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Doświadczalna 4, 20-290 Lublin, Poland

2 Institute for Natural Resources and Agrobiology (IRNAS-CSIC), P.O. Box 1052, 41080 Sevilla, Spain
3 Department of Crop Production and Soil Science, Georgikon Faculty, University of Pannonia, Deák Ferenc Street 16, Keszthely, 8360,
Hungary

4Aula Dei Experimental Station (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain

Correspondence should be addressed to Krzysztof Lamorski; k.lamorski@ipan.lublin.pl

Received 19 November 2013; Accepted 29 January 2014; Published 17 March 2014

Academic Editors: N. Moritsuka and G. Pietramellara

Copyright © 2014 Krzysztof Lamorski et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This work presents point pedotransfer function (PTF) models of the soil water retention curve. The developed models allowed for
estimation of the soil water content for the specified soil water potentials: –0.98, –3.10, –9.81, –31.02, –491.66, and –1554.78 kPa, based
on the following soil characteristics: soil granulometric composition, total porosity, and bulk density. Support Vector Machines
(SVM) methodology was used for model development. A new methodology for elaboration of retention function models is
proposed. Alternative to previous attempts known from literature, the ]-SVM method was used for model development and
the results were compared with the formerly used the 𝐶-SVM method. For the purpose of models’ parameters search, genetic
algorithmswere used as an optimisation framework. A new formof the aim function used formodels parameters search is proposed
which allowed for development of models with better prediction capabilities. This new aim function avoids overestimation of
models which is typically encountered when root mean squared error is used as an aim function. Elaborated models showed
good agreement with measured soil water retention data. Achieved coefficients of determination values were in the range 0.67–
0.92. Studies demonstrated usability of ]-SVMmethodology together with genetic algorithm optimisation for retention modelling
which gave better performing models than other tested approaches.

1. Introduction

Soil hydrologic parameters have great impact on soil water
transport processes. The soil water retention curve and soil
water hydraulic conductivity are required for an appropriate
description of soil water phenomena, such as drainage,
infiltration, or soil pollutant movement. The retention curve
describes the relationship between soil water content and soil
water potential and is especially important for hydrological
modelling and agronomical practice as it determines soil
water availability for plants.

Measurements give strict evaluation of hydraulic prop-
erties of soils. Unfortunately, measurement of the soil water

retention curve is time consuming and requires specialised
equipment. The classical pressure plate extractor technique
[1]may be used to determine the soil water retention curve, or
an alternative technique based on the dynamic simultaneous
time-domain reflectometry soil water content and pressure
head measurements [2].

Fortunately in many applications the hydraulic param-
eters can be estimated rather than measured. Pedotransfer
functions (PTF) are commonly used in such circumstances
[3] and allow for estimation of the retention curve or
hydraulic conductivity based on easily measured soil char-
acteristics. The most widely used soil characteristics for PTF
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development are granulometric composition, bulk density,
and organic matter content.

The soil water retention curve basically may be modelled
in two ways: indirectly (parametric PTFs) and directly (also
known as point PTFs).The first method evaluates parameters
of somemodels of the soil water retention curve, for instance,
the Mualem-van Genuchten function parameters: 𝜃

𝑠
, 𝜃
𝑟
, 𝛼,

and 𝑛 [4]; the latter evaluates water content for a specified
number of water potential values. Recently a new method
of retention modelling has been developed, which directly
estimates soil water content but is not limited in estimations
to fixed set of soil water potentials [5].This so-called pseudo-
continuous approach allows for estimation of the soil water
content for any potential value in the range from 0 kPa to
model dependent minimum value.

There have been numerous attempts to develop PTFs for
retention curve, utilising awide set ofmathematicalmethods.
Regression modelling is a widely used tool for PTF model
development. Some methods rely simply on granulometric
distribution as input parameters [6], and others also use
soil bulk density [7–9]. The mean weight diameter of soil
particles, a granulometric composition dependent parameter,
is used by some authors [7] too. Soil content of organic carbon
is another widely used parameter [9–11] for development of
PTFs. Other models [12] additionally use soil water content
for specified potentials, for example, −33 kPa and −1500 kPa.

