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We introduce a novel method for nonrigid image registration which combines the total variation filter and a fourth-order filter.
We decompose the deformation field into two components, that is, a piecewise constant component and a smooth component.The
total variation filter is used for the first component and the fourth-order filter is used for the second one. Then, we present a new
PDE-based image registration model suitable for both smooth and nonsmooth deformation problem. Meanwhile, the local-global
similaritymeasure is used in ourmethod to improve the accuracy and robustness for imagematching. By applying the split Bregman
algorithm and dual algorithm, we present a fast and stable numerical scheme.The numerical experiments and comparisons on both
synthetic images and real images demonstrate the effectiveness of our method in nonrigid image registration.

1. Introduction

Image registration is playing an important role in image
analysis, and having application in various fields (e.g., image
fusion, atlas matching, and pathological diagnosis). The
purpose of image registration is to find an optimal geometric
transformation that aligns points in one viewof an objectwith
corresponding points in another view of the same object or a
similar one. The transformation can be either rigid or non-
rigid deformation. Particularly, nonrigid image registration
method is a challenging subject in today’s modern medical
diagnostics and image-guided therapy systems.

Lots of research has been devoted to nonrigid image
registration in the last couple of years.We focus on variational
and PDE-based image registration methods in this paper,
which have been proven to be very successful techniques
in recent years. Bajcsy and Kovačič [1] utilized the Navier-
Stoke equation to represent the local deformation and Broit
[2] proposed the elastic model for nonrigid registration.
Thirion proposed the Demon’s algorithm by considering
image registration as a diffusion process [3]. Improvements
ofDemon’s algorithm for nonrigid registrationwas studied by
Cachier et al. [4]. Cachier and Rey [5] introduced a method

to symmetrize the registration problem using an inversion-
invariant energy.

In many variational methods, the energy includes two
terms. One is similarity measure term which describes the
similarity between the deformed source image and the target
image.The other is regularization termwhich is related to the
smoothness of deformation field.The choices of the similarity
measures depend on the particular images to be registered.
When the intensities of the images are similar, the sum of
square distance (SSD) [6, 7] or the sumof absolute differences
(SAD) [8, 9] of images is commonly used. When the images
come from different sources or modalities, the cross correla-
tion (CC) [10, 11], mutual information (MI) [11–13], or other
information-theoretic measures [14, 15] are considered. For
the mono-modality registration, one of the most common
and simple similarity measure is SSD measure [4]. A local-
global similarity measure is introduced in [16] to enhance the
matching accuracy for very large displacements.The classical
regularization term uses the quadratic term of gradient [17,
18] which leads to smooth estimation of deformation field
and does not allow for discontinuities.The second-order total
variation (TV) regularization is considered in [19] which is
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Figure 1:The effect of different parameters 𝛼 and 𝛽 in our method: (a) the sum of squared difference SSD(𝑇(u+ x), 𝑅(x)), (b) the correlation
coefficient corr(𝑇(u + x), 𝑅(x)).

(a) Template image 𝑇 (b) Reference image 𝑅 (c) 𝑇(x + u) (TV)

(d) 𝑇(x + u) (𝐿2) (e) 𝑇(x + u) (fourth-order) (f) 𝑇(x + u) (our model)

Figure 2: Test 1: Registered image for a pair of synthetic images shown in (a) 𝑇 and (b) 𝑅 of size 473 × 449. (c) TV-diffusion model, (d)
𝐿
2-diffusion model, (e) Fourth-order-diffusion model, and (f) our model. Parameters: 𝛼 = 500, 𝛽 = 500, 𝜇 = 10, 𝜏 = 1, 𝜆 = 300, and 𝜃 = 0.1.
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Figure 3: The transformation presentations for different methods in Test 1.

better for preserving discontinuities of the deformation fields.
However, it has been shown that TV regularization leads to
staircase effect in image restoration problems since it favors
piecewise constant solutions which seriously decreases the
visual image quality [20]. To reduce the staircase effect of the
second-order TV regularization, fourth-order regularization
methods are introduced in [21–23]. It is reported that fourth-
order diffusion damps oscillations much faster than second-
order diffusion and is more suitable for restoring smooth
contents.

