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Triple-porosity model is usually adopted to describe reservoirs with multiscaled pore spaces, including matrix pores, natural
fractures, and vugs. Multiple fractures created by hydraulic fracturing can effectively improve the connectivity between existing
natural fractures and thus increase well deliverability. However, little work has been done on pressure transient behavior of
multistage fractured horizontal wells in triple-porosity reservoirs. Based on source/sink function method, this paper presents a
triple-porosity model to investigate the transient pressure dynamics and flux distribution for multistage fractured horizontal wells
in fractured-vuggy reservoirs with consideration of stress-dependent natural fracture permeability. The model is semianalytically
solved by discretizing hydraulic fractures and Pedrosa’s transformation, perturbation theory, and integration transformation
method. Type curves of transient pressure dynamics are generated, and flux distribution among hydraulic fractures for a fractured
horizontal well with constant production rate is also discussed. Parametric study shows that major influential parameters on
transient pressure responses are parameters pertinent to reservoir properties, interporosity mass transfer, and hydraulic fractures.
Analysis of flux distribution indicates that flux density gradually increases from the horizontal wellbore to fracture tips, and the flux
contribution of outermost fractures is higher than that of inner fractures. The model can also be extended to optimize hydraulic
fracture parameters.

1. Introduction

The concept of dual-porosity media was first proposed by
Barenblatt et al. [1] to describe naturally fractured media.
Warren and Root [2] then extended this model to analyze
pressure transient dynamics for vertical wells in naturally
fractured oil reservoirs. Recently, Cai et al. [3, 4] analyzed
the imbibition mechanism in fractured-porous media based
on fractal geometry. Although the dual-porosity model can
describe most naturally fractured reservoirs, there are still
some drawbacks when applying the dual-porosity model
to describe reservoirs with multiple pore media, such as

reservoirs with natural fractures and vugs (different from
matrix pores).

In order to better describe reservoir heterogeneity in this
type of naturally fractured-vuggy reservoirs, the concept of
triple-porosity model was proposed. The first triple-porosity
model in the literature was proposed by Abadassah and
Ershaghi [5], in which the reservoir was represented by a
combination of two matrix systems with different properties
and uniformly distributed natural fractures. The model was
then further extended by Al-Ghamdi and Ershaghi [6] to
represent reservoirs with two fracture systems (microfrac-
tures and macrofractures) and one matrix system. After that,
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Figure 1: Schematic of a multistage fractured horizontal well in a
triple-porosity reservoir.

over the past several decades, numerous efforts have been
made to investigate transient pressure behavior in so-called
triple-porosity reservoirs. However, almost all the research
focuses on vertical wells [7–19] or horizontal wells [20–22]
in triple-porosity reservoirs, and few studies have been done
on complex well-reservoir configuration, such as multistage
fractured horizontal well in triple-porosity reservoirs.

Field practices have proven that horizontal wellbore
combining multistage hydraulic fracturing can effectively
enhance the permeability in the vicinity of horizontal well-
bore. Almost all the triple-porosity models [23, 24] for
fractured horizontal wells assume linear flow, which cannot
completely characterize the pressure responses during all
flowing periods (such as pseudoradial flow period). On the
other hand, in most existing models for fractured horizontal
wells in triple-porosity reservoirs three porous media denote
hydraulic fractures, natural fractures, and matrix pores,
which means the reservoir itself is actually considered as a
dual-porosity medium.

This study develops a semianalytical model based on
source/sink function theory for analyzing transient pressure
responses and flux distribution of naturally fractured-vuggy
reservoirs, in which the reservoir itself is conceptualized as
triple-porosity media and the interaction between hydraulic
fractures and reservoir is considered. The model presented
here can completely reflect transient pressure characteristics
during all the possible flowing period as well as flux dis-
tribution among multiple fractures. In addition, this model
also takes into account the stress-sensitivity of permeability
caused by closure of natural fractures during production.

2. Physical Model of a Multistage
Fractured Horizontal Well in
a Triple-Porosity Reservoir

As shown in Figure 1, a horizontal well with multiple hydra-
ulic fractures, producing at a constant rate (𝑞) in a reservoir
with multiscale storage spaces, is considered here. Both the
cap rock and underlying rock formation of the reservoir are
usually shales with extremely low permeability, which can be
conceived as no-flow boundaries.The reservoir thickness and
oil viscosity are assumed to be ℎ and 𝜇, separately. Other basic
assumptions involved in the derivation of the triple-porosity
model are as follows:

(1) The reservoir is assumed to be composed of three con-
tiguous porous media, which are matrix, natural
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Figure 2: Illustration of fluid flowing paths in a triple-porosity res-
ervoir.

fractures, and vugs (representing larger voids in the
reservoir which are not part of natural fractures).

(2) Natural fractures are assumed to be directly con-
nected to hydraulic fractures or the horizontal well-
bore, while the fluid stored in matrix pores or vugs
does not have direct access to hydraulic fractures or
the horizontal wellbore. Figure 2 presents a simple
illustration of the fluid flowing path in triple-porosity
reservoirs.

(3) The permeability of natural fractures is considered
stress-sensitive to incorporate the effect of partial or
complete closure of natural fractures during produc-
tion.

(4) Both oil and rock are considered slightly compress-
ible, and the reservoir has uniform pressure distribu-
tion at time zero.

(5) Consider single-phase isothermal flow and negligible
gravity and capillary effects.

To obtain the pressure responses caused by the well-
reservoir configuration shown in Figure 1, a mathematical
model together with corresponding boundary and initial
conditions is required. In the problem addressed here, the
multiple fractures inner boundary condition is so complex
that it is rather difficult to directly describe it with a math-
ematical equation. In order to solve this problem, source
function theory, a powerful tool to solve complex transient
flow problems in reservoirs, is adopted in this work. We
first studied the transient pressure responses caused by a
continuous line-sink in triple-porosity reservoirs and then
adopted the line-sink solutionwith superposition principle to
obtain the pressure transient dynamics and flux distribution
of multistage fractured horizontal wells in triple-porosity
reservoirs.

3. Line-Sink Model in Stress-Sensitive
Triple-Porosity Reservoirs

3.1. Physical Model for a Line-Sink in Triple-Porosity Reser-
voirs. As shown in Figure 3, a continuous line-sink in a
triple-porosity reservoir with stress-dependent fracture per-
meability is considered in this section. The strength of the
line-sink is represented by 𝑞(𝑡).
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Figure 3: A line-sink in a stress-sensitive triple-porosity reservoir.

3.2. Mathematical Model for a Line-Sink in
Triple-Porosity Reservoirs

(1) Governing Equations. Imposing mass-balance equation
over a control volume in the triple-porosity reservoir and
substituting equation of state and equation of motion, we can
get the governing equations for matrix, natural fracture, and
vug systems.

For natural fracture systemwith stress-dependent perme-
ability, the governing equation is as follows (i.e., (A.26b) in
Appendix A):

𝜕
2
𝑝f

𝜕𝑟2
+
1
𝑟

𝜕𝑝f
𝜕𝑟

+ 𝛾(
𝜕𝑝f
𝜕𝑟

)

2
= e−𝛾(𝑝f−𝑝i) [

𝜙f0𝜇𝐶f t
𝑘fi

𝜕𝑝f
𝜕𝑡

+
𝜙m0𝜇𝐶mt

𝑘fi

𝜕𝑝m
𝜕𝑡

+
𝜙v0𝜇𝐶vt

𝑘fi

𝜕𝑝v
𝜕𝑡

] .

(1)

For matrix system, the governing equation is as follows
(i.e., (A.30) in Appendix A):

𝜙m0𝐶mt
𝜕𝑝m
𝜕𝑡

+
𝛼1𝑘m
𝜇

(𝑝m −𝑝f) = 0. (2)

For vug system, the governing equation is as follows (i.e.,
(A.34) in Appendix A):

𝜙v0𝐶vt
𝜕𝑝v
𝜕𝑡

+
𝛼2𝑘v
𝜇

(𝑝v −𝑝f) = 0. (3)

(2) Boundary Conditions. According to the derivation in
Appendix B, the inner boundary condition of the line-sink
model is (i.e., (B.5) in Appendix B)

lim
𝜀→ 0

e−𝛾(𝑝i−𝑝f ) (𝑟
𝜕𝑝f
𝜕𝑟

)

𝑟=𝜀

=
𝑞 (𝑡) 𝜇𝐵

2𝜋𝑘fiℎ
. (4)

Assuming infinitely large reservoirs, the outer boundary
condition can be expressed as

𝑝f (𝑟, 𝑡)
𝑟→∞ = 𝑝i. (5)

(3) Initial Condition. The initial pressure distribution in the
reservoir is assumed to be uniform, which is

𝑝f (𝑟, 𝑡)
𝑡=0 = 𝑝m (𝑟, 𝑡)

𝑡=0 = 𝑝v (𝑟, 𝑡)
𝑡=0 = 𝑝i. (6)

3.3. Dimensionless Form of the Line-Sink Model. For the
purpose of simplifying derivation and comparing between
different reservoirs, the mathematical model is derived and
solved in dimensionless form in this work.Thepressure drops

involved in themathematical model areΔ𝑝f = 𝑝i−𝑝f ,Δ𝑝m =

𝑝i − 𝑝m, and Δ𝑝v = 𝑝i − 𝑝v, and relevant dimensionless vari-
ables used in the mathematical model are listed in Table 1.

