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Frequent itemset mining is the important first step of association rule mining, which discovers interesting patterns from the massive
data. There are increasing concerns about the privacy problem in the frequent itemset mining. Some works have been proposed
to handle this kind of problem. In this paper, we introduce a personalized privacy problem, in which different attributes may
need different privacy levels protection. To solve this problem, we give a personalized privacy-preserving method by using the
randomized response technique. By providing different privacy levels for different attributes, this method can get a higher accuracy
on frequent itemset mining than the traditional method providing the same privacy level. Finally, our experimental results show

that our method can have better results on the frequent itemset mining while preserving personalized privacy.

1. Introduction

The rapid development of Internet technology, cloud comput-
ing, mobile computing, and Internet of things has produced
the exploding large datasets, the so-called big data. The data
can be used to capture the useful information and interesting
patterns and indeed help people to make effective decisions.
Data mining is a powerful technique which can discover
the hidden interesting patterns and models. By analyzing
the data, data mining offers considerable benefits to the
consumers, companies, and organizations.

Association rule mining is a popular and important
technique of data mining. It is intended to discover the
interesting patterns from the large transaction data, that
is, frequent patterns and association rules. These rules can
be used to improve the market decision making, such as
promotional pricing or product placements. For example,
by analyzing the transactions data from a supermarket, the
rule found that customers who buy diapers also tend to
buy beer. Nowadays, association rule mining is employed in
many application areas such as Web usage mining, intrusion
detection, and bioinformatics.

The process of mining association rules contains two
main steps [1]. The first step is to discover all the frequent

itemsets with the support being higher than the minimum
support. The second step generates the strong rules based on
the frequent itemsets found in the first step, and the strong
rules have confidence greater than the minimum confidence.
In this paper, we focus on the frequent itemset mining, which
is the most important part of association rule mining.

With the exponentially increasing information being col-
lected for analysis, there is growing concern about the privacy
problem. In fear of the privacy problem, some people might
be reluctant to provide the true information. The survey [2]
conducted in 1993 demonstrated the worries of people about
the privacy. 17% of the respondents are extremely concerned
about their personal information. They were reluctant to
provide any data and even the privacy protection measures
were in place. However, 56% of them were willing to provide
their information under the condition that privacy protection
methods were adopted. The remaining 27% of them are
marginally concerned about their privacy and willing to
provide data under any condition. Therefore, in order to
collect the true data, privacy protection measures must
be taken for protecting the personal information. Besides,
before outsourcing or sharing the data with other companies,
the data owner also must take some privacy-preserving
measures.



Two privacy environments are proposed in [3] based on
the privacy mechanisms. The first one is B2B (business to
business), which assures that the data obtained from the users
would be preprocessed by the privacy-preserving techniques
before being supplied to the data miner. The second one is
B2C (business to customer), which provides the privacy pro-
tection at the point of data collection, that is, at the user site.
In order to protect the sensitive information, we proposed
methods which can be used under both environments. We
focus on the privacy of input data in the frequent itemset
mining process. Under the B2C environment, the personal
data are randomized after each user provides them and then
sent to the data collector. Under the B2B environment, the
collected dataset is randomized before outsourcing or sharing
with others even at public.

Although many works have been proposed to handle the
privacy problem in the frequent itemset mining process, few
of them focused on the personalized privacy problem. Xiao
and Tao [4] proposed the personalized privacy preservation
problem considering that different people need different
levels of privacy protection, and they used the generalization
techniques. Besides, they also raise the problem of the
multipublishing [5], wherein different recipients can have
different privacy protection levels on the original dataset.

In this paper, we define the personalized privacy as
different privacy levels on different attributes or items in
the process of frequent itemset mining. For example, the
customer does not care too much about the disclosure of
the information that he bought daily necessities. But he will
concern heavily about the privacy problem if he bought
some sensitive items. If we provide the same level of privacy
protection for different items, the data utility will be lost
too much in order to satisty all items privacy requirements.
This is because the nonsensitive items also are disturbed too
heavily. Hence, it is necessary to provide the different degree
of privacy protection for different items or attributes.