Artificial neural networks (ANNs) are another technique
often used for developing PTFs. Feed forward or radial basis
neural networks allow for estimation of some set of output
parameters based on knowledge of input parameters. ANNs
were extensively used as a tool for PTF developments [13–17].
Unfortunately, there are some problems specific to artificial
neural network modelling such as a tendency to stacking in
local minima of mean square error hyperplane during ANN
training process [18] or difficulties with appropriate choice
of ANN architecture which causes overfitting of ANN to
training data.The partial solution to this problem is based on
bootstrap averaging, which averages the predictions of many
ANNs trained on randomly modified input data [19].

Recently another mathematical tool, the Support Vector
Machine (SVM), has been used for PTF modelling. This
technique resolves typical problems for ANN-based PTFs
development. There have been attempts of SVM usage for
PTF development in a direct manner [20] and in parametric
form [21] where Mualem-van Genuchten parameters were
estimated. Both of the SVM models were compared with
ANN-based counterparts and showed better performance in
water retention modelling.

In this work we focused on the development of the
point PTFs for estimation of the soil water retention curve
using SVM and on some of its methodological aspects. We
investigated whether the newer ]-SVM method, not used
before in PTF studies, was applicable and possibly better
for this purpose than typically used 𝐶-SVM method. For
the purpose of automated models’ parameters search genetic
algorithms were used as an optimisation framework. A new
form of the aim function used for models’ parameters search
is proposed, which allows for better selection of models’

Table 1: Basic statistics of the soil dataset.

Variable name Mean Standard
deviation Minimum Maximum

Sand percentage 63.7 25.5 3.0 100.0
Silt percentage 25.9 18.8 0.0 81.0
Clay percentage 10.4 12.6 0.0 73.0
Bulk density
(g/cm3) 1.65 0.19 0.98 2.17

Total porosity 0.41 0.0651 0.223 0.636

Table 2: Models and their parameters.

Model name
abbreviation

SVM
method

Kernel
function

Model
parameters

Number of
model

parameters
C-radial C-SVM Radial C, 𝜀, 𝛾 3
C-linear C-SVM Linear C, 𝜀 2
nu-radial ]-SVM Radial C, 𝛾 2
nu-linear ]-SVM Linear C 1

parameters. As a result more accurate PTF models may be
developed.

2. Material and Methods

2.1. Soil Datasets. Soil dataset used in this study was an
extract from the Soil Profiles Bank of the PolishMineral Soils
database [22] and contained 639 soil samples, taken from
290 different soil profiles. Soil samples were collected from
three horizons for most soil profiles. Undisturbed samples
were collected into themetal cylinders of volume 100 cm3 and
diameter 5 cm, and then basic soil parameters were analysed.
The following soil parameters were extracted from the soil
database for the purposes of this work: soil water content for
various six soil water potential values: −0.98 kPa, −3.10 kPa,
−9.81 kPa, −31.02 kPa, −491.66 kPa, and −1554.78 kPa; particle
size distribution; total porosity; and bulk density. Particle size
distribution was determined for the following fractions: clay
< 0.002mm, silt 0.002–0.05mm, and sand 0.05–1mm. Basic
statistics of soil dataset used in this study are presented in
Table 1.

2.2. SVM Methodology. SVM is one of the classes of soft-
computing techniques [23]. Originally SVM was developed
for solving classification problems; then its usage has been
extended to regression-type applications for function esti-
mation [24]. SVMs used for regression modelling estimate
one output variable based on a set of input variables. As
being supervised learning method SVM uses training dataset
for model development. Elaborated model reproduces input-
output relationship present in the training dataset and is
capable of making estimations based on arbitrary input
variables.

From the user’s perspective, SVM model development
consists of the following steps:

(a) training and testing datasets preparation,
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Table 3: Developed models performance comparisons.

Potential
(kPa) Model type

Number of SV Training dataset Testing dataset
𝑅
2 RMSE 𝑅

2 RMSE
Aim 1 Aim 2 Aim 1 Aim 2 Aim 1 Aim 2 Aim 1 Aim 2 Aim 1 Aim 2

−0.98

C-linear 137.2 179.1 0.92 0.92 0.0184 0.0185 0.90 0.90 0.0194 0.0193
(13.71) (6.66) (0.006) (0.006) (0.0005) (0.0005)

nu-linear 189.8 189.8 0.92 0.92 0.0186 0.0186 0.90 0.90 0.0194 0.0194
(1.99) (1.81) (0.006) (0.006) (0.0005) (0.0005)