Obviously, 𝜔f , 𝜔m, and 𝜔v in Table 1 satisfy the following
equation:

𝜔f +𝜔m +𝜔v = 1. (7)

With the definitions in Table 1, the dimensionless forms
of (1)∼(6) can be obtained as follows:

𝜕
2
𝑝fD

𝜕𝑟D
2 +

1
𝑟D

𝜕𝑝fD
𝜕𝑟D

− 𝛾D (
𝜕𝑝fD
𝜕𝑟D

)

2

= e𝛾D𝑝fD [𝜔f
𝜕𝑝fD
𝜕𝑡D

+𝜔m
𝜕𝑝mD
𝜕𝑡D

+𝜔v
𝜕𝑝vD
𝜕𝑡D

] ,

(8)

𝜔m
𝜕𝑝mD
𝜕𝑡D

+𝜆mf (𝑝mD −𝑝fD) = 0, (9)

(1−𝜔f −𝜔m)
𝜕𝑝vD
𝜕𝑡D

+𝜆vf (𝑝vD −𝑝fD) = 0, (10)

lim
𝜀D→ 0

e−𝑝fD𝛾D 𝑟D
𝜕𝑝fD
𝜕𝑟D


𝑟D=𝜀D

= − 𝑞D, (11)

𝑝fD
𝑟D→∞

= 0, (12)

𝑝fD
𝑡D=0

= 𝑝mD
𝑡D=0

= 𝑝vD
𝑡D=0

= 0. (13)

3.4. Solution of the Dimensionless Line-Sink Model

3.4.1. Pedrosa’s Linearization. The stress-sensitivity of natu-
ral fracture permeability makes the above seepage model
strongly nonlinear which cannot be solved analytically. Here,
following Pedrosa Jr. [25], we introduced the following
equation to alleviate the nonlinearity of (8) and (11):

𝑝fD (𝑟D, 𝑡D) = −
1
𝛾D

ln [1− 𝛾D𝑈D (𝑟D, 𝑡D)] , (14)

where 𝑈D is an intermediate dimensionless parameter which
is also a function of radial distance and time.

With (14), (8)∼(13) become

𝜕
2
𝑈D

𝜕𝑟2D
+

1
𝑟D

𝜕𝑈D
𝜕𝑟D

=
1

1 − 𝛾D𝑈D
𝜔f

𝜕𝑈D
𝜕𝑡D

+𝜔m
𝜕𝑝mD
𝜕𝑡D

+𝜔v
𝜕𝑝vD
𝜕𝑡D

,

(15)

𝜔m
𝜕𝑝mD
𝜕𝑡D

+𝜆mf [𝑝mD +
1
𝛾D

ln (1− 𝛾D𝑈D)] = 0, (16)

(1−𝜔f −𝜔m)
𝜕𝑝vD
𝜕𝑡D

+𝜆vf [𝑝vD +
1
𝛾D

ln (1− 𝛾D𝑈D)]

= 0,
(17)
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Table 1: Definitions of dimensionless variables.

Dimensionless pressure 𝑝
𝑓𝐷

=
2𝜋𝑘
𝑓𝑖

ℎ

𝑞𝐵𝜇
Δ𝑝
𝑓

, 𝑝
𝑚𝐷

=
2𝜋𝑘
𝑓𝑖

ℎ

𝑞𝐵𝜇
Δ𝑝
𝑚

, 𝑝V𝐷 =
2𝜋𝑘
𝑓𝑖

ℎ

𝑞𝐵𝜇
Δ𝑝V

Dimensionless radial distance 𝑟
𝐷

=
𝑟

𝐿
, 𝜀
𝐷

=
𝜀

𝐿

Dimensionless time 𝑡
𝐷

=
𝑘
𝑓𝑖

𝑡

𝜇 (𝜙
𝑓0

𝐶
𝑓𝑡

+ 𝜙
𝑚0

𝐶
𝑚𝑡

+ 𝜙V0𝐶V𝑡) 𝐿
2

Dimensionless storativity ratio of natural fracture system 𝜔
𝑓

=
𝜙
𝑓0

𝐶
𝑓𝑡

(𝜙
𝑓0

𝐶
𝑓𝑡

+ 𝜙
𝑚0

𝐶
𝑚𝑡

+ 𝜙V0𝐶V𝑡)

Dimensionless storativity ratio of matrix system 𝜔
𝑚

=
𝜙
𝑚0

𝐶
𝑚𝑡

(𝜙
𝑓0

𝐶
𝑓𝑡

+ 𝜙
𝑚0

𝐶
𝑚𝑡

+ 𝜙V0𝐶V𝑡)

Dimensionless storativity ratio of vug system 𝜔V =
𝜙V0𝐶V𝑡

(𝜙
𝑓0

𝐶
𝑓𝑡

+ 𝜙
𝑚0

𝐶
𝑚𝑡

+ 𝜙V0𝐶V𝑡)

Dimensionless interporosity flow coefficient between matrix and
natural fractures

𝜆
𝑚𝑓

=
𝛼
𝑚𝑓

𝑘
𝑚

𝐿
2

𝑘
𝑓𝑖

Dimensionless interporosity flow coefficient between vugs and
natural fractures

𝜆V𝑓 =
𝛼V𝑓𝑘V𝐿

2

𝑘
𝑓𝑖

Dimensionless permeability modulus 𝛾
𝐷

=
𝑞𝐵𝜇

2𝜋𝑘
𝑓𝑖

ℎ
𝛾

Dimensionless production rate of the line-sink 𝑞
𝐷

= 𝑞
𝐷

(𝑡
𝐷

) =
𝑞 (𝑡)

𝑞

Note: 𝐿 is an arbitrary reference length which can be 𝑟w , 𝐿h, and so forth.

lim
𝜀D→ 0

𝑟D
𝜕𝑈D
𝜕𝑟D


𝑟D=𝜀D

= − 𝑞D, (18)

𝑈D
𝑟D→∞

= 0, (19)

𝑈D
𝑡D=0

= 𝑝mD
𝑡D=0

= 𝑝vD
𝑡D=0

= 0. (20)

3.4.2. Perturbation Technique. According to the perturbation
theory, the terms𝑈D, −(1/𝛾D)ln[1−𝛾D𝑈D(𝑟D, 𝑡D)], and 1/(1−
𝛾D𝑈D(𝑟D, 𝑡D)) in (15) through (20) can be expanded as power
series in dimensionless permeabilitymodulus, andwe can get
the following equations:

𝑈D = 𝑈D0 + 𝛾D𝑈D1 + 𝛾
2
D𝑈D2 + ⋅ ⋅ ⋅ ,

−
1
𝛾D

ln [1− 𝛾D𝑈D (𝑟D, 𝑡D)]

= 𝑈D (𝑟D, 𝑡D) +
1
2
𝛾D𝑈D

2
(𝑟D, 𝑡D) + ⋅ ⋅ ⋅ ,

1
1 − 𝛾D𝑈D (𝑟D, 𝑡D)

= 1+ 𝛾D𝑈D (𝑟D, 𝑡D) + 𝛾
2
D𝑈D (𝑟D, 𝑡D) + ⋅ ⋅ ⋅

(21)

Given that the dimensionless permeability modulus 𝛾D is
usually small (much smaller than 1), the zero-order approx-
imate solution can satisfy the requirements of engineering
precision, so (15)∼(20) become

𝜕
2
𝑈D0
𝜕𝑟2D

+
1
𝑟D

𝜕𝑈D0
𝜕𝑟D

= 𝜔f
𝜕𝑈D0
𝜕𝑡D

+𝜔m
𝜕𝑝mD
𝜕𝑡D

+𝜔v
𝜕𝑝vD
𝜕𝑡D

,

𝜔m
𝜕𝑝mD
𝜕𝑡D

+𝜆mf (𝑝mD −𝑈D0) = 0,

(1−𝜔f −𝜔m)
𝜕𝑝vD
𝜕𝑡D

+𝜆vf (𝑝vD −𝑈D0) = 0,

lim
𝜀D→ 0

𝑟D
𝜕𝑈D0
𝜕𝑟D


𝑟D=𝜀D

= − 𝑞D,

𝑈D0
𝑟D→∞

= 0,

𝑈D0
𝑡D=0

= 𝑝mD
𝑡D=0

= 𝑝vD
𝑡D=0

= 0.