In fact, for the nonrigid registration problems, the defor-
mation field have both discontinuities and smooth structures
as images [24]. So it is necessary to design a deformation
model which is suitable for deformation field with both
smooth and nonsmooth structures. In this paper, we pro-
pose a novel registration model, which combines the total
variation regularization with the fourth-order regularization.
The combined algorithm takes the advantage of both reg-
ularization methods and overcomes their demerits. Addi-
tionally, we draw support from the local-global similarity

measure to enhance the matching accuracy for very large
displacements. Finally, we adopt an iterative reweightedmini-
mization scheme to solve our proposedmodel. All numerical
experiments demonstrate the efficiency and stability of our
proposed model.

The remainder of the paper is organized as follows:
in Section 2, we give some preliminaries. In Section 3, we
propose our model and algorithm for image registration. In
Section 4, we show experimental results on both synthetic
images and real images. We also compare our method with
some closely related methods. Finally, we give concluding
remarks in Section 5.

2. Preliminaries

A general framework for nonrigid image registration can be
formulated in the following. We assume that Ω ⊂ R2 is
a bounded domain with Lipschitz boundary and satisfying
the cone condition. Let us denote the reference image by
𝑅 : Ω → R and the template image by 𝑇 : Ω → R. In
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Figure 4: Comparisons of the correlation coefficient corr(𝑇(u+ x), 𝑅(x)) and the sum of squared difference SSD(𝑇(u+ x), 𝑅(x)) for different
models in Test 1.

nonrigid image registration, the deformation field is usually
described by displacement field u : Ω → Ω denoted by

u : x → u (x) = (𝑢1 (x) , 𝑢2 (x))
𝑇
. (1)

The problem is seeking for an deformation field u such that
the transformed template image is optimally correlated with
the reference image 𝑅(x); that is,

𝑇 (x + u (x)) ≈ 𝑅 (x) , x ∈ Ω. (2)

Meanwhile, in order to avoid the ill conditioned problem
[25] in the sense of Hadamard, it is necessary to impose
an appropriate regularizer, which will penalize the unstable
andnonsmooth solutions. In variationalmethods, the general
model for nonrigid image registration is formulated as the
following minimization problem:

minu {E (u) =F (u) + 𝜆R (u)} , (3)

where F(u) is the similarity measure between the trans-
formed image and the reference image, R(u) is the regular-
ization term, and 𝜆 > 0 is a weight parameter to balance the
influence ofF(u) andR(u).

In the existing works related to image registration in
Section 1, the frequently used similarity measure is SSD
measure [4]

F
SSD

(u) = 1
2
∫

Ω

(𝑇 (x +u (x)) − 𝑅 (x))2 𝑑x. (4)

Meawhile, the widely used regularization term is quadratic 𝐿2
regularization term [17, 18]

R (u) =
𝑑

∑

𝑖=1
∫

Ω





∇𝑢𝑖






2
𝑑x (5)

and TV regularization term [19]

R (u) =
𝑑

∑

𝑖=1
∫

Ω





∇𝑢𝑖





𝑑x. (6)

In image restoration problems, the following fourth-order
regularization term is introduced:

R (u) =
𝑑

∑

𝑖=1
∫

Ω






∇
2
𝑢𝑖






𝑑x. (7)

3. The Proposed Model and Algorithm

We assume that the deformation field, which transform the
template image 𝑇 to the reference image 𝑅, is decomposed
into two parts u = u1 +u2, where u1 is the piecewise constant
part and u2 is the smooth part. We denote

u𝑖 (x) = (𝑢𝑖1 (x) , 𝑢𝑖2 (x))
𝑇
, 𝑖 = 1, 2. (8)

Firstly, we present the local-global similarity measure
based on the bilateral filter [26]:

F𝜔 (u) = ∫
Ω

𝜔 ∘ [𝑇 (x + u1 + u2) − 𝑅 (x)]
2
𝑑x. (9)