C-radial 359.5 187.1 0.99 0.97 0.0051 0.0116 0.60 0.77 0.0404 0.0293
(5.38) (1.73) (0.001) (0.001) (0.0003) (0.0002)

nu-radial 372.3 198.4 0.99 0.94 0.0052 0.0160 0.59 0.92 0.0414 0.0175
(3.13) (4.58) (0.001) (0.006) (0.0003) (0.0005)

−3.1

C-linear 92.5 117.7 0.62 0.62 0.0485 0.0497 0.67 0.68 0.0384 0.0391
(7.11) (85.18) (0.010) (0.008) (0.0008) (0.0011)

nu-linear 189.1 189.2 0.61 0.61 0.0497 0.0497 0.68 0.68 0.0363 0.0363
(1.45) (1.81) (0.011) (0.011) (0.0009) (0.0009)

C-radial 352.1 187.4 0.92 0.84 0.0225 0.0312 0.23 0.48 0.0735 0.0492
(10.79) (1.35) (0.007) (0.012) (0.0008) (0.0009)

nu-radial 372.4 194.5 0.92 0.68 0.0227 0.0448 0.22 0.70 0.0770 0.0348
(2.80) (2.88) (0.007) (0.018) (0.0007) (0.0010)

−9.81

C-linear 134.0 133.7 0.76 0.75 0.0516 0.0529 0.72 0.72 0.0497 0.0499
(14.34) (111.77) (0.004) (0.011) (0.0007) (0.0016)

nu-linear 189.7 189.7 0.76 0.76 0.0517 0.0517 0.72 0.72 0.0498 0.0498
(1.49) (1.77) (0.004) (0.004) (0.0007) (0.0007)

C-radial 360.2 187.7 0.98 0.93 0.0151 0.0282 0.35 0.63 0.0959 0.0577
(8.46) (1.77) (0.003) (0.003) (0.0014) (0.0006)

nu-radial 372.4 194.8 0.98 0.85 0.0152 0.0416 0.33 0.82 0.0985 0.0395
(2.95) (2.49) (0.004) (0.007) (0.0015) (0.0010)

−31.02

C-linear 141.1 123.1 0.77 0.77 0.0516 0.0528 0.71 0.70 0.0528 0.0532
(6.90) (102.16) (0.004) (0.008) (0.0006) (0.0012)

nu-linear 190.0 189.9 0.77 0.77 0.0522 0.0522 0.71 0.71 0.0532 0.0532
(2.05) (2.42) (0.004) (0.004) (0.0006) (0.0006)

C-radial 351.2 187.8 0.99 0.93 0.0123 0.0292 0.36 0.67 0.0957 0.0554
(11.31) (2.20) (0.001) (0.005) (0.0007) (0.0009)

nu-radial 372.3 195.6 0.99 0.85 0.0126 0.0419 0.34 0.80 0.0998 0.0436
(3.06) (4.03) (0.002) (0.007) (0.0009) (0.0007)

−491.66

C-linear 109.0 80.8 0.72 0.71 0.0502 0.0518 0.67 0.65 0.0495 0.0517
(17.95) (54.42) (0.008) (0.016) (0.0013) (0.0023)

nu-linear 189.3 189.7 0.71 0.71 0.0508 0.0509 0.67 0.67 0.0493 0.0493
(1.77) (1.64) (0.009) (0.009) (0.0015) (0.0015)

C-radial 364.8 186.9 0.99 0.93 0.0091 0.0252 0.36 0.60 0.0875 0.0569
(7.64) (2.51) (0.002) (0.004) (0.0011) (0.0006)

nu-radial 372.5 202.1 0.99 0.80 0.0092 0.0421 0.35 0.70 0.0890 0.0475
(3.10) (8.35) (0.002) (0.020) (0.0011) (0.0026)

−1554.78

C-linear 92.7 136.1 0.69 0.68 0.0459 0.0470 0.63 0.63 0.0468 0.0465
(21.16) (77.41) (0.012) (0.013) (0.0016) (0.0014)

nu-linear 189.4 189.7 0.68 0.68 0.0464 0.0464 0.64 0.64 0.0463 0.0463
(1.90) (2.21) (0.014) (0.014) (0.0017) (0.0017)

C-radial 364.6 187.7 0.99 0.92 0.0093 0.0232 0.32 0.58 0.0794 0.0511
(5.62) (2.21) (0.002) (0.003) (0.0008) (0.0008)

nu-radial 372.5 199.9 0.99 0.77 0.0094 0.0396 0.32 0.67 0.0805 0.0446
(2.95) (7.49) (0.002) (0.025) (0.0008) (0.0026)