(22)

Equation (22) is the linearized line-sink model in triple-
porosity reservoirs.

3.4.3. Laplace Transformation. Take the following Laplace
transformation:

𝑈D0 = ∫

+∞

0
𝑈D0e
−𝑢𝑡Dd𝑡D, (23)

where 𝑢 is the Laplace transformation variable.
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Then (22) becomes

d2𝑈D0
d𝑟2D

+
1
𝑟D

d𝑈D0
d𝑟D

= 𝜔f𝑢𝑈D0 +𝜔m𝑢𝑝mD +𝜔v𝑢𝑝vD, (24)

𝜔m𝑢𝑝mD +𝜆mf (𝑝mD −𝑈D0) = 0, (25)

𝜔v𝑢𝑝vD +𝜆vf (𝑝vD −𝑈D0) = 0, (26)

lim
𝜀D→ 0

𝑟D
d𝑈D0
d𝑟D

𝑟D=𝜀D

= − 𝑞D, (27)

𝑈D0
𝑟D→∞

= 0. (28)

3.4.4. Line-Sink Solution. Equations (25) and (26) can be
rewritten as

𝑝mD =
𝜆mf

𝜔m𝑢 + 𝜆mf
𝑈D0,

𝑝vD =
𝜆vf

𝜔v𝑢 + 𝜆vf
𝑈D0.

(29)

Substituting (29) into (24) yields

d2𝑈D0
d𝑟2D

+
1
𝑟D

d𝑈D0
d𝑟D

= (𝜔f +
𝜆mf

𝜔m𝑢 + 𝜆mf
𝜔m +

𝜆vf
𝜔v𝑢 + 𝜆vf

𝜔v)𝑢𝑈D0.

(30)

If we define

𝑔 (𝑢) = (𝜔f +
𝜆mf

𝜔m𝑢 + 𝜆mf
𝜔m +

𝜆vf
𝜔v𝑢 + 𝜆vf

𝜔v)𝑢, (31)

then (30) can be expressed as follows:

d2𝑈D0
d𝑟2D

+
1
𝑟D

d𝑈D0
d𝑟D

= 𝑔 (𝑢)𝑈D0. (32)

The general solution of (32) can be easily obtained as
follows:

𝑈D0 = 𝑐1𝐾0 (√𝑔 (𝑢)𝑟D)+ 𝑐2𝐼0 (√𝑔 (𝑢)𝑟D) , (33)

where 𝐾
0

and 𝐼
0

are Bessel functions and 𝑐
1

and 𝑐
2

are
unknown coefficients which can be determined by corre-
sponding boundary conditions.

If the line-sink is located at the origin of coordinates (cen-
ter of the triple-porosity reservoir), then the dimensionless
radial distance 𝑟D in (31) can be calculated by the following
equation:

𝑟D = √𝑥D
2 + 𝑦D

2. (34a)

If the line-sink is located at (𝑥w, 𝑦w) instead, then 𝑟D is
calculated by the following equation:

𝑟D = √(𝑥D − 𝑥wD)
2
+ (𝑦D − 𝑦wD)

2
, (34b)

where

𝑥D =
𝑥

𝐿
, (35)

𝑦D =
𝑦

𝐿
, (36)

𝑥wD =
𝑥w
𝐿

, (37)

𝑦wD =
𝑦w
𝐿

. (38)

Substitution of (33) into the inner boundary condition
(27) yields

lim
𝜀D→ 0

√𝑔 (𝑢)𝑟D

⋅ [−𝑐1𝐾1 (√𝑔 (𝑢)𝑟D)+ 𝑐2𝐼1 (√𝑔 (𝑢)𝑟D)]

𝑟D=𝜀D

= − 𝑞D.

(39)

According to the properties of Bessel’s function, which are
lim
𝑥→ 0𝑥𝐾1(𝑥) → 1 and lim

𝑥→ 0𝑥𝐼1(𝑥) → 0, (39) becomes

𝑐1 = 𝑞D. (40)

Similarly, with the outer boundary condition given in (28)
and the properties of Bessel’s function, lim

𝑥→∞

𝐾0(𝑥) → 0
and lim

𝑥→∞

𝐼0(𝑥) → ∞, the coefficient in (33), 𝑐2, should
satisfy the following equation:

𝑐2 = 0. (41)

With (40) and (41), we can get the final form of (33) as
follows:

𝑈D0 = 𝑞D𝐾0 (√𝑔 (𝑢)𝑟D) . (42)

Equation (42) is the basic zero-order perturbation solu-
tion for a line-sink in a stress-sensitive triple-porosity reser-
voir. Asmentioned above, zero-order perturbation solution is
enough to approximate the exact solution of (15) to (20); that
is,𝑈D ≈ 𝑈D0. With the definition of 𝑞D in Table 1, (42) can be
expressed as

𝑈D =
𝑞

𝑞
𝐾0 (√𝑔 (𝑢)𝑟D) . (43)

Equation (43) can be rewritten as

𝑈D =
𝑞

𝑞
Ω (𝑥D, 𝑦D; 𝑥wD, 𝑦wD) , (44)

where

Ω(𝑥D, 𝑦D; 𝑥wD, 𝑦wD) = 𝐾0 (√𝑔 (𝑢)𝑟D) . (45)

Equation (44) is the basic line-sink solution for stress-
sensitive triple-porosity reservoirs. With the basic line-sink
solution and the superposition principle, we can obtain the
pressure responses caused by multistage fractured horizontal
wells in stress-sensitive triple-porosity reservoirs.
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Figure 4: Schematic of discrete fracture segments.

4. Pressure Responses for Multistage
Fractured Horizontal Wells in
Stress-Sensitive Triple-Porosity Reservoirs

Figure 4 shows the schematic of a horizontal well with
multiple (a total of𝑀) hydraulic fractures in a stress-sensitive
triple-porosity reservoir. The 𝑦-axis is set to be aligned with
the horizontal wellbore. The intersection of the 𝑖th (𝑖 =

1, 2, . . . ,𝑀) hydraulic fracture and the 𝑦-axis is represented
by (0, 𝑦

𝑖

), and the distance between every two adjacent
fractures is Δ𝑦

𝑖

.
To successfully obtain the pressure responses caused by

the multiple fractures with the line-sink solution derived in
the above section, it is necessary to discretize the multiple
hydraulic fractures. As shown in Figure 4, each hydraulic
fracture is divided into 2𝑁 segments along its length. The
coordinate of the midpoint (i.e., discrete node) of the 𝑗th
segment on the 𝑖th fracture is denoted by (𝑋

𝑖,𝑗

, 𝑌
𝑖,𝑗

), and the
coordinates of the two corresponding endpoints are denoted
by (𝑥
𝑖,𝑗

, 𝑦
𝑖,𝑗

) and (𝑥
𝑖,𝑗+1, 𝑦𝑖,𝑗+1).

With the discretization scheme shown in Figure 4, the
coordinates of endpoints of discrete segments can be calcu-
lated by the following equations:

𝑥
𝑖,𝑗

= −
𝑁 − 𝑗 + 1

𝑁
𝑋fL𝑖,

𝑦
𝑖,𝑗

= 𝑦
𝑖

,

1 ≤ 𝑗 ≤ 𝑁,

𝑥
𝑖,𝑗

=
𝑗 − 𝑁 − 1

𝑁
𝑋fR𝑖,

𝑦
𝑖,𝑗

= 𝑦
𝑖

,

𝑁 + 1 ≤ 𝑗 ≤ 2𝑁 + 1.

(46)

The coordinates of discrete nodes (midpoint of each
segment) can be calculated by the following equations:

𝑋
𝑖,𝑗

= −
2𝑁 − 2𝑗 + 1

2𝑁
𝑋fL𝑖,

𝑌
𝑖,𝑗

= 𝑦
𝑖

,

1 ≤ 𝑗 ≤ 𝑁,

𝑋
𝑖,𝑗

=
2 (𝑗 − 𝑁) − 1

2𝑁
𝑋fR𝑖,

𝑌
𝑖,𝑗

= 𝑦
𝑖

,

𝑁 + 1 ≤ 𝑗 ≤ 2𝑁,

(47)

where𝑋fL𝑖 is the length of the leftwing of 𝑖th fracture,m;𝑋fR𝑖
is the length of the right wing of 𝑖th fracture, m. In the model
presented in this paper,𝑋fL𝑖 and𝑋fR𝑖 can be different and can
vary from fracture to fracture.