To solve the above personalized privacy problem, we use
the randomized response technique [6]. Based on the MASK
[7], we give the solution on how to reconstruct the associ-
ations under the different privacy protections. Our method
can be used to preserve the privacy under both the B2B and
B2C environments. Besides, we design a method to accelerate
the itemset support computation. Finally, our experimental
results show that the performance of our method is better
than the traditional method with respect to the accuracy,
while satisfying the different privacy requirements.

The rest of this paper is organized as follows. In Section 2,
we review the previous related works. Section 3 gives some
related preliminaries and defines the personalized privacy
problem. Then in Section 4, we describe the proposed
method on the personalized privacy protection and how to
discover the frequent itemset from the randomized data.
We evaluate our technique in Section 5 by experiments and
conclude our work in Section 6.

2. Related Works

There are many works on the privacy problem in the associ-
ation rule mining, and they can be divided into two research
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streams [3]: input data privacy and output rule privacy. Most
of them focus on the second one. To preserve the input data
privacy, some methods are adopted to disturb the original
data so that the attacker cannot get the true data of users.
For the output rule privacy, the collected data are heuristically
altered in order to protect some sensitive rules being mined
from the dataset by data miners.

The association rule hiding algorithms, which protect the
output rule privacy, can be divided into three categories [8],
namely, heuristic approaches, border-based approaches, and
exact approaches. The first class of approaches selectively
sanitizes a set of transactions from the database to hide
the sensitive rules efficiently, which suffer from high side
effects. Two classic techniques in this class of approaches are
distortion [9, 10] and blocking [11, 12]. The second set of
approaches [13, 14] hide the sensitive rules by modifying the
original borders in the lattice of the frequent and infrequent
itemsets in the database. The third set of approaches [15, 16]
hide the sensitive rules by solving the Constrain Satisfaction
problem using the integer or linear programming. They can
find the optimality to hide the rules with high computation
cost.

In this paper, we solve the problem of the data input
privacy, and the corresponding approaches can be divided
into cryptograph-based and reconstruction-based methods.
The cryptograph-based approaches handle the problem that
some partners want to discover shared association rule from
the global data without disclosing their sensitive data to
others. The global data may be vertically partitioned [17]
or horizontally partitioned [18] and distributed in many
partners. The reconstruction-based methods firstly random-
ize the original data to hide the sensitive data and then
reconstruct the interesting patterns based on the statistical
features without knowing true values. For the centralized
data, there are two distortion strategies, statistical distortion
and algebraic distortion. Rizvi and Haritsa [7] proposed
the MASK approach to disturb the original sparse Boolean
databases. This method retains each 0 or 1 bit in the database
with the probability as p and flips this value with the
probability as 1 — p. Zhang et al. [19] proposed the solution
with the algebraic distortion. By using the eigenvalues and
eigenvectors, the data of users can be distorted by matrix
transformation and noise addition.

Our work focuses on the input data privacy problem
of the centralized data. The frequent itemset mining is
conducted on the distorted data that is randomized by the
randomized response technique. All the above algorithms did
not mention the personalized privacy problem that we solve
in this paper.

3. Preliminaries and Problem Definition

In this section, we introduce the related preliminaries about
the privacy-preserving frequent itemset mining and give the
problem definition of this paper.

3.1. Association Rule Mining. Let I be a set of items and D
the database containing a set of transactions, wherein each
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transaction T is a set of items such that T' € I. A transaction
T is said to contain X if and only if X < T. A rule is an
implication of the form X = Y, where X, Y ¢ I and
X NY = ¢. The support of the rule X = Y is defined in
(1) and its confidence is defined in (2):

supp(X =Y)=P(XUY), (1)

supp (X UY)

conf(X =Y)=PY | X)= supp (X)

> (2)

where P(X U Y) is the percentage of transactions in D that
contain X U Y and supp(X) is defined as the percentage of
transactions containing X.