Here, 𝜔 denotes the bilateral filter operator. Recall that the
bilateral weight of function 𝑇(p) is defined as

𝑊p,q

=

1
𝑍p

exp(−‖p − q‖
2𝜎2𝑠

) exp(−|𝑇 (p) − 𝑇 (q)|
2𝜎2𝑟

) ,

(10)
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Figure 5: The residues |𝑇(x + u) − 𝑅(x)| after deformation using different methods in Test 1.

where 𝜎𝑠 and 𝜎𝑟 are the spatial and range (intensity) devia-
tions and 𝑍p is a normalizing parameter to ensure that

∑

q∈Np

𝑊p,q = 1 (11)

in the neighborhood N(p) of p. The output of the bilateral
filter is then given by

𝜔 ∘𝑇 (p) = ∑

q∈Np

𝑊p,q𝑇 (q) . (12)

Remark that the local-global similarity measure (9) is a
generalization of SSD measure. Since the bilateral weight

depends not only on spatial distance but also on the intensity
difference, the local-global similarity measure can improve
thematching accuracy and robustness for very large displace-
ment [26].

Secondly, we construct the regularization term. As afore-
mentioned in the introduction, TV regularization is good
for piecewise constant part and fourth-order regularization
is good for smooth part. Hence, it is natural to propose the
combined regularization term

R1 (u) = 𝜇
2
∑

𝑗=1
∫

Ω






∇𝑢1𝑗






𝑑x + 𝜏

2
∑

𝑗=1
∫

Ω






∇
2
𝑢2𝑗





𝑑x, (13)
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(a) Template image 𝑇 (b) Reference image 𝑅 (c) 𝑇(x + u) (TV)

(d) 𝑇(x + u) (𝐿2) (e) 𝑇(x + u) (fourth-order) (f) 𝑇(x + u) (our model)

Figure 6: Test 2: Registered images for “circle to ellipse” (the smooth registration problem) shown in (a) 𝑇 and (b) 𝑅 of size 100 × 100. (c)
TV-diffusion model, (d) 𝐿2-diffusion model, (e) Fourth-order-diffusionmodel, (f) Our model. Parameters: 𝛼 = 100, 𝛽 = 10, 𝜇 = 100, 𝜏 = 10,
𝜆 = 100, and 𝜃 = 0.01.

where 𝜇, 𝜏 are positive balance parameters. To enhance
numerical stability, we add L2-norm regularization of u1 and
u2, that is,

R2 (u) =
𝛼

2

2
∑

𝑗=1
∫

Ω

𝑢
2
1𝑗𝑑x +

𝛽

2

2
∑

𝑗=1
∫

Ω

𝑢
2
2𝑗𝑑x, (14)

where 𝛼, 𝛽 are positive balance parameters.
Combining (9), (13), and (14), the proposed model is

formulated as

minu1,u2
{E (u1, u2) =F𝜔 (u) +R1 (u) +R2 (u)} . (15)

Generally, variational formulation would be used for
this minimization problem directly. However, it is a chal-
lenging task for the nonlinear term in (15). Motivated by
the technique in [27], we introduce an additional variable
k = (V1, . . . , V2) and consider the following minimization
problem:

minu1 ,u2,k
{F𝜔 (k) +R1 (u) +R2 (u)

+

1
2𝜃
∫

Ω

[u1 (x) + u2 (x) − k (x)]
2
𝑑x} ,

(16)

where the penalizing parameter 𝜃 is very small such that
u1(x) + u2(x) ≈ k(x). To solve the optimization problem (16),

we propose an iterative algorithm by alternating minimiza-
tion method.

k-Subproblem. Fixing u1, u2 and denoting u = u1 +

u2, the subproblem for k can be written as the following
minimization problem:

min
k
{E11 (k) =F𝜔 (k) +

1
2𝜃
∫

Ω

[u (x) − k (x)]2 𝑑x} . (17)

Define 𝑟(k) := 𝑇(x + k(x)) − 𝑅(x). Then, we can rewrite

F𝜔 (k) = ∫
Ω

𝜔 ∘ [𝑟 (V)]2 𝑑x. (18)