The distance between 𝑦
𝑖

and 𝑦
𝑖−1

is

Δ𝑦
𝑖

= 𝑦
𝑖

−𝑦
𝑖−1. (48)

It is obvious that the flux strength is different along
the fracture length. However, in the same discrete segment
(assuming the discrete segment is small enough), the flux
strength can be considered as constant. If we use 𝑞

𝑖,𝑗

to
represent the flux density per unit length, then, with the
superposition principle, the pressure response at (𝑥D, 𝑦D) in
the reservoir caused by the discrete segment (𝑖, 𝑗) can be
obtained by integrating the basic line-sink along the discrete
segment, which is

𝑈D𝑖,𝑗 (𝑥D, 𝑦D)

=

𝑞
𝑖,𝑗

(𝑢)

𝑞
∫

𝑥𝑖,𝑗+1

𝑥𝑖,𝑗

Ω(𝑥D, 𝑦D; 𝑥wD, 𝑦wD) d𝑥w.
(49)

With the definitions of 𝑥D and 𝑥wD, that is, (35) and (37),
(49) can be changed into

𝑈D𝑖,𝑗 (𝑥D, 𝑦D)

=

𝑞
𝑖,𝑗

(𝑢) 𝐿

𝑞
∫

𝑥D𝑖,𝑗+1

𝑥D 𝑖,𝑗

Ω(𝑥D, 𝑦D; 𝑥wD, 𝑦wD) d𝑥wD.
(50)

If we define dimensionless flux density per unit length as

𝑞D𝑖,𝑗 (𝑡D) =
𝑞
𝑖,𝑗

(𝑡D) 𝐿

𝑞
(51)

and take Laplace transformation of (51),

𝑞D𝑖,𝑗 (𝑢) =

𝑞
𝑖,𝑗

(𝑢) 𝐿

𝑞
. (52)

Equation (50) can be rewritten as

𝑈D𝑖,𝑗 (𝑥D, 𝑦D)

= 𝑞D𝑖,𝑗 ∫
𝑥D𝑖,𝑗+1

𝑥D 𝑖,𝑗

Ω(𝑥D, 𝑦D; 𝑥wD, 𝑦wD) d𝑥wD.
(53)

The pressure response at (𝑥D, 𝑦D) caused by 2𝑁 × 𝑀

segments can be obtained by applying the principle of
superposition over all discrete fracture segments:

𝑈D (𝑥D, 𝑦D) =

𝑀

∑

𝑖=1

2𝑁
∑

𝑗=1
𝑈D𝑖,𝑗 (𝑥D, 𝑦D) . (54)
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Thus, the pressure response at the discrete segment
(𝜒, 𝜅) (1 ≤ 𝜒 ≤ 𝑀, 1 ≤ 𝜅 ≤ 2𝑁) can be obtained as follows:

𝑈D (𝑥D𝜒,𝜅, 𝑦D𝜒,𝜅) =

𝑀

∑

𝑖=1

2𝑁
∑

𝑗=1
𝑈D𝑖,𝑗 (𝑥D𝜒,𝜅, 𝑦D𝜒,𝜅) . (55)

Since the permeability of hydraulic fractures is always
much higher than the original reservoir permeability, the
pressure drop in hydraulic fractures is much smaller than the
pressure drop caused by oil flow in the reservoir. Thus, the
hydraulic fractures can be considered as infinitely conductive,
meaning the pressure in hydraulic fractures is equal to the
bottom-hole pressure:

𝑈D (𝑋D𝜒,𝜅, 𝑌D𝜒,𝜅) = 𝑈wD. (56)

Combining (55) and (56), we can get

𝑀

∑

𝑖=1

2𝑁
∑

𝑗=1
𝑈D𝑖,𝑗 (𝑋D𝜒,𝜅, 𝑌D𝜒,𝜅) = 𝑈wD. (57)

The subscripts 𝜒 and 𝜅 in (57) denote that this equation
is written for discrete segment (𝜒, 𝜅). By writing (57) for all
discrete segments, that is, letting (𝜒 = 1, 2, . . . ,𝑀, 𝜅 =

1, 2, . . . , 2𝑁), we can get 2𝑁×𝑀 equations. It should be noted
that there are 2𝑁×𝑀+1 unknowns in these 2𝑁×𝑀 equations,
which are 𝑈wD and 𝑞D𝑖,𝑗 (𝑖 = 1, 2, . . . ,𝑀, 𝑗 = 1, 2, . . . , 2𝑁).
To compose a closed system of equations, the assumption of
constant total flow rate can give the following equation:

𝑀

∑

𝑖=1

2𝑁
∑

𝑗=1
[𝑞
𝑖,𝑗

Δ𝑋
𝑖,𝑗

] = 𝑞, (58)

whereΔ𝑋
𝑖,𝑗

is the length of the discrete segment (𝑖, 𝑗) and can
be calculated by

Δ𝑋
𝑖,𝑗

= 𝑋
𝑖,𝑗+1 −𝑋

𝑖,𝑗

. (59)

Taking Laplace transformation of (58), one can get

𝑀

∑

𝑖=1

2𝑁
∑

𝑗=1
[𝑞
𝑖,𝑗

Δ𝑋
𝑖,𝑗

] =
𝑞

𝑢
. (60)

The dimensionless form of (60) is

𝑀

∑

𝑖=1

2𝑁
∑

𝑗=1
[𝑞D𝑖,𝑗Δ𝑋D𝑖,𝑗] =

1
𝑢
, (61)

where

Δ𝑋D𝑖,𝑗 =
Δ𝑋
𝑖,𝑗

𝐿
. (62)

Equations (57) and (61) represent a system of (2𝑁×𝑀+1)
linear algebraic equations relating (2𝑁 × 𝑀 + 1) unknowns,
which can be solved by direct methods, such as Gaussian
elimination method, Gauss-Jordan reduction method.

𝑈wD calculated by (57) and (61) does not take into account
the effects of wellbore storage and skin. According to van
Everdingen [26] and Kucuk and Ayestaran [27], the effects
of wellbore storage and skin can be incorporated in the
calculated bottom-hole pressure response by

𝑈wDS =
𝑢𝑈wD + 𝑆

𝑢 + 𝐶D𝑢
2 (𝑢𝑈wD + 𝑆)

, (63)

where 𝐶D is the dimensionless wellbore storage coefficient
and 𝑆 is the skin factor defined by the following, respectively:

𝐶D =
𝐶

2𝜋 (𝜙f𝐶f t + 𝜙m𝐶mt + 𝜙v𝐶vt) ℎ𝐿
2 , (64)

𝑆 =
2𝜋𝑘fiℎ
𝑞sf𝜇

Δ𝑝
𝑠

, (65)

where 𝐶 is the wellbore storage coefficient, m3/Pa; 𝑞sf is the
sandface flow rate of the multistage fractured horizontal well
in the triple-porosity reservoir, m3/s; Δ𝑝

𝑠

is an extra pressure
drop near the wellbore, Pa.

𝑈wDS in (63) is the bottom-hole pressure response
obtained in the Laplace domain, and by Stehfest [28]
numerical inversion algorithm we can calculate the pressure
responses 𝑈wDS(𝑡D) in real time domain. Then, with (66), we
can obtain the bottom-hole pressure response for multistage
fractured horizontal wells in triple-porosity reservoirs incor-
porating the stress-sensitivity of natural fracture system:

𝑝wD (𝑡D) = −
1
𝛾D

ln [1− 𝛾D𝑈wDS (𝑡D)] . (66)

5. Results and Discussion

In this section, a horizontal well with three hydraulic frac-
tures (i.e.,𝑀 = 3) in a triple-porosity reservoir is considered,
and the model introduced above is applied to investigate
the dimensionless pressure responses of this well-reservoir
configuration.

5.1. Flow Periods and Effect of Stress-Sensitivity. Figure 5
presents the dimensionless pressure responses and corre-
sponding pressure derivatives of a multistage fractured hori-
zontal well in an infinitely large triple-porosity reservoir with
consideration of stress-sensitivity of natural fractures. It can
be observed from the figure that as many as ten flow periods
can be identified at different time scales. Different flow
periods and their corresponding characteristics are explained
as follows.

Period 1. It is the early-time wellbore storage period. In
this period, both pressure curves and their derivative curves
exhibit unit slope on the log-log plots.

Period 2. It is the transition flow period after wellbore storage
period. The pressure derivative curves exhibit a “hump,”
representing the effect of skin.