The presented values are averages of the other ten 𝑘-fold submodels. In the case of the number of support vectors, RMSE and 𝑅2 for the training dataset and
values in brackets are standard deviations. Columns described by “aim 1” present data for models developed using RMSE as the aim function. Label “aim 2” is
linked with models developed using proposed new form of the aim function.
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Figure 1: Example of the overfitting phenomenon for the radial basis kernel based ]-SVMmodel.
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Figure 2: Example of the overfitting phenomenon for the radial basis kernel based 𝐶-SVMmodel.
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determined for the SVM models estimating soil water content for
the potential −0.98 kPa.

(b) SVMmodel selection (𝐶-SVM or ]-SVM),

(c) selection of the kernel function,

(d) selection of the SVM model and kernel function
parameters,

(e) model learning using training dataset,
(f) validation of the model against training dataset,
(g) validation of developed model against testing dataset.

If one is optimising model’s parameters the steps (d) and
(e) may be repeated until best parameters will be found.

The training dataset 𝐷 = {[𝑥(𝑖), 𝑦(𝑖)] ∈ R𝑁 × R, 𝑖 =

1, . . . , 𝑙} consists of pairs wheremany input values aremapped
to one output response value. Training data which are used
for model development are specific to applications and the
training dataset has to be representative for modelled prob-
lem. Quality of these data impacts on model generalisation
capability and its ability for making accurate predictions.

There are two different types of SVM algorithms used
in regression modelling: 𝐶-SVM and ]-SVM. The SVM
methodology originally introduced by Vapnik is currently
known as 𝐶-SVM or SVM Type 1 models.These models have
two adjustable parameters which influence their behaviour:
𝐶—the so-called penalty parameter—and 𝜀—insensitivity
zone. 𝐶 determines the mutual relationship between the
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Figure 4: The shape of the aim function and its dependence on aim function parameters.

training error and the model complexity. An increase in 𝐶

causes penalising of larger errors, which leads to decreasing
of approximation error. Insensitivity zone 𝜀 describes the
tolerance for training error in the SVM model: a decrease
in 𝜀 leads to strict fitting to training data, which may cause
overfitting and decrease the model generalisation properties.
SVM models with lower 𝜀 values use a larger number of
support vectors.

Support vectors are selected data records taken from the
training dataset. Which data records taken from the training

dataset are support vectors is decided by SVM algorithm
during model training phase. Support vectors are vital part
of the developed model as they are used further by the SVM
algorithm for making model estimations.

One of the most important properties of SVM regression
models is the ability to generalise, which allows for appro-
priate predictions from previously unseen input data. The
technical criterion which stands behind this requisite is a
limit set on the number of support vectors to about half of
all vectors in the training dataset [25].
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If a SVM model with arbitrarily chosen support vectors
percentage is required, it is convenient to use another SVM
model formulation known as ]-SVM or SVM Type 2 models
[26]. In this type of SVM models instead of 𝜀 another model
parameter ] ∈ [0, 1] is used, which is utilised for internal
trading off 𝜀 between the model accuracy for training data
and the model complexity (number of support vectors),
which influences the model generalisation properties. Two
parameters in ]-SVM regression models are used: 𝐶 and ].
Formally, the ] parameter expresses the desired number of
SVs and is a lower bound on the fraction of support vectors
[26]. In 𝐶-SVM models, the number of support vectors
participating in model formulation is indirectly related to
the model parameters 𝐶 and 𝜀 while in ]-SVM models it is
connected with the parameter ] itself.

Kernel function is an important part of SVM model.
It is used internally in the SVM algorithm to map the
input parameters to highly dimensional feature space used
in the algorithm internal computations. Thanks to nonlinear
kernel functions SVMalgorithm allows for estimationswhere
dependence between estimated output variable and input
variables is highly nonlinear.There are some commonly used
kernel functions: linear 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥

𝑖

⋅ 𝑥
𝑗, polynomial

𝐾(𝑥
𝑖

, 𝑥
𝑗

) = (𝛾(𝑥
𝑖

⋅ 𝑥
𝑗

) + 𝑎)
𝑑, and radial basis 𝐾(𝑥𝑖, 𝑥𝑗) =

𝑒
−𝛾‖𝑥
𝑖
−𝑥
𝑗
‖

2

. The most often used kernel function in SVM
regression modelling is radial basis kernel function. The
linear kernel function is in fact a special case of a polynomial
kernel function with fixed parameters: 𝛾 = 1, 𝑎 = 0, and
𝑑 = 1.