A set of items X is said to be frequent if and only if
supp (X) is greater than the user-defined minimum support.
Then X is a frequent itemset. If the rule X = Y has
the support greater than the minimum support and its
confidence is greater than the minimum confidence, then
X = Y is an interesting rule, that is, association rule. From
(1) and (2), it is shown that finding the association rules is
effectively equivalent to generating all the frequent itemsets
with support greater than the minimum support. Therefore,
we focus on the frequent itemset mining.

3.2. Randomized Response. Randomized response technique
was first introduced by Warner [20] to solve the statistical
survey problem of the sensitive questions. For example,
social scientists want to know how many people in some
area use drugs. Usually, respondents are reluctant to directly
answer this kind of questions. Hence, Warner proposed the
randomized response.

To ask a binary choice question about whether people
have a sensitive attribute A, the randomized response gives
two related questions like the following:

(1) T have the sensitive attribute A;
(2) I do not have the sensitive attribute A.

Respondents decide which question to answer with a
probability p. Then the interviewer only gets a “yes” or “no”
without knowing which question the respondent answered.
If a respondent has the sensitive attribute A, then he will give
the answer “yes” to answer the first question with probability
as p or “no” with probability as 1 - p. If a person does not have
A, then he will give “no” with probability as p to answer the
first question and “yes” with probability as 1 — p to answer the
second question. Hence the probability that an interviewer
gets the answer “yes” can be computed by (3) while getting
“no” can be computed by (4):

P(ans=yes)=P(A=yes)-p+P(A=mno)-(1-p), (3)
P(ans=no)=P(A=no)-p+P(A=vyes) - (1-p), (4)

where P (A = yes) is the proportion of the respondents that
have the attribute A, while P (A = no) is the proportion of
respondents that do not have the attribute A. The interviewer
can get the proportion of respondents having the attribute A,
P (A = yes), by solving (3) and (4).

3.3. Problem Definition. In this paper, we solve the data
privacy problem with respect to the frequent itemset mining
under the B2B environments as well as the B2C environment.

Under the B2C model, the interviewer can conduct
a survey containing sensitive questions. For example, the
questions on “whether you are divorced,” “whether you have
criminal records,” or “whether you use drugs” are sensitive.
This kind of surveys can analyze the association between
factors and indeed reflect sociology problems. In this model,
respondents disturb survey vectors with the given parameters
and then send them to the reviewers.

Under the B2B model, the data owner such as supermar-
ket managers disturbs the original data before sharing with
other business partners. Taking the market transactions as an
example, customers are reluctant to let others know what he
or she bought, especially some sensitive products. By taking
the privacy protection measures, transaction details can be
hidden without leaking the personal privacy.

Considering the data utility and different degree of pri-
vacy requirements, the protection on the different attributes
or items should be different. For example, the customer does
not care too much about the disclosure that he bought papers,
while concerning heavily on some sensitive items.

The problem of personalized privacy-preserving frequent
itemset mining is, given the original transaction dataset D,
how to disturb D into D’ satisfying the different privacy
requirements and mine frequent itemsets from D', so that
the frequent itemsets mined from D are close to the frequent
itemsets mined from D’ as much as possible.

4. Personalized Privacy-Preserving Frequent
Itemset Mining

In this section, we present the procedure on how to distort
the original data by the randomized response technique
satistying the personalized privacy requirement. Then, we
give the method to reconstruct itemset support from the
distorted data. Finally, we devise a personalized privacy-
preserving frequent itemset mining algorithm based on the
Apriori algorithm.

4.1. Personalized Data Distortion. Suppose there are n items
in the database D. Each transaction in D is represented by a
binary vector T. T; = 1 if this transaction contains the item
i; otherwise, T; = 0. For each item i, 1 < i < n, there is a
probability parameter p; (0 < p; < 1) to disturb the data
on the item 7, and these parameters form a vector shown in
formula (5). Then the distorted value of this transaction on
item i can be expressed in (6), where 7, is a value randomly
drawn from a uniform distribution over the interval [0, 1]:

P =(p1, o> Pn)> (5)
T;, 7 < Pis

T’ _ i i i 6

! {1 - T;, otherwise. ©)

From (6) we can see that the ith value of transaction T is
kept with probability p; and flipped with probability 1 — p;.
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FIGURE 1: Reconstruction probability.