Period 3. It is the first linear flow period. This period
corresponds to the linear flow in the direction perpendicular
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Figure 5: Log-log plots of dimensionless pressures and pressure
derivatives of a multistage fractured horizontal well in an infinitely
large triple-porosity reservoir.

to hydraulic fracture length as illustrated in Figure 6(a). The
pressure derivative curves exhibit a straight line with slope
equal to “1/2.”

Period 4. It is the first pseudoradial flow period. This period
can occur when the distances between adjacent fractures are
relatively large. Oil flows in the reservoir in a way as shown
in Figure 6(b), and pseudoradial flow occurs around each
fracture. This period corresponds to a nearly horizontal line
with a value of “1/(2𝑀)” in the derivative curve, where 𝑀 is
the number of hydraulic fractures.

Period 5. It is the second linear flow period. This period
corresponds to linear flow perpendicular to the horizontal
wellbore as shown in Figure 6(c). Another straight line with
a slope of about “1/2” can be observed in the derivative curve.
When the permeability of natural fracture system remains
constant during the whole production, corresponding to the
no stress-sensitivity case, the slope of the derivative curves
during this period is “1/2.” When taking into account the
stress-sensitivity of natural fracture system, the correspond-
ing pressure derivative curve slightly deviates from the one-
half-slope line and exhibits a slight upward tendency.

Period 6. It is the second pseudoradial flow period, corre-
sponding to radial flow in natural fracture system. During
this period, multiple hydraulic fractures and the horizontal
wellbore behave like an enlarged wellbore. The derivative
curves exhibit a horizontal line with an upward tendency
depending on the value of dimensionless permeability mod-
ulus. In the case that 𝛾D = 0, the derivative curves are hori-
zontal with a value of 0.5 on the 𝑦-axis. With the increase of
the value of 𝛾D, the derivative curves turn upward gradually.

Period 7. It is the first interporosity flow period. This period
reflects mass transfer between vugs and natural fracture
system. Due to the oil flowing from vugs to natural fractures,
the bottom-hole pressure drops slower and an obvious “dip”
can be observed in the derivative curves.

Period 8. It is the third pseudoradial flow period, correspond-
ing to compound radial flow in natural fracture system and

vugs. Due to the existence of stress-sensitivity of natural
fracture system, the pressure derivative curves are no longer
horizontal. The position of the derivative curves becomes
higher with larger value of 𝛾D.

Period 9. It is the second interporosity flow period. This
period reflects oil flowing from matrix to natural fracture
system. Another characteristic “dip” can be observed in the
derivative curves.

Period 10. It is the late-time compound pseudoradial flow
period. This period reflects compound radial flow in natural
fracture system, matrix, and vugs as shown in Figure 6(d).
Similarly, the derivative curves exhibit upward tendencies due
to the existence of stress-sensitivity of natural fracture system.

5.2. Effect of Skin Factor. Figure 7 shows the effect of skin
factor on dimensionless pressure curves and corresponding
derivative curves. As stated above, the skin factor mainly
affects the shape of type curves during the transition period
(Period 2) after wellbore storage period. With the increase
of the value of skin factor, the position of the “hump” in
the derivative curves becomes higher, representing larger
pressure drop in the formation.

5.3. Effect of Storativity Ratio of Natural Fracture System.
Figure 8 shows the effect of storativity ratio of natural fracture
system on dimensionless pressure and pressure derivative
curves. It is obvious in Figure 8 that when the storativity ratio
of matrix (i.e., 𝜔m) and other parameters are kept constant,
the storativity ratio of natural fracture system 𝜔f mainly
affects the transient pressure dynamics during the first linear
flow period, the first pseudoradial flow period, the second
linear flow period, second pseudoradial flow period, and the
first interporosity flow period. On the one hand, the position
of the dimensionless pressure curves becomes higher during
the abovementioned flowing periods with the decrease of 𝜔f .
On the other hand, with the decrease of𝜔f , the position of the
pressure derivative curves during the first linear flow period,
the first pseudoradial flow, and the second linear flow period
becomes higher, and the first “dip” in pressure derivative
curves becomes wider and deeper.

5.4. Effect of Storativity Ratio of Matrix. Figure 9 shows the
effect of storativity ratio of matrix on dimensionless pressure
and derivative curves. It can be observed that, with fixed
𝜔f , the storativity ratio of matrix 𝜔m has primary effect on
pressure dynamics during two interporosity flowing periods.
With the decrease of the value of 𝜔m, the fist “dip” in the
pressure derivative curves becomes wider and deeper, while
the second “dip” in the pressure derivative curves exhibits the
opposite trend.

5.5. Effect of Interporosity Flow Coefficient between Vugs and
Natural Fractures. Figure 10 shows the effect of interporosity
flow coefficient between vugs and natural fractures (𝜆vf ) on
dimensionless pressure and pressure derivative curves. As
expected, 𝜆vf mainly affects the occurrence time of the first
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Figure 6: (a) First linear flow period. (b) First pseudoradial flow period. (c) Second linear flow period. (d) Late-time compound pseudoradial
flow period.
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Figure 7: Type curves with different skin factors.
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Figure 8: Type curves with different storativity ratios of natural
fracture system.

interporosity flow period, that is, the appearance time of the
first “dip” in pressure derivative curves. The smaller the value
of𝜆vf is, the later the first “dip” can be observed in the pressure
derivative curves. When 𝜆vf decreases to a certain extent, the
third pseudoradial flow period (Period 8 in Figure 5) may
not be observed in the type curves. In addition, when 𝜆vf
increases to a certain extent, the second pseudoradial flow
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Figure 9: Type curves with different storativity ratios of matrix.
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Figure 10: Type curves with different 𝜆vf .

period (Period 6 in Figure 5) and even the second linear flow
period (Period 5 in Figure 5) may bemasked by the following
first interporosity flow period.

5.6. Effect of Interporosity FlowCoefficient betweenMatrix and
Natural Fractures. Figure 11 shows the effect of interporosity
flow coefficient between matrix and natural fractures (𝜆mf )
on dimensionless pressure and pressure derivative curves. It
can be seen that 𝜆vf mainly affects the occurrence time of
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Figure 11: Type curves with different 𝜆mf .

the second interporosity flow period, that is, the appearance
time of the second “dip” in pressure derivative curves. The
smaller the value of 𝜆mf is, the later the second “dip” can be
observed in the pressure derivative curves. With the increase
of 𝜆mf , the reflection of the third pseudoradial flow period
on the derivative curves (Period 8 in Figure 5) may not
be observed. When 𝜆mf increases to a certain degree, the
second “dip” may merge with the first “dip,” meaning that
simultaneous interporosity mass transfers happen between
natural fractures and matrix as well as natural fractures and
vugs.

5.7. Effect of Length of Hydraulic Fractures. Figure 12 presents
the effect of half-length of hydraulic fractures on type curves.
For the convenience of discussion, 𝑋fL𝑖 = 𝑋fR𝑖 = 𝑋f is
assumed here. It can be observed that the length of hydraulic
fracture has primary effect on the first linear flow period
and the subsequent first pseudoradial flow period. With the
increase of fracture length, the first linear flow period lasts
longer with lower position of pressure derivative curves,
and the first pseudoradial flow period occurs later with
shorter duration.When the half-length of hydraulic fractures
continues to increase, the horizontal line in the pressure
derivative curves reflecting the first pseudoradial flow period
around each fracture will gradually disappear.

5.8. Effect of Hydraulic Fracture Spacing. Figure 13 shows the
effect of the distance between adjacent hydraulic fractures.
The case discussed in Figure 13 assumes equal fracture spac-
ing for the convenience of discussion. It can be observed
that the distance between adjacent hydraulic fractures Δ𝑦

𝑖

mainly affects the first pseudoradial flow period and the
subsequent second linear flow period.The larger the distance
between adjacent fractures, the longer the duration of the first
pseudoradial flow period, and the later the occurrence of the
second linear flowperiod. Another point should be addressed
here is that whenΔ𝑦

𝑖

increases to a certain degree, the second
pseudoradial flow period may not be observed in the type
curves; that is, the first interporosity flow period appears after
the second linear flow period.
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5.9. Flux Distribution. Figure 14 presents the dimensionless
flux distribution along hydraulic fractures at a given time
based on the calculation results obtained with the model
proposed in this paper. In the case presented in Figure 14,
three hydraulic fractures with equal half-length and fracture
spacing are considered, and each hydraulic fracture is dis-
cretized into ten segments. It can be observed that, for the
same hydraulic fracture, the flux distribution is symmetrical
with respect to the horizontal wellbore, and the flux density at
fracture tips is larger than that in themiddle of the fracture. In
addition, for different hydraulic fractures, it can be found that
the flux contribution from hydraulic fracture in the middle
(Fracture 3 in Figure 14) is always smaller than that from
outer fractures (Fractures 1 and 2 in Figure 14).