The main purpose of SVM model development is to
select proper support vectors from training dataset. Proper
selection of support vectors has an impact on model perfor-
mance and the ability for generalisation. The SVM model’s
parameters together with kernel function parameters (if any)
have to be thoroughly chosen while model building phase.

2.3. Genetic Algorithm Parameters Optimisation. SVM mod-
els depend on parameters which must be adjusted. Different
types of models tested use different sets of parameters: SVM
cost (𝐶), intensive zone width (𝜀), and parameter (𝛾) of the
radial basis kernel function. Table 2 summarizes types of
SVMmodels, kernel functions used, models parameters, and
names of the models used for the reference in this paper.

Different models depend on different sets of parameters.
The values of these parameters may be selected arbitrarily
or determined using some kind of universal, developer
independent procedure. In fact the determination of SVM
model parameters is an optimisation problem and typical
methods for such tasks may be used. Leave-one-out method
[27] has been used in previous work, Lamorski et al. [20],
but it is extremely computationally demanding. A simple
search for an optimal solution on a grid of possible parameter
values is anothermethod commonly used [21]. Unfortunately
grid search method does not test whole space of possible
parameters values as it is limited to arbitrarily chosen fixed
combinations of parameters. As a result nonoptimal models’
parameters may be chosen. Some optimisation algorithms
could be used instead.

Genetic algorithms (GA) with elitism were used in the
present study for searching the optimal values of model
parameters. GA is a technique used among others for
optimisation purposes [28] and is especially well suited for
applications where the aim function is not differentiable and
may have local minima. None of the classical optimisation
methods such as the Nelder-Mead downhill simplex method
or gradient-based methods may be used successfully in such
circumstances.

Parameters values searched for an optimal solution using
GA were defined by the following bands: 1 < 𝐶 < 1200,
0.0001 < 𝜀 < 1, and 0.00001 < 𝛾 < 10.

Genetic algorithm operation is controlled by two main
parameters: population size and a number of GA iterations.
The other vital GA parameters are elitism percentage and
mutation chance. The elitism percentage used in our study
was 0.2, and mutation chance was 0.02.

Population size determines the number of points in the
space of input parameters, where the model performance is
evaluated. A population size of 100 was used for searching of
the parameters in that study.

2.4. Model Formulation. SVM was used for model devel-
opment. The soil database was randomly split into two
subsets: training dataset (414 samples) and testing dataset
(225 samples). SVM models were built using the training
dataset and tested against the test dataset. Test datasets were
not used for model development at any stage, except for final
model testing and validation.

Correlation analysis was performed on the soil dataset
andused formodel elaboration.The analysis of this data led to
selection of the input parameters for developed models: sand
fraction, clay fraction, total porosity, and bulk density.

Due to the fact that SVM regression models allow for
estimation of only one output parameter for a given set of
input parameters, six different SVM models were developed,
one for each value of the soil water potential in which water
content was evaluated.

The 𝑘-fold approach [19] was used for model elaboration,
which allowed for a cross validation during the training phase
of model development. The training dataset was randomly
divided into ten distinct equinumerous subsets, for the
purpose of the 𝑘-fold method.

The developed models’ returned value, which was an
average output from 10 different submodels, resulted from
the 𝑘-fold method.This submodel was trained on the joined-
together nine subsets (373 soil samples).The remaining tenth
subset was used for cross validation purposes andwas rotated
for each of the ten submodels elaborated. The 𝑘-fold method
allowed for estimation of variance of evaluated properties.

One of the major decisions made during SVM model
development is to choose an appropriate kernel function.
Previous attempts using SVM for retention curve modelling
have applied the radial basis kernel function [20, 21]. In the
present study we wished to investigate the influence of the
kernel function on PTF model performance. We tested two
kernel functions: linear kernel and radial basis kernel. The
advantage of the linear kernel function over the radial basis
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kernel is the reduced number ofmodel parameters.The radial
basis kernel function introduces an additional parameter,
𝛾, to the model, while the linear kernel function does not
depend on any additional parameters.