Sinceu(x) is approximate to k(x), we can utilize the first-order
Taylor approximation to linearize 𝑟(k) near u(x); that is,

𝑟 (k) = 𝑟 (u) + ⟨k −u, ∇𝑇 (x + u)⟩ . (19)

A point-wise minimization is employed for problem (17).
Taking the first-order derivative of E11 with respect to k and
setting it to zero, we get

𝜔 ∘ (2𝑟 (k) ∇𝑇 (x + u (x))) + 1
𝜃

(k (x) − u (x)) = 0. (20)

Using the definition of 𝑟(k), by direct computation, we get
that (20) is equivalent to the following linear system:

(

1 + 2𝜃𝜔 (𝑇2
𝑥 (x + u)) 2𝜃𝜔 (𝑇𝑥 (x + u) 𝑇𝑦 (x + u))

2𝜃𝜔 (𝑇𝑦 (x + u) 𝑇𝑥 (x + u)) 1 + 2𝜃𝜔 (𝑇2
𝑦 (x + u))

)(

V1
V2
)

= (

𝑢1 − 2𝜃𝜔 (𝑇𝑥 (x + u) 𝑟0)

𝑢2 − 2𝜃𝜔 (𝑇𝑦 (x + u) 𝑟0)
) ,

(21)
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Figure 7: The transformation presentations for different methods in Test 2.

where u = (𝑢1, 𝑢2)𝑇, k = (V1, V2)𝑇, and 𝑟0 = 𝑇(x + u) − 𝑅(x) −
⟨u, ∇𝑇(x + u)⟩. Since the determinant of the left-hand side
matrix in (21) is always nonzero, this linear system can be
solved efficiently.

u1-Subproblem. Fixing k and u2, the subproblem for u1 is

minu1

{

{

{

E12 (u1) = 𝜇
2
∑

𝑗=1
∫

Ω






∇𝑢1𝑗






𝑑x + 𝛼

2

2
∑

𝑗=1
∫

Ω

𝑢
2
1𝑗𝑑x

+

1
2𝜃
∫

Ω

[u1 (x) + u2 (x) − k (x)]
2
𝑑x
}

}

}

.

(22)

For the anisotropic total variation term, many efforts have
devoted to obtain fast numerical schemes and overcome the
nondifferentiability of the term. In this paper, we apply the

efficient split Bregman algorithm [28] for each 𝑑 = 1, 2 in the
following:

Initialize: 𝑢01𝑑 = V𝑑 − 𝑢2𝑑, here 𝑑
0
𝑥 = 𝑑

0
𝑦 = 𝑏

0
𝑥 = 𝑏

0
𝑦 = 0;

While ‖𝑢𝑘1𝑑 − 𝑢
𝑘+1
1𝑑 ‖2 > threshold

𝑢
𝑘+1
1𝑑 = 𝐺

𝑘
;

𝑑
𝑘+1
𝑥 = shrink (∇𝑥𝑢

𝑘+1
1𝑑 + 𝑏

𝑘

𝑥 ,
𝜇

𝜆

) ;

𝑑
𝑘+1
𝑦 = shrink (∇𝑦𝑢

𝑘+1
1𝑑 + 𝑏

𝑘

𝑦 ,
𝜇

𝜆

) ;

𝑏
𝑘+1
𝑥 = 𝑏

𝑘

𝑥 +∇𝑥𝑢
𝑘+1
1𝑑 −𝑑

𝑘+1
𝑥 ;

𝑏
𝑘+1
𝑦 = 𝑏

𝑘

𝑦 +∇𝑦𝑢
𝑘+1
1𝑑 −𝑑

𝑘+1
𝑦 ;

(23)

end
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Figure 8: The residues |𝑇(x + u) − 𝑅(x)| after deformation using different methods in Test 2.