6. Conclusion

Based on the mathematical model and discussion in this
paper, the following conclusions can be warranted:

(1) A mathematical model is presented for investigating
transient pressure dynamics as well as flux distri-
bution of multistage fractured horizontal wells in
stress-sensitive triple-porosity reservoirs. The model
can better describe fluid flow in naturally fractured
reservoirs with multiple types of storage spaces and
complex well type.
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Figure 14: Dimensionless flux distribution along hydraulic frac-
tures.

(2) Semianalytical solution is developed in the Laplace
domain by the integral transformation method and
discretization of hydraulic fractures. With the semi-
analytical solution and the numerical inversion algo-
rithm proposed by Stehfest, dimensionless pressure
responses and corresponding pressure derivatives as
well as flux distribution among all the fractures can
be obtained in real time domain. Computation results
prove that the model presented in this paper is stable
and accurate.

(3) Analysis of transient pressure and derivative
responses indicates that as many as ten flow periods
can be identified for a multistage fractured horizontal
well in triple-porosity reservoirs. Major factors
affecting the transient pressure responses include
skin factor, storativity ratios of different porousmedia
type, interporosity flow coefficients, and parameters
related to the geometry and placement of hydraulic
fractures. With different combinations of these
parameters, the reflection of some flow periods may
be masked in the pressure derivative curves.

(4) Two characteristic “dips” can be observed in the pres-
sure derivative curves for triple-porosity reservoirs,
reflecting the mass transfer between natural fracture-
vugs and natural fracture-matrix, separately.

(5) The stress-sensitivity of natural fracture system results
in larger pressure drop during intermediate and
late flowing periods which is reflected by upward
tendencies in both dimensionless pressure curves and
corresponding derivative curves.

(6) Analysis of flux distribution among multiple hydrau-
lic fractures indicates that the flux contribution from
outer fractures is higher, and for a given fracture the
flux contribution from fracture tips is higher.

(7) The presentedmodel can be used to interpret pressure
signal for fractured horizontal wells in triple-porosity
reservoirs and provide some important dynamic
parameters for reservoir development.

Appendices

A. Derivation of Governing
Equations for Natural Fracture System,
Matrix System, and Vug System in
Triple-Porosity Reservoirs

Governing equations for natural fracture system, matrix sys-
tem, and vug system in triple-porosity reservoirs can be
obtained by combining equation of motion, equation of state,
and mass conservation equation.

(1) Equation of Motion.Assuming radial flow in triple-poros-
ity reservoirs, the oil flow velocity in natural fracture system
is given by

Vf =
𝑘f
𝜇

𝜕𝑝f
𝜕𝑟

, (A.1)

where Vf is the radial oil velocity in natural fracture system,
m/s; 𝑘f is the permeability of natural fracture system under
pressure 𝑝f , m

2; 𝜇 is the oil viscosity, Pa⋅s; 𝑝f is the pressure
of natural fracture system, Pa; 𝑟 is the radial distance, m.

During the production process, the reservoir pressure
gradually decreases and the effective stress increases. Conse-
quently, the aperture of natural fractures gradually decreases,
resulting in the reduction in the permeability of natural
fracture system, which is so-called stress-sensitivity of per-
meability of natural fracture system. To account for this,
a stress-dependent permeability is adopted in the natural
fracture flow model.

Following Kikani and Pedrosa [29], the permeability
modulus 𝛾, which is used to describe the stress-sensitivity of
natural fracture system, is defined by

𝛾 =
1
𝑘f

d𝑘f
d𝑝f

, (A.2)

where 𝛾 is the permeability modulus, Pa−1.
Equation (A.2) can be further written as

∫

𝑘fi

𝑘f

1
𝑘f
d𝑘f = ∫

𝑝i

𝑝f

𝛾 d𝑝f , (A.3)

where 𝑘fi is the permeability of natural fracture system under
initial condition, m2; 𝑝i is the reservoir pressure under initial
condition, Pa.

Solving (A.3), one can get

𝑘f = 𝑘fie
−𝛾(𝑝i−𝑝f ). (A.4)

Equation (A.4) is one of the most common relationships
which are used to describe stress-dependent permeability.
This exponential relationship corresponds to Type I rocks
discussed by Raghavan and Chin [30].

Substituting (A.4) into (A.1) yields the equation ofmotion
in natural fracture system with consideration of stress-
sensitivity effect as follows:

Vf =
𝑘fie
−(𝑝i−𝑝f )𝛾

𝜇

𝜕𝑝f
𝜕𝑟

. (A.5)
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(2) Equation of State

(a) Equation of State for Oil.Oil in natural fracture system can
be described by the following equation of state:

𝜌f = 𝜌0e
𝐶o(𝑝f−𝑝0), (A.6a)

where 𝜌f is the oil density in natural fracture system, kg/m3;
𝜌0 is the oil density at the reference pressure 𝑝0, kg/m

3; 𝐶o is
the oil compressibility, Pa−1.

The term e𝐶o(𝑝f−𝑝0) in (A.6a) can be expanded into
Maclaurin series. Considering that 𝐶o ≪ 1, the second and
higher orders of the expansion can be neglected; thus we can
get

𝜌f = 𝜌0 [1+𝐶o (𝑝f −𝑝0)] . (A.6b)

Similarly, oil in matrix system can be described by the
following equation of state:

𝜌m = 𝜌0e
𝐶o(𝑝m−𝑝0) (A.7a)

or

𝜌m = 𝜌0 [1+𝐶o (𝑝m −𝑝0)] , (A.7b)

where 𝑝m is the pressure of matrix system, Pa.
Oil in vug system can be described by the following

equation of state:

𝜌v = 𝜌0e
𝐶o(𝑝v−𝑝0) (A.8a)

or

𝜌v = 𝜌0 [1+𝐶o (𝑝v −𝑝0)] , (A.8b)

where 𝑝v is the pressure of vug system, Pa.

(b) Equation of State for Porous Media. The equation of state
for natural fracture system can be written as

𝜙f = 𝜙f0e
𝐶f (𝑝f−𝑝0), (A.9a)

where 𝜙f is the porosity of natural fracture system, fraction;
𝜙f0 is the porosity of natural fracture system at the reference
pressure 𝑝0, fraction; 𝐶f is the compressibility of natural
fracture system, Pa−1.

Maclaurin series can also be adopted to approximate
(A.9a). Considering that𝐶f ≪ 1, the second and higher order
terms can be neglected, and one can get

𝜙f = 𝜙f0 [1+𝐶f (𝑝f −𝑝0)] . (A.9b)

By following the sameprocedure, one can get the equation
of state for matrix system as follows:

𝜙m = 𝜙m0e
𝐶m(𝑝m−𝑝0) (A.10a)

or

𝜙m = 𝜙m0 [1+𝐶m (𝑝m −𝑝0)] , (A.10b)

where 𝜙m0 is the porosity of matrix system at the reference
pressure 𝑝0, fraction; 𝐶m is the compressibility of matrix
system, Pa−1.

Similarly, the equation of state for vug system can be
described as follows:

𝜙v = 𝜙v0e
𝐶v(𝑝v−𝑝0) (A.11a)

or
𝜙v = 𝜙v0 [1+𝐶v (𝑝v −𝑝0)] , (A.11b)

where 𝜙v0 is the porosity of vug system at the reference
pressure 𝑝0, fraction; 𝐶v is the compressibility of matrix
system, Pa−1.

(3) Mass Conservation Equation. By applying the mass con-
servation lawon a representative elemental volume in a triple-
porosity reservoir, we can get the following equation for
natural fracture system:

1
𝑟

𝜕 (𝑟𝜌fVf)
𝜕𝑟

=
𝜕 (𝜌f𝜙f)

𝜕𝑡
− 𝑞c1 − 𝑞c2. (A.12a)

Equation (A.12a) can also be written in the following
equivalent form:

𝜕 (𝜌fVf)
𝜕𝑟

+
1
𝑟
𝜌fVf =

𝜕 (𝜌f𝜙f)

𝜕𝑡
− 𝑞c1 − 𝑞c2, (A.12b)

where 𝑞c1 is the mass flow rate between matrix system and
fracture system per unit-volume reservoir, kg/(m3⋅s), and it
can be expressed by (A.13); 𝑞c2 is the mass flow rate between
vug system and fracture system per unit-volume reservoir,
kg/(m3⋅s), and it can be expressed by (A.14)

𝑞c1 =
𝛼mf𝑘m𝜌0

𝜇
(𝑝m −𝑝f) , (A.13)

𝑞c2 =
𝛼vf𝑘v𝜌0

𝜇
(𝑝v −𝑝f) , (A.14)

where 𝛼mf is the shape factor of matrix blocks, m−2; 𝛼vf is
the shape factor of vug system, m−2; 𝑘m is the permeability
of matrix system, m2; 𝑘v is the permeability of vug system,
m2.