One of the expected PTF model features is the ability for
generalisation—when a model predicts correctly the results
for previously unseen input data. The technical criterion
in SVM model formulation that stands behind this model
feature is the number of support vectors used for model
formulation [25]. In commonly used 𝐶-SVMmodels there is
no direct influence on the number of support vectors, which
depend implicitly on other model parameters. The objective
of the present study was to compare two classes of PTFs:
]-SVM based (with a fixed value of ]) and 𝐶-SVM. The
parameter ], in ]-SVM based models, explicitly determines
expected percentage of SVs used in the model formulation.
The model performance is checked with a theoretically
optimal 50% of SVs, so the value of ] is fixed at 0.5.

2.5. Model Performance Criteria. Some kind of model per-
formance criteria is needed in SVM model development
for validation purposes. Typically root mean square error
(RMSE) and the coefficient of determination (𝑅2) are used:

RMSE = √
1

𝑁

𝑁

∑

𝑖=1

(𝑦
𝑝
− 𝑦
𝑚
)
2

, (1)

𝑅
2

= 1 −

∑
𝑁

𝑖=1
(𝑦
𝑝
− 𝑦
𝑚
)
2

∑
𝑁

𝑖=1
(𝑦
𝑚
− 𝑦
𝑚
)
2
, (2)

where 𝑁 is the number of data analysed, 𝑦
𝑝
is a value

approximated by the model, 𝑦
𝑚

is the “true” measured
value, and 𝑦

𝑚
is the mean of the measured values. In ideal

conditions, when the values approximated by themodel equal
the measured ones, then 𝑅2 = 1 and RMSE = 0.

3. Results and Discussion

3.1. Overfitting and the Radial Basis Kernel Function. RMSE
(1) and 𝑅

2 (2) are widely used model performance criteria
for PFT development. Model parameters are adjusted to
minimise the RMSE for the training dataset. Usually a model
which minimises RMSE for the training dataset also has a
small RMSE for the test dataset—if so, the model has good
generalisation properties.

One of the main machine learning paradigms states that
only the training dataset is used for model development.
On the other hand, the testing dataset is used only at the
very last step, to check how developed model performs for
unseen previously data. A model minimising RMSE between
estimations and measured values from testing dataset is
considered to be the best model.

At the initial stage of the model development RMSE was
used as the aim function and the GAs were used for seeking
the optimalmodel’s parameters. For bothmodels utilising the
linear kernel function, the C-linear and nu-linear, usage of

RMSE as the aim function was a successful strategy. In that
case the GA was able to find optimal model parameters.

However, when the radial basis kernel function was used,
GA optimisation led to overfitting regardless of the type of
the SVM method used. Very low RMSE values (< 0.001)
for the training dataset were achieved; however, for the test
dataset the RMSE was high. The generalisation capability
of these developed models was very poor, and the number
of support vectors was close to the number of all training
vectors—which is an indicator of overfitting of the model.
This phenomenonwas caused by a too high value of the radial
basis kernel function’s parameter 𝛾 determined by GA. Thus
the GA algorithm was choosing the highest available value of
𝛾, that is, an upper limit of the range of possible 𝛾 parameter
values.

The SVM models seem to be especially sensitive to the
value of 𝛾 parameter of the radial basis kernel function. The
increasing value of 𝛾 leads to an increased number of support
vectors in the model, which degrades its generalisation
capabilities. When RMSE was used as the aim function, GAs
chose optimal values of parameters which minimised RMSE
for the training dataset. But for these parameters RMSE was
relatively high for the testing dataset, so parameters were not
acceptable from the point of view of model generalisation
capabilities. In fact using RMSE as the aim function together
with genetic algorithms optimisation led to development of
models which were not optimal when radial basis kernel
function was used.

An example of overfitting phenomenon for the ]-SVM
model, which evaluates the value of water content for the soil
water potential of −0.98 kPa, is given in Figure 1. Figure 1(a)
shows the dependence between 𝑅

2 and 𝛾, calculated for
the training dataset (𝑅2 train) and the testing dataset (𝑅2
test). The other ]-SVM model parameters are as follows:
𝐶 = 100 and ] = 0.5. For values of 𝛾 > 0.1, the value
of 𝑅2 for the training dataset increased until an unrealistic
value 𝑅

2

= 1 (overfitting) was reached, while 𝑅
2 for

testing dataset decreased greatly (i.e., lack of generalisation
capabilities). Figure 1(a) gives also dependence between the
number of support vectors (number of SV) in the model
and the value of parameter 𝛾. It can be observed that for
high values of 𝛾 the number of SV in the model reaches
the maximum 373 (whole 𝑘-fold training dataset)—which
is also the evidence of overtraining. Similarly (Figure 1(b))
RMSE for training dataset is decreasing for growing values
of 𝛾 and RMSE for testing dataset is increasing. Figure 2
shows similar dependence between parameter 𝛾 and models
statistical characteristics RMSE and 𝑅

2 for 𝐶-SVM based
model estimating water content for soil water potential
−0.98 kPa.