where

𝐺
𝑘
(𝑖, 𝑗) =

𝜃𝜆𝜇

1 + 𝛼𝜃 + 4𝜆𝜇𝜃
[𝑢
𝑘

1𝑑,𝑖+1,𝑗 +𝑢
𝑘

1𝑑,𝑖−1,𝑗

+𝑢
𝑘

1𝑑,𝑖,𝑗+1 +𝑢
𝑘

1𝑑,𝑖,𝑗−1 +𝑑
𝑘

1,𝑖−1,𝑗 −𝑑
𝑘

1,𝑖,𝑗 +𝑑
𝑘

2,𝑖,𝑗−1

−𝑑
𝑘

2,𝑖,𝑗 − 𝑏
𝑘

1,𝑖−1,𝑗 + 𝑏
𝑘

1,𝑖,𝑗 − 𝑏
𝑘

2,𝑖,𝑗−1 + 𝑏
𝑘

2,𝑖,𝑗]

+

1
1 + 𝜃𝛼 + 4𝜆

(V𝑑,𝑖,𝑗 −𝑢2𝑑,𝑖,𝑗) .

(24)

And 𝜆 > 0 is the parameter introduced by split Bregman
method. In our numerical experiments, the fast Fourier

transform (FFT) is used to solve 𝑢1𝑑 efficiently under the
periodic boundary condition.

u2-Subproblem. Fixing k and u1, the subproblem for u2 is

minu2

{

{

{

E13 (u2) = 𝜏
2
∑

𝑗=1
∫

Ω






∇
2
𝑢2𝑗





𝑑x + 𝛽

2

2
∑

𝑗=1
∫

Ω

𝑢
2
2𝑗𝑑x

+

1
2𝜃
∫

Ω

[u1 (x) +u2 (x) − k (x)]
2
𝑑x
}

}

}

.

(25)
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Figure 9: Test 3: Test on affine-linear transformations problem. (a) and (b) are a pair of images to be registered, size 414 × 414. (c)–(f) are the
registered results of different methods. Parameters: 𝛼 = 50, 𝛽 = 50, 𝜇 = 1, 𝜏 = 10, 𝜆 = 1, and 𝜃 = 0.1.

This minimization problem is similar to LLT model [21] in
image denoising. For LLTmodel, Chambolle’s dual algorithm
for TV denoising [29] is generalized to get an efficient
algorithm [22] for the corresponding fourth-order PDE. It
overcomes the numerical difficulties related to the nondif-
ferentiability of the first regularization term. Using the same
technique as in the derivation of dual algorithm of LLT
model, we can easily get the dual algorithm for problem
(25). The details of the numerical algorithm are given in the
following:

Initialize: time step size 𝑡 ∈ (0, 1/64], space step ∇𝑥 =
1, ∇𝑦 = 1,

𝑝
0
= (

𝑝
11
𝑝
12

𝑝
21
𝑝
22) = 0. (26)

For 𝑛 = 0, 1, 2, . . ., do

Step 1. Find 𝐴𝑛𝑖,𝑗 from

𝐴
𝑛

𝑖,𝑗 = (

𝐷𝑥𝑥 (div
2
𝑝
𝑛
𝑖,𝑗 −

1
𝜇𝜏𝜃

(V𝑑,𝑖,𝑗 − 𝑢1𝑑,𝑖,𝑗)) 𝐷
+
𝑥𝑦 (div

2
𝑝
𝑛
𝑖,𝑗 −

1
𝜇𝜏𝜃

(V𝑑,𝑖,𝑗 − 𝑢1𝑑,𝑖,𝑗))

𝐷
−
𝑦𝑥 (div

2
𝑝
𝑛
𝑖,𝑗 −

1
𝜇𝜏𝜃

(V𝑑,𝑖,𝑗 − 𝑢1𝑑,𝑖,𝑗)) 𝐷𝑦𝑦 (div
2
𝑝
𝑛
𝑖,𝑗 −

1
𝜇𝜏𝜃

(V𝑑,𝑖,𝑗 − 𝑢1𝑑,𝑖,𝑗))
) , (27)

where div2𝑝𝑛𝑖,𝑗 = 𝐷𝑥𝑥𝑝
11
𝑖,𝑗 +𝐷

+
𝑥𝑦𝑝

21
𝑖,𝑗 +𝐷

−
𝑦𝑥𝑝

12
𝑖,𝑗 +𝐷𝑦𝑦𝑝

22
𝑖,𝑗 .