By using the same method, we can get the following mass
conservation equations for matrix system and vug system:

1
𝑟

𝜕 (𝑟𝜌mVm)

𝜕𝑟
=

𝜕 (𝜌m𝜙m)

𝜕𝑡
+ 𝑞c1, (A.15)

1
𝑟

𝜕 (𝑟𝜌vVv)
𝜕𝑟

=
𝜕 (𝜌v𝜙v)

𝜕𝑡
+ 𝑞c2. (A.16)

Here, following the assumption adopted in the dual-
porosity model proposed by Warren and Root [2], natural
fractures are assumed to be oil flowing channels, and matrix
and vugsmainly serve as storage space; thus the flowing terms
in (A.15) and (A.16) can be reduced to

1
𝑟

𝜕 (𝑟𝜌mVm)

𝜕𝑟
≈ 0,

1
𝑟

𝜕 (𝑟𝜌vVv)
𝜕𝑟

≈ 0.

(A.17)
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With (A.17), (A.15) and (A.16) can be rewritten as

𝜕 (𝜌m𝜙m)

𝜕𝑡
+ 𝑞c1 = 0, (A.18)

𝜕 (𝜌v𝜙v)

𝜕𝑡
+ 𝑞c2 = 0. (A.19)

Equations (A.12a), (A.12b), (A.18), and (A.19) are mass
conservation equations for natural fracture system, matrix
system, and vug system in triple-porosity reservoirs, sepa-
rately.

(4) Governing Equation for Natural Fracture System. Substitu-
tion of (A.15) into the mass conservation equation for natural
fracture system, that is, (A.12b), yields

𝜕 (𝜌f (𝑘fie
−(𝑝i−𝑝f )𝛾/𝜇) (𝜕𝑝f/𝜕𝑟))

𝜕𝑟

+
1
𝑟
𝜌f

𝑘fie
−(𝑝i−𝑝f )𝛾

𝜇

𝜕𝑝f
𝜕𝑟

=
𝜕 (𝜌f𝜙f)

𝜕𝑡
− 𝑞c1 − 𝑞c2.

(A.20)

With (A.6a), (A.6b), and the transformation formula
e𝐶o(𝑝f−𝑝0)(𝜕𝑝f/𝜕𝑟) = (𝜕/𝜕𝑟)[e𝐶o(𝑝f−𝑝0)/𝐶o], the first term in the
left-hand side of (A.20) can be written as

𝜕 (𝜌f (𝑘fie
−(𝑝i−𝑝f )𝛾/𝜇) (𝜕𝑝f/𝜕𝑟))

𝜕𝑟

=
𝜌0𝑘fi
𝜇

[𝛾e𝛾(𝑝f−𝑝i) (
𝜕𝑝f
𝜕𝑟

)

2
+ e𝛾(𝑝f−𝑝i)

𝜕
2
𝑝f

𝜕𝑟2
] .

(A.21)

Following the same procedure, the second term in the
left-hand side of (A.20) changes into

1
𝑟
𝜌f

𝑘fie
−(𝑝i−𝑝f )𝛾

𝜇

𝜕𝑝f
𝜕𝑟

=
1
𝑟

𝜌0𝑘fi
𝜇

e𝛾(𝑝f−𝑝i)
𝜕𝑝f
𝜕𝑟

. (A.22)

With (A.6b) and (A.9b), the product term within the
bracket in the right-hand side of (A.20) can be expanded as
follows:

𝜌f𝜙f = 𝜙f0𝜌0 +𝜙f0𝜌0 (𝐶f +𝐶o) (𝑝f −𝑝0)

+ 𝜙f0𝜌0𝐶f𝐶o (𝑝f −𝑝0)
2
.

(A.23a)

Given that both 𝐶f and 𝐶o are very small terms, their
product will yield a much smaller term which is negligible
(𝐶f𝐶o ≈ 0), and (A.23a) can be simplified as

𝜌f𝜙f = 𝜙f0𝜌0 +𝜙f0𝜌0 (𝐶f +𝐶o) (𝑝f −𝑝0) . (A.23b)

Thus the first term in the right-hand side of (A.20) can be
written as

𝜕 (𝜌f𝜙f)

𝜕𝑡
= 𝜙f0𝜌0𝐶f t

𝜕𝑝

𝜕𝑡
, (A.24)

where 𝐶f t is the total compressibility of natural fracture
system, including the compressibility of oil and natural
fractures, and

𝐶f t = 𝐶f +𝐶o. (A.25)

Substituting (A.13), (A.14), (A.21), (A.22), and (A.24) into
(A.20), one can get

𝜕
2
𝑝f

𝜕𝑟2
+
1
𝑟

𝜕𝑝f
𝜕𝑟

+ 𝛾(
𝜕𝑝f
𝜕𝑟

)

2

= e−𝛾(𝑝f−𝑝i) [
𝜙f0𝜇𝐶f t

𝑘fi

𝜕𝑝f
𝜕𝑡

−
𝛼mf𝑘m

𝑘fi
(𝑝m −𝑝f)

−
𝛼vf𝑘v
𝑘fi

(𝑝v −𝑝f)] .

(A.26a)

After deriving governing equations formatrix system and
vug system, (A.26a) can be further written as

𝜕
2
𝑝f

𝜕𝑟2
+
1
𝑟

𝜕𝑝f
𝜕𝑟

+ 𝛾(
𝜕𝑝f
𝜕𝑟

)

2

= e−𝛾(𝑝f−𝑝i) [
𝜙f0𝜇𝐶f t

𝑘fi

𝜕𝑝f
𝜕𝑡

+
𝜙m0𝜇𝐶mt

𝑘fi

𝜕𝑝m
𝜕𝑡

+
𝜙v0𝜇𝐶vt

𝑘fi

𝜕𝑝v
𝜕𝑡

] .

(A.26b)

Equation (A.26b) is the final form of governing equa-
tion for natural fracture system incorporating the pressure-
dependent permeability, that is, (1) in the main body of this
paper.

(5) Governing Equation for Matrix System. With (A.7b) and
(A.10b), the product of oil density and porosity of matrix
system can be written as

𝜌m𝜙m = 𝜙m0𝜌0 +𝜙m0𝜌0 (𝐶m +𝐶o) (𝑝m −𝑝0)

+ 𝜙m0𝜌0𝐶m𝐶o (𝑝m −𝑝0)
2
.

(A.27a)

Analogously, because both 𝐶m and 𝐶o are very small
terms, their product 𝐶m𝐶o can be neglected, and (A.27a) can
be simplified to obtain

𝜌m𝜙m = 𝜙m0𝜌0 +𝜙m0𝜌0 (𝐶m +𝐶o) (𝑝m −𝑝0) . (A.27b)

Therefore,

𝜕 (𝜌m𝜙m)

𝜕𝑡
= 𝜙m0𝜌0𝐶mt

𝜕𝑝m
𝜕𝑡

, (A.28)

where 𝐶mt is the total compressibility of matrix system,
including the compressibility of oil and matrix, and

𝐶mt = 𝐶m +𝐶o. (A.29)

Substitution of (A.13) and (A.28) into the mass conserva-
tion equation for matrix system, that is, (A.18), yields

𝜙m0𝐶mt
𝜕𝑝m
𝜕𝑡

+
𝛼mf𝑘m

𝜇
(𝑝m −𝑝f) = 0. (A.30)

Equation (A.30) is the final form of governing equation
for matrix system in triple-porosity reservoirs, that is, (2) in
the main body of this paper.

(6) Governing Equation for Vug System. The derivation of
governing equation for vug system is similar to that applied
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to matrix system. With (A.8b) and (A.11b), the product of oil
density and porosity of vug system can be written as

𝜌v𝜙v = 𝜙v0𝜌0 +𝜙v0𝜌0 (𝐶v +𝐶o) (𝑝v −𝑝0)

+ 𝜙v0𝜌0𝐶v𝐶o (𝑝v −𝑝0)
2
.