To give better insight into models structure, sensitivity
analysis was performed. For this purpose, the Morris [29]
global sensitivity analysis method, modified according to
Campolongo et al. [30], was used in its classical formulation:
the one-step-at-a-time (OAT) approach. The outcome from
sensitivity analysis was index 𝜇∗, which represents relative to
other parameters the impact of tested model parameter on
model outcome averaged over the whole parameters space.
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The model outcome which was used for the purpose of
sensitivity analysis was a sum of model estimates made for
all the records from training dataset.

Figure 3 presents normalized values of sensitivity indices
𝜇
∗ determined for all models estimating water content for

the soil water potential −0.98 kPa as an example. Results
for model nu-linear are missing as this model depends on
only one parameter 𝐶. What can be seen here is relatively
low dependence of the model on the SVM cost parameter
𝐶. Model 𝐶-SVM utilizing linear kernel function (𝐶-linear),
which depends on 𝜀 and𝐶 parameters, is almost not sensitive
to parameter 𝐶. The same for the ]-SVM linear kernel
model, where the parameter 𝐶 has low influence on model’s
outcome. Radial basis kernel function ]-SVM model (nu-
radial) depends on two parameters: 𝐶 and 𝛾, and the latter
has much higher impact on models estimations.

3.2. Alternative Form of the Aim Function. Models for the
other soil water potentials, both 𝐶-SVM and ]-SVM based,
demonstrated the same behaviour (overfitting) when RMSE
was used as the aim function and the radial basis kernel
function was used. If some kind of automated model-
parameter search method such as GA is to be used, then the
use of RMSE as the aim function is discouraged because of
the dominant influence of 𝛾 on its value.

An aim function is needed that will explicitly take
into account both factors: the model performance criterion
(e.g., RMSE) and the model generalisation capabilities. An
alternative form of the aim function, instead of RMSE, is
proposed in (3)

𝐹aim (RMSE, nSV)

= 1 − 𝑒
−RMSE2/(2𝜎2rmse)𝑒

−(nSV−nSVexp)
2
/(2𝜎
2

nSV).

(3)

Equation (3) is dependent on two arguments: RMSE and the
number of support vectors in the elaborated model (nSV).
This formula mimics the normal bivariate distribution, with
the parameters nSVexp, 𝜎

2

rmse, and 𝜎
2

nSV which are constants.
The proposed new aim function has a minimum at the

point where RMSE = 0 and nSV = nSVexp, both of these
criteria have to be met in the minimum of this function. The
parameter nSVexp is the number of support vectors expected
in the developed model. The value of the parameter nSVexp
should be equal to half of the total number of the input
data in the training dataset [25, 26] to achieve an optimal
nonovertrained model. In the present study, nSVexp = 187

as we have 373 records in each 𝑘-fold training dataset and
we assumed theoretical ideal proportion (1/2) between the
number of support vectors and the number of data in the
training dataset.

Constants 𝜎rmse and 𝜎nSV have the impact on the shape of
the aim function and are connectedwith its slopes.The values
of these parameters were selected based on the empirical
basis, numerical tests, and analysis of their influence on
the shape of the aim function (Figure 4). The parameter
𝜎rmse = 𝛿rmseRMSEmax was related to the RMSEmax, the
maximum value of RMSE which could occur during SVM
model parameter search procedure. In this study value of

RMSEmax was estimated altogether with sensitivity analysis
of the models, but achieved values of RMSEmax were pretty
standard for point PTF developments and could be chosen
arbitrarily.

Similarly, the parameter 𝜎nSV = 𝛿nSVnSVmax was related
to the nSVmax, the total number of the records in the training
dataset. In cases of the parameter 𝜎rmse the appropriate value
of 𝛿rmse = 1while in case of the parameter𝜎nSV the good value
of 𝛿nSV = 0.1. Figure 4 presents the shape of the aim function
in relation to the values of the 𝛿rmse and 𝛿nSV parameters.

