 𝐿1𝜌(𝑥
𝑚

𝑖
). Furthermore, there exists a constant

𝑎2 > 1 independent of ℎ𝑚
𝑖
such that suppM0

𝑁
(�̂�𝑗ℎ

𝑚

𝑖
)(𝑥) ⊂

𝐵(𝑥𝑚
𝑖
, 𝑎2𝜌(𝑥

𝑚

𝑖
)). Let 𝑄𝑚

𝑖
= 𝑄(𝑥𝑚

𝑖
, 𝑙𝑚
𝑖
), where 𝑙𝑚

𝑖
= min{2(3/

2)(𝑚−𝑚0)𝑝/𝑞𝑛𝑟𝑚
𝑖
, 𝑎2𝜌(𝑥

𝑚

𝑖
)} and set

Ω
𝑚0 ≡

+∞

⋃
𝑚=𝑚0+1

⋃
𝑖

𝑄
𝑚

𝑖
. (67)

By the properties of 𝐴𝜌,∞

𝑞
(R𝑛), we have

𝜔 (𝑄
𝑚

𝑖
) ≲ (

3
2
)
(𝑚−𝑚0)𝑝

𝜔 (𝑄
𝑚

𝑖
) ; (68)

then byTheorem 14, we get

𝜔 (Ω
𝑚0) ≲

+∞

∑
𝑚=𝑚0+1

∑
𝑖

(
3
2
)
(𝑚−𝑚0)𝑝

𝜔 (𝑄
𝑚

𝑖
)

≲

+∞

∑
𝑚=𝑚0+1

2−(𝑚−𝑚0)𝑝 (
3
2
)
(𝑚−𝑚0)𝑝

2−𝑚0𝑝 𝑓

𝑝

Wh𝑝
𝜌
(𝜔)

≲ 𝜆
−𝑝 𝑓


𝑝

Wh𝑝
𝜌
(𝜔)
.

(69)

Therefore, it suffices to prove

∫
(Ω𝑚0 )∁

(M
0
𝑁
(�̂�𝑗𝐹2) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶
𝑓

𝑝

Wh𝑝
𝜌
(𝜔)
. (70)

Then, we just need to estimate

∫
(𝑄
𝑚

𝑖
)∁
(M

0
𝑁
(�̂�𝑗ℎ

𝑚

𝑖
) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥. (71)

We will discuss the following two cases.

Case 1. If 𝐿2𝜌(𝑥
𝑚

𝑖
) ≤ 𝑟𝑚

𝑖
≤ 𝐿1𝜌(𝑥

𝑚

𝑖
), let 𝑎3 ≡ 𝑎2/𝐿2 >

1 and 𝑄∗

𝑖𝑚
= 𝑎3𝑄

𝑚

𝑖
, then since suppM0

𝑁
(�̂�𝑗ℎ

𝑚

𝑖
)(𝑥) ⊂

𝐵(𝑥𝑚
𝑖
, 𝑎2𝜌(𝑥

𝑚

𝑖
)), we have

∫
(𝑄
𝑚

𝑖
)∁
(M

0
𝑁
(�̂�𝑗ℎ

𝑚

𝑖
) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥

= (∫
𝑄∗
𝑖𝑚
\𝑄
𝑚

𝑖

+∫
R𝑛\𝑄∗

𝑖𝑚

)(M
0
𝑁
(�̂�𝑗ℎ

𝑚

𝑖
) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥

= ∫
𝑄∗
𝑖𝑚
\𝑄
𝑚

𝑖

(M
0
𝑁
(�̂�𝑗ℎ

𝑚

𝑖
) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥.

(72)

Furthermore,

∫
𝑄∗
𝑖𝑚
\𝑄
𝑚

𝑖

(M
0
𝑁
(�̂�𝑗ℎ

𝑚

𝑖
) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥

≤ 𝐶2𝑚𝑝
∫
(3/2)(𝑚−𝑚0)𝑝/𝑞𝑛𝑟𝑚

𝑖
<|𝑥−𝑥𝑚

𝑖
|<𝑎3𝑟
𝑚

𝑖

𝜔 (𝑥) 𝑑𝑥

≤ 𝐶2𝑚𝑝
𝜔 (𝑄

𝑚

𝑖
) ,

(73)

for 0 ≤ 𝑚 ≤ 𝑚0 + 𝑛𝑞 log3/2𝑎2.

Case 2. If 𝑟𝑚
𝑖
< 𝐿2𝜌(𝑥

𝑚

𝑖
), by the vanishing moment of ℎ𝑚

𝑖
, we

have

M
0
𝑁
(�̂�𝑗ℎ

𝑚

𝑖
) (𝑥)

≤ 𝐶2𝑚
(𝑟𝑚

𝑖
)
𝑛+𝑁

𝑥 − 𝑥
𝑚
𝑖


𝑛+𝑁

𝜒{|𝑥−𝑥𝑚
𝑖
|<𝑎2𝜌(𝑥

𝑚

𝑖
)} (𝑥) ,

(74)

where 𝑁 ≥ [𝑛(𝑞𝜔/𝑝 − 1)] + 1. From this, and note that 𝜔 ∈

𝐴
𝜌,∞

𝑞
𝜔
+𝜀, for any 𝜀 > 0, we obtain

∫
(𝑄
𝑚

𝑖
)∁
(M

0
𝑁
(�̂�𝑗ℎ

𝑚

𝑖
) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥

≲ ∫
(3/2)(𝑚−𝑚0)𝑝/𝑞𝑛𝑟𝑚

𝑖
<|𝑥−𝑥𝑚

𝑖
|<𝑎2𝜌(𝑥

𝑚

𝑖
)

2𝑚𝑝 (𝑟𝑚
𝑖
)
𝑝(𝑛+𝑁)

𝑥 − 𝑥
𝑚
𝑖


𝑝(𝑛+𝑁)

𝜔 (𝑥) 𝑑𝑥

≲ 2𝑚𝑝
(
2
3
)
𝑙
𝑁
(𝑚−𝑚0)𝑝/𝑞𝑛

𝜔 (𝑄
𝑚

𝑖
) ,

(75)

when 𝜀 is small enough such that 𝑙𝑁 ≡ 𝑝(𝑛+𝑁)−𝑛(𝑞𝜔+𝜀) > 0.
Combining the above two cases with Theorem 14, we get

∫
(Ω𝑚0 )∁

(M
0
𝑁
(�̂�𝑗𝐹2) (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥

≲

∞

∑
𝑚=𝑚0+1

2𝑚𝑝
(∑

𝑖

(
2
3
)
𝑙
𝑁
(𝑚−𝑚0)𝑝/𝑞𝑛

𝜔 (𝑄
𝑚

𝑖
))

≲

∞

∑
𝑚=𝑚0+1

2𝑚𝑝
(
2
3
)
𝑙
𝑁
(𝑚−𝑚0)𝑝/𝑞𝑛

(2−𝑚𝑝 𝑓

𝑝

Wh𝑝
𝜌
(𝜔)
)

≲
𝑓

𝑝

Wh𝑝
𝜌
(𝜔)
.

(76)

Therefore, (70) holds, and the proof is complete.
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