Step 2. Find 𝑝𝑛𝑖,𝑗 from

𝑝
𝑛+1
𝑖,𝑗 =

𝑝
𝑛
𝑖,𝑗 − 𝑡𝐴

𝑛
𝑖,𝑗

1 + 𝑡 

𝐴
𝑛
𝑖,𝑗







. (28)

Step 3. Test convergence. If it is convergent, then go to
Step 4, otherwise go to Step 1.
Step 4. Find 𝑢2𝑑 from

𝑢2𝑑,𝑖,𝑗 = (V𝑑,𝑖,𝑗 −𝑢𝑖𝑑,𝑖,𝑗) − 𝜏𝜇𝜃div
2
𝑝
𝑛+1
𝑖,𝑗 . (29)

End
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Figure 10: The transformation presentations for different methods in Test 3.

Table 1: Discretization used in the implementation.

Derivative Finite difference scheme

𝐷
±
𝑥(𝑢𝑖,𝑗) ±

1
Δ𝑥

[𝑢𝑖±1,𝑗 − 𝑢𝑖,𝑗]

𝐷
±
𝑦(𝑢𝑖,𝑗) ±

1
Δ𝑦

[𝑢𝑖,𝑗±1 − 𝑢𝑖,𝑗]

𝐷𝑥𝑥(𝑢𝑖,𝑗)
1
Δ𝑥

[𝐷
+
𝑥 (𝑢𝑖,𝑗) − 𝐷

+
𝑥 (𝑢𝑖−1,𝑗)]

𝐷
±
𝑥𝑦(𝑢𝑖,𝑗) ±

1
Δ𝑦

[𝐷
±
𝑥 (𝑢𝑖,𝑗±1) − 𝐷

±
𝑥 (𝑢𝑖,𝑗)]

𝐷
±
𝑦𝑥(𝑢𝑖,𝑗) ±

1
Δ𝑥

[𝐷
±
𝑦 (𝑢𝑖±1,𝑗) − 𝐷

±
𝑦 (𝑢𝑖,𝑗)]

𝐷𝑦𝑦(𝑢𝑖,𝑗)
1
Δ𝑦

[𝐷
+
𝑦 (𝑢𝑖,𝑗) − 𝐷

+
𝑦 (𝑢𝑖,𝑗−1)]

Here, the first-order and second-order difference operators
are defined in Table 1. Note that the computation of each
component can be carried out parallelly in each iteration.

Finally, a coarse-to-fine multiresolution approach [30] is
used to improve the performance for large deformation in our
algorithm.The deformation field u1, u2, and k are propagated
from the low resolution image derived from the original
image to the next higher resolution. Then, our algorithm is
summarized in Algorithm 1.

4. Numerical Experiments

In this section, we present experimental results of ourmethod
and compare them with some closely related variational
methods.

For quantitative comparison, we compute the pixel-wise
root mean square error (RMSE), the correlation coefficient
(CC), and the mutual information (MI) between two images
𝑇(x) and 𝑆(x). The definitions of RMSE, CC, and MI are as
follows.

(i) RMSE: RMSE(𝑇(x), 𝑆(x)) = √∑((𝑇(x) − 𝑆(x))2/𝑛),
where 𝑛 is the size of 𝑇(x).
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(1) Set up pyramids 𝑇(x), 𝑅(x), and their derivatives at each layer.
(2) (a) If at the coarsest layer, initialize: u0

1 = u0
2 = 0.

(a) If not (a), upsample u1 and u2 from the previous layer to the current layer.
Warp 𝑅, 𝑇, 𝑇𝑥, 𝑇𝑦 using bilinear interpolation.
For 𝑘 = 0, 1, . . .

k𝑘+1 = argmin
v
𝜀11 (k, u1

𝑘
,u2
𝑘
) (see (17))

u1
𝑘+1

= argminu1
𝜀12 (k

𝑘+1
, u2
𝑘
, u1) (see (22))

u2
𝑘+1

= argminu2
𝜀13 (k

𝑘+1
, u2,u1

𝑘+1
) (see (25))

end, go to the finer layer.
end of the finest layer.