Instead of simple RMSE formula new aim function (3)
was used in conjunctionwithGAoptimisation techniques for
searching for models’ parameters. For ]-SVM based models
(nu-radial) an optimal solution was found, and both criteria
were reached: RMSE was low and an optimal number of
support vectors were selected. For 𝐶-SVM based models (𝐶-
radial) the results were much better than found previously
when RMSE was used as an aim function but were still
inadequate.

3.3. PTF Model Performance. Finally eight types of PTF
models were developed, one for each value of the soil water
potential for which water content was estimated. These
models utilised 𝐶-SVM and ]-SVM based modelling and
both kernel functions: radial and linear. Two types of aim
function were used together with GA for models develop-
ment. Comparison of results for these eight models presents
Table 3.

Table 3 summarises performance indices of elaborated
models: number of support vectors, RMSE, and 𝑅2; all calcu-
lated for the training and testing dataset. Values of statistical
indices RMSE and 𝑅

2 were calculated from comparisons of
evaluated model values against measurements of soil water
content for specified values of soil water potential.

The ability of the model to predict correctly previously
unseen data is very important, so model’s results for testing
dataset are most interesting.

In case of ]-SVMmodels based on the radial basis kernel
function, the use of the aim function in a new form, proposed
in this paper, allowed for selection of much better model’s
parameters. As a result developedmodels are not overtrained
and performmuch better thanmodels which were developed
using RMSE as the aim function.

Wemay state that the best combination of SVMalgorithm
used kernel function andmethod ofmodels parameter search
was radial basis kernel function based ]-SVM based model
trained using the aim function in the form of (3).

Newly proposed aim function increased also substantially
results achieved in case of𝐶-SVMradial basis kernel function
basedmodels, but in this case the results are not good enough
to use these models anyway. Other models perform better,
even linear kernel based.

We can see (Table 3) that when linear kernel is used,
there is really no difference between models developed using
different methodology. Regardless the SVM algorithm type
used (]-SVM or 𝐶-SVM) or aim function used for GA
parameter search the results achieved by the models are
the same. The small differences in RMSE (0.0495–0.0517)
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occurring for the soil water potential −491.66 kPa in case of
𝐶-linearmodel are not important frompractical point of view
of PTF usage.

This information, together with the observation that
the models are almost not sensitive to the value of the
parameter 𝐶 (which is the only parameter in case of ]-SVM
model), gives the conclusion that PTF models based on ]-
SVM algorithm together with linear kernel function may be
constructed without any optimisation of the value of the 𝐶
parameter. The general rules for selection of the value of 𝐶
parameter [31] may be used instead.

When results for the testing dataset were considered, the
conclusion was that the nu-radial model based on the ]-SVM
method and the radial basis kernel function was the model
of first choice for further PTF evaluations. However, the nu-
linear model was also very appealing, due to having accuracy
not much lower than that of the nu-radial counterpart
while having only one model parameter, which simplifies
substantially model development. One note has to be made
regarding this statement. It is known from the literature of
SVM kernel algorithms that linear kernel function may be
considered as the alternative to radial basis kernel only for
big training datasets. In case of smaller training datasets
radial basis kernel function should be used. Results obtained
here suggest that in our case the number of soil data used
formmodel development was almost numerous enough (373
records) to use linear kernel function formodel development.

4. Conclusions

SVM methodology was successfully applied to water reten-
tion modelling. Elaborated point PTF models used sand
fraction, clay fraction, total porosity, and bulk density as the
input parameters.

Thenewly proposed ]-SVM based retention models, with
a fixed value of ] = 0.5, showed better performance than 𝐶-
SVM based models.

Proposed, new form of the aim function (3) used for
searching of the model’s parameters allows for development
of better models in case of radial basis kernel based models.

Results of this study showed that the ]-SVM method is
suitable for the development of PTF models for retention
curve approximation. The advantage of using this method is
a limited number of model parameters in comparison with
𝐶-SVMmethodology.

The investigated linear kernel function may be used
successfully instead of the radial basis function, for point
PTF developments. This kind of kernel function allows for
reduction of the model parameters by one compared with
the radial basis kernel function and also for simplified model
development.
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ANN: Artificial neural network
SVM: Support Vector Machines

SV: Support vector
PTF: Pedotransfer function
SWRC: Soil water retention curve
TDR: Time-domain reflectometry.
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