(A.31a)

Given that both 𝐶v and 𝐶o are much smaller than 1, their
product 𝐶v𝐶o is negligible, and (A.31a) reduces to

𝜌v𝜙v = 𝜙v0𝜌0 +𝜙v0𝜌0 (𝐶v +𝐶o) (𝑝v −𝑝0) . (A.31b)

Therefore,
𝜕 (𝜌v𝜙v)

𝜕𝑡
= 𝜙v0𝜌0𝐶vt

𝜕𝑝v
𝜕𝑡

, (A.32)

where𝐶vt is the total compressibility of vug system, including
the compressibility of oil and vug, and

𝐶vt = 𝐶v +𝐶o. (A.33)

Substituting (A.14) and (A.33) into mass conservation
equation for vug system, that is, (A.19), one can get

𝜙v0𝐶vt
𝜕𝑝v
𝜕𝑡

+
𝛼vf𝑘v
𝜇

(𝑝v −𝑝f) = 0. (A.34)

Equation (A.34) is the final form of governing equation
for vug system in triple-porosity reservoirs, that is, (3) in the
main body of this paper.

B. Derivation of Inner Boundary
Condition for the Line-Sink

A vertical line-sink can be treated as the limiting case of a
vertical cylinder-sink with radius 𝜀 → 0.The flow rate across
the cylinder wall with radius 𝜀 (𝜀 → 0) can be expressed as

lim
𝜀→ 0

𝐴Vf

𝑟=𝜉

= 𝑞 (𝑡) 𝐵, (B.1)

where𝐴 is the lateral area of the cylinder-sink, m2, which can
be calculated by (B.2); Vf is oil velocity at the cylinder wall,
m/s, which can be calculated by (B.3); 𝑞(𝑡) is flow rate of the
continuous line-sink under standard condition, m3/s; 𝐵 is the
oil formation volume factor, dimensionless:

𝐴|
𝑟=𝜀

= 2𝜋𝑟ℎ|
𝑟=𝜀

, (B.2)

Vf
𝑟=𝜀 =

𝑘f
𝜇

𝜕𝑝f
𝜕𝑟


𝑟=𝜀

. (B.3)

Substitution of (A.4) into (B.3) yields

Vf
𝑟=𝜀 =

𝑘fie
−𝛾(𝑝i−𝑝f )

𝜇

𝜕𝑝f
𝜕𝑟

𝑟=𝜀

. (B.4)

Substituting (B.2) and (B.4) into (B.1), we can get

lim
𝜀→ 0

e−𝛾(𝑝i−𝑝f ) (𝑟
𝜕𝑝f
𝜕𝑟

)

𝑟=𝜀

=
𝑞 (𝑡) 𝜇𝐵

2𝜋𝑘fiℎ
. (B.5)

Equation (B.5) is the inner boundary condition for a line-
sink in triple-porosity reservoirs, that is, (4) in themain body
of this paper.

Nomenclature

𝐵: Oil formation volume factor, m3/sm3
𝐶: Wellbore storage coefficient, m3/Pa
𝐶D: Dimensionless wellbore storage

coefficient, dimensionless
𝐶o: Oil compressibility, Pa−1
𝐶f : Compressibility of natural fracture system,

Pa−1
𝐶m: Compressibility of matrix system, Pa−1
𝐶v: Compressibility of vug system, Pa−1
𝐶f t: Total compressibility of natural fracture

system, Pa−1
𝐶mt: Total compressibility of matrix system,

Pa−1
𝐶vt: Total compressibility of vug system, Pa−1
ℎ: Reservoir thickness, m
𝑘f : Permeability of natural fracture system,

m2
𝑘fi: Permeability of natural fracture system

under initial condition, m2
𝑘m: Permeability of matrix system, m2
𝑘v: Permeability of vug system, m2
𝐾0(𝑥): Modified Bessel function of the second

kind, zero order
𝐾1(𝑥): Modified Bessel function of the second

kind, first order
𝐼0(𝑥): Modified Bessel function of the first kind,

zero order
𝐿: Reference length, m
𝐿h: Length of horizontal wellbore, m
𝑀: Total number of hydraulic fractures
𝑁: Number of discretized segments for each

fracture
𝑝f : Pressure of natural fracture system, Pa
𝑝m: Pressure of matrix system, Pa
𝑝v: Pressure of vug system, Pa
𝑝fD: Dimensionless pressure of natural fracture

system, dimensionless
𝑝mD: Dimensionless pressure of matrix system,

dimensionless
𝑝vD: Dimensionless pressure of vug system,

dimensionless
𝑝i: Initial reservoir pressure, Pa
𝑝0: Reference pressure, Pa
Δ𝑝s: Extra pressure drop caused by skin effect

near the wellbore, Pa
𝑞(𝑡): Production rate of the line-sink under

standard condition, m3/s
𝑞D: Dimensionless production rate of the

line-sink under standard condition,
dimensionless

𝑞: Constant surface production rate of the
multistage fractured horizontal well, m3/s

𝑞
𝑖𝑗

: Flux density of the 𝑗th segment in the 𝑖th
hydraulic fracture, m3/(s⋅m)

𝑞
𝑖𝑗

(𝑢): Laplace transformation of 𝑞
𝑖𝑗
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𝑞D𝑖,𝑗: Dimensionless flux density of the 𝑗th
segment in the 𝑖th fracture, dimensionless

𝑞D𝑖,𝑗(𝑢): Laplace transformation of 𝑞D𝑖,𝑗
𝑞sf : The sandface flow rate of the multistage

fractured horizontal well, m3/s
𝑞c1: Mass flow rate between matrix and natural

fractures per unit-volume reservoir,
kg/(m3⋅s)

𝑞c2: Mass flow rate between vug system and
fracture system per unit-volume reservoir,
kg/(m3⋅s)

𝑟w: Radius of horizontal wellbore, m
𝑟: Radial distance, 𝑟 = √𝑥2 + 𝑦2, m
𝑟D: Dimensionless radial distance,

dimensionless
𝑆: Skin factor, dimensionless
𝑡: Time, s
𝑡D: Dimensionless time, dimensionless
𝑢: Variable of Laplace transformation,

dimensionless
Vf : Radial velocity for oil flow in natural

fracture system, m/s
𝑥, 𝑦: 𝑥- and 𝑦-coordinates, m
𝑥D, 𝑦D: Dimensionless 𝑥- and 𝑦-coordinates,

dimensionless
𝑥w, 𝑦w: 𝑥- and 𝑦-coordinates of the line-sink, m
𝑥wD, 𝑦wD: Dimensionless 𝑥- and 𝑦-coordinates of

the line-sink, dimensionless
𝑋
𝑖,𝑗

, 𝑌
𝑖,𝑗

: 𝑥- and 𝑦-coordinates of the 𝑗th discrete
segment in the 𝑖th fracture, m

𝑋fL𝑖: Length of the left wing of the 𝑖th fracture,
m

𝑋fR𝑖: Length of the right wing of the 𝑖th
fracture, m

Δ𝑋
𝑖,𝑗

: Length of the discrete segment (𝑖, 𝑗), m
Δ𝑋D𝑖,𝑗: Dimensionless length of the discrete

segment (𝑖, 𝑗), dimensionless
𝑦
𝑖

: 𝑦-coordinate of the intersection between
the 𝑖th fracture and 𝑦-axis, m

Δ𝑦
𝑖

: Distance between 𝑦
𝑖

and 𝑦
𝑖−1

,
Δ𝑦
𝑖

= 𝑦
𝑖

− 𝑦
𝑖−1

𝛼1: Shape factor of matrix blocks, m−2

𝛼2: Shape factor of vug system, m−2
𝜌f : Oil density in natural fracture system,

kg/m3
𝜌0: Oil density at the reference pressure 𝑝0,

kg/m3
𝜙f : Porosity of natural fracture system,

fraction
𝜙m: Porosity of matrix system, fraction
𝜙v: Porosity of vug system, fraction
𝜙f0: Porosity of natural fracture system at the

reference pressure 𝑝0, fraction
𝜙m0: Porosity of matrix system at the reference

pressure 𝑝0, fraction
𝜙v0: Porosity of vug system at the reference

pressure 𝑝0, fraction

𝜔f : Storativity ratio of natural fracture system,
dimensionless

𝜔m: Storativity ratio of matrix system,
dimensionless

𝜔v: Storativity ratio of vug system,
dimensionless

𝜆mf : Interporosity flow coefficient between
matrix and natural fractures,
dimensionless

𝜆vf : Interporosity flow coefficient between
vugs and natural fractures, dimensionless

𝛾: Permeability modulus, Pa−1
𝛾D: Dimensionless permeability modulus,

dimensionless
𝜇: Oil viscosity, Pa⋅s
𝜋: Circumference ratio, 3.1415926. . .,

dimensionless.

Subscript

D: Dimensionless.

Superscript

−: Laplace transformation.
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