Algorithm 1: The proposed algorithm.
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Figure 11: The residues |𝑇(x + u) − 𝑅(x)| after deformation using different methods for the affine-linear transformation problem in Test 3.
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(a) Template image 𝑇 (b) Reference image 𝑅 (c) 𝑇(x + u) (TV)

(d) 𝑇(x + u) (𝐿2) (e) 𝑇(x + u) (fourth-order) (f) 𝑇(x + u) (our model)

Figure 12: Test 4: test on the real clinic images. (a) and (b) are a pair of images to be registered, size 320 × 317. (c)–(f) are the registered results
of different methods. Parameters: 𝛼 = 100, 𝛽 = 10, 𝜇 = 100, 𝜏 = 10, 𝜆 = 100, and 𝜃 = 0.1.

(ii) CC: corr(𝑇(x), 𝑆(x)) = cov(𝑇, 𝑆)/𝜎𝑆𝜎𝑇, where cov
is the covariance and 𝜎𝑇 and 𝜎𝑆 are the standard
deviation of 𝑇(x) and 𝑆(x), respectively.

(iii) MI: MI(𝑇(x), 𝑆(x)) = 𝐻(𝑇) + 𝐻(𝑆) − 𝐻(𝑇, 𝑆),
where𝐻(𝑇) and𝐻(𝑆) are the marginal entropies and
𝐻(𝑇, 𝑆) is the joint entropy of 𝑇(x) and 𝑆(x).

There are several regularization parameters 𝛼, 𝛽, 𝜇,
and 𝜏 in our model (15). The regularization parameters 𝛼
and 𝛽 in the 𝐿2-norm regularization term (14) affect the
stability of the proposed algorithm. Larger parameters 𝛼,
𝛽 ensure more stability of the algorithm. However, larger
parameters lead to slower convergence, as shown in Figures
1(a)-1(b) (which corresponds to Test 3 in Section 4.3). The
regularization parameters 𝜇, 𝜏 control the smoothness of the
estimated deformation field. By increasing 𝜇 or 𝜏, smoother
deformation field can be obtained. Parameters 𝜇 and 𝜏 are
ranging from 0 to 103 in this paper. The parameter 𝜆 in
solving u1 is tuned in each experiment to obtain optimal
result. Theoretically the penalizing parameter 𝜃 should be
selected to be as small as possible. However, as shown in
our experiments, 𝜃 in the range [1/1000 1/10] is good for the
registration problems.

To verify the robustness and accuracy of our method,
a series of experiments are presented. Moreover, we also

implement the registration models with SSDmeasure fidelity
term and three kinds of regularization for comparison.
The regularization method includes TV regularization (6),
𝐿
2 regularization (5) and fourth-order regularization (7).

The three methods are abbreviated as TV, 𝐿2 and fourth-
order, respectively, where the TV-diffusionmodel was solved
efficiently using the Bregman split method and the fourth-
order diffusion model was solved using the Chambolle’s dual
algorithm. Note that all the involved parameters of the above
three methods are tuned for each experiment to get optimal
result.

All the experiments are performed underWindows 7 and
MATLAB R2013a with Intel Core i3-4130 CPU@3.40GHz
and 8GB memory. The programming language is MATLAB.

4.1. Test 1. We first consider matching a pair of 2D synthetic
images shown in Figures 2(a) and 2(b) for “sliding rectan-
gular,” which are almost piecewise constant. The registration
results and the transformation of coordinate grid by the four
methods are displayed in Figures 2(c)–2(f) and 3(a)–3(d),
respectively.

In this experiment, the correlation coefficient between
the template image 𝑇(x) and the reference image 𝑅(x) before
registered is corr(𝑇(x), 𝑅(x)) = 0.8.
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Figure 13: The residues |𝑇(x + u) − 𝑅(x)| after deformation using different methods with the clinic images.