The proportion of T; = 1 can be calculated by (7), and the
proportion of T; = 0 can be calculated by (8):

P(T/=1)=P(T;=1) p+P(T[;=0)-(1-p,), (7)
P(T/=0)=P(T;=0)-p;+P(T;=1)-(1-p). (8)

For the personalized privacy requirements, different
items are distorted with different probability parameters. For
a given parameter p;, the probability of correct reconstruction
on the value T; = 1 is calculated by

R(pps)=P(T/ =1|T;=1)-P(T,=1|T/ =1)
©)
+P(T/=0|T;=1)-P(T,=1|T/ =0).

The first part in (9) means that the original value T; = 1
is distorted into value Ti' = 1 and then reconstructed from
Ti' = 1, and the second part is for the distorted value Ti' =
0. Finally, the probability can be computed by (10), where
s; is the support of item i in original database. The similar

derivation of (10) can be found in [7]:

2 2

Sip; + si(1-p;) '
spi+(1=5)(1=p;) ss(1=p)+(1-5;)p;
(10)

R(pss;) =

The reconstruction probability curves of (10) are shown
in Figure 1. We can see that the higher the item support is, the
easier this item having value 1 will be reconstructed. Besides,
the curves are symmetric around p; = 0.5. The further the
distance between p; and 0.5, the easier the item having value 1
will be reconstructed. Therefore, for a given item, the different
probability parameters will lead to the different degree of
privacy protection. The parameters for items will be set by
the data owner according to the properties of these items. For
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example, the parameter p; for the item milk can be very high
even 1.0, while for the drugs it can be more close to 0.5.

Under the B2C environment, the interviewer and the
respondents cooperate with each other to set the parameter
vector P. Then respondents disturb their personal data
and send them to the interviewer. While under the B2B
environment, the data owner disturbs the original data with
parameter vector P and sends the distorted data with p to the
third parties.

4.2. Itemset Support Reconstruction. After getting the dis-
torted data D', the data mining will reconstruct the support
for itemsets to find the frequent ones. In order to reconstruct
the support of an itemset, we need to get the count of every
combination of the items in this itemset. For example, in
order to compute the support of itemset ABC in original
dataset D, that is, p(A = 1,B = 1,C = 1), we compute the
count of 2* combinations of ABC in D', that is, ¢'(A = 0,B =
0,C = 0),c'(A=0,B=0C=1),.,andc'(A =1,B =
1,C = 1). This is because the original value (A = 1,B=1,C =
1) can be distorted to these 2*> combinations of ABC.

Let S be the combinations of the k items in (11), where
S; is the binary form of value j in (12). For example, when
k = 3 with items ABC, Sy is (A = 0,B = 0,C = 0); S5 is
(A =0,B=1,C = 1); that s, 011 is the binary form of 3:

S=1{S0S1>-->Sx_1}> (11)
S; = binary (i, k) . (12)

The combination S; in the original database can be
distorted into any combination §; in S. According to the
probability theory, the probability of S; being distorted to S;
can be computed by

ry=prod((§;08;) o P¥ +(s,@8;) o (1-P¥)), 13)

where o is the Hadamard product of two vectors and P® s
the distorting probability parameters corresponding to the k
items. prod() returns the product of the vector elements. That
means that if the value on an item i is kept, then the py;) is
multiplied to r;;, otherwise 1 — p;). An example with k as 3 in
Table 1 illustrates the formulation on the transition matrix.
Corresponding to the combinations defined in (11) of the
given k items, we define their counts in the original database
D and the distorted database D', respectively, in (14), where C
is the count vector for D, while C' is the count vector for D'.
¢; and ¢/ are the counts of the combination S; for the k items

in D and D', respectively:

G C(;
q , q
C= . , C = . . (14)
v
k1 Ck_1

Then the relationship between C and C’ can be expressed
by (15) according to the randomized response distortion
mechanism:

C' =RC. (15)
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TABLE 1: An example of transition matrix.