It is obvious that all the four methods are effective
in this test. The correlation coefficients and the sum of
squared differences between the reference image𝑅(x) and the
deformed images𝑇(x+u) from fourmodels are all close to the
best results after 200 iterations, which are shown in Figures
4(a)-4(b). Meanwhile, from the dissimilarity between 𝑅(x)
and 𝑇(x + u) shown in Figures 5(a)–5(d), we can see that
the TV-diffusion model and our model are more accurate for
discontinuities, while the 𝐿2-diffusion model and the fourth-
order model yield oversmooth on the edge of the object.
Furthermore, in order to get a comprehensive evaluation
for comparison, the RMSE values and MI values for all the
registration results with the four registration methods are
reported in Table 2. From the measures, we find that our
method achieves the best performance among all.

4.2. Test 2. In Test 2, a smooth registration problem “circle
to ellipse” is considered, where the source images are shown
in Figures 6(a)-6(b). The results and the deformation fields
by the four models are displayed in Figures 6(c)–6(f) and
7(a)–7(d), respectively. Carefully comparing Figures 8(a)–
8(d), we notice that the result of TV model is poor for
the smooth deformation field, and our model performs well
on smooth deformations. Furthermore, the performance
measures RMSE and MI are reported in Table 2. Again we
find that our method is the best.

4.3. Test 3. In the third experiment, we apply our model
on affine-linear transformation problem Figures 9(a)-9(b).
Although the regularization method is widely used for
nonrigid models, it is not usually used in affine-linear
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Table 2: Summary of RMSE, mean, and MI. The images are rescaled to [0, 1].

Image pairs Method RMSE (10−4) Mean (10−4) IM

Test 1: sliding rectangular

TV 380.0 72 1.1615
𝐿
2 274.1 36 1.1610

Fourth-order 343.2 26 1.1358
Proposed 248 24 1.1620

Test 2: circle to ellipse

TV 708 111 0.7040
𝐿
2 607 105 0.7701

Fourth-order 794 148 0.6815
Proposed 440 83 0.8164

(a) TV (b) 𝐿2

(c) Fourth-order (d) Our model

Figure 14: The enlarged portions of the deformed images 𝑇(x + u) by different methods with the clinic images.

transformation problem. For the affine-line displacement, it
is difficult to be penalized in the interior of the image domain
[31]. Experiment results show that our method performs
better than the other three methods, see Figures 9(c)–9(f),
10(a)–10(d), and 11(a)–11(d).

4.4. Test 4. Finally, We consider a pair of 2D clinic images
of dimension 320 × 317 that focuses on lung area, shown in
Figures 12(a)-12(b). The registered images obtained from the

different methods shown in Figures 12(c)–12(f) are almost
identical. Comparing the dissimilarity between the deformed
images 𝑇(x + u) and the reference image 𝑅(x), we find
that our method is more robust than the other methods. It
is obvious that in Figure 13(a) much information is lost in
smooth region. Meanwhile, Figure 13(c) fails to preserve the
edge of object.

In Figures 14(a)–14(d), we display the enlarged portions
of the deformed images 𝑇(x + u) from the four methods
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for detail comparison. Obviously, staircase effect occurs
in Figure 14(a). The deformed images by our method in
Figure 14(d) is the most close to the reference image in
Figure 12(b).

By the above four experiments, it can be seen that our
method is effective not only for smooth data but also nons-
mooth data. It takes the advantage of both total variational
regularization and fourth-order regularization method while
overcomes their demerits.

5. Conclusion

In this work, we have proposed a novel variational approach
for nonrigid image registration by employing a local-global
similarity measure and a combinational regularizer. We have
assumed that the deformation field can be decomposed into
a piecewise constant component and a smooth component.
Then, by taking use the advantages of the total variational dif-
fusion and the fourth-order diffusion, each component was
described appropriately. A combination of LK method, the
split Bregman algorithm and the dual algorithm was intro-
duced to get an efficient algorithm. The proposed method
has provided satisfactory results for matching both non-
smooth and smooth structures in nonrigid image registration
problem.

In the future work, we will study the automatical choice
of parameters in our model and extend the proposedmethod
for multimodality image registration.
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