000 110 111
000 P1P2Ps (1-p)(1-ps)ps (1=p)A = p)d - ps)
001 Pipo(1=p3) (1= p)(1 = p)(1 = p3) (1-p)(1-p)ps
11 (1-p)(1-p,)ps P1pr(1 = ps) P1P2Ps
After getting the transition matrix R with elements ACD - ACD
computed by (12), we can reconstruct the counts of combi- 000 t-b _
nations by (16). Hence, we evaluate the performance of the 0
reconstruction by computing the difference between C and 010 1 001
C: 000
5 010
C=R'C. (16) 011
3 011
The count of the last combination divided by the number 011 100
of transactions is the estimated support of the corresponding 4
itemset as shown in (17), where m is the number of transac- 5 101
tions in D: 111
6 110
~ 100
§= 21 17)
m 101 7 111
4.3. Mining Frequent Itemset from Distorted Dataset. We L
mine the frequent itemset from the database by using the clas- 111

sic Apriori algorithm, which employs an iterative approach to
search the frequent itemset. The frequent k-itemsets are used
to generate the candidate (k + 1)-itemsets by the AprioriGen.
Then Apriori computes the support of candidate (k + 1)-
itemsets and filters out the itemsets with support less than the
minimum support. These operations iteratively run until no
more frequent itemsets can be found.

In the privacy-preserving personalized frequent itemset
mining, we need to reconstruct the support of candidate
itemsets from the distorted database. For a candidate itemset,
we compute the counts of all its items combinations. In order
to accelerate the counting speed, we firstly remove the items
with support less than the minimum support. Then for the
candidate itemset X = {I,,..., ;}, we extract the subdataset
D(X) = D(I,,..., I,,) from the database D'. In the subdataset
D(X), we map each transaction t € D(X) into a value by

v=t-b=(tnt.... ) (27,27,..2%). @)

By (18), a vector V will be computed, wherein v; = D(X)i-
b. Then c]{ in (14) is the count of elements in V equal to

j. By this method, it is very fast to compute the vector C'.
Figure 2 gives an example of transaction mapping that maps
the transaction t into a value. By computing the count of each
value from 0 to 7, we can get the counts of all the combinations
for the itemset ACD. By using (16) and (17), we can get the
support of the itemset X.

In our privacy-preserving personalized frequent itemset
mining, we iteratively generate the candidate (k + 1)-itemset
from the frequent k-itemset and check the support of the
candidate itemset using the itemset support reconstruction.

FIGURE 2: An example of transaction mapping.

5. Experimental Results

In this section, we evaluate the performance about the
personalized privacy-preserving frequent itemset mining
on the real dataset and synthetic datasets generated by
the classic IBM Quest Market-Basket Synthetic Data Gen-
erator. (The C++ source code can be downloaded at
http://www.cs.loyola.edu/~cgiannel/assoc_gen.html).

5.1. Datasets. The synthetic datasets are generated by the
IBM Almaden generator with the parameters TIDN [1],
where T is the average size of the transactions, I is the
average size of the maximal potentially large itemsets, D is
the number of transactions, and N is the number of items.
We generated two synthetic datasets T3.14.D500K.N10 and
T40.110.D100K.N942.

The real dataset is BMS-WebView-1 [21], which contains
the click-stream data from the website of a legwear and leg
care retailer. The dataset contains 59,602 transactions and
497 items. We scaled the dataset with a factor of 10 and
got the dataset BMS-WebView-1x10, which contains 596,020
transactions and 497 items.

5.2. Evaluation Metrics. We evaluate our method on the
distorted database by two kinds of error metrics [7], the
support errors and the identity error. Let F be the frequent



itemsets discovered from the original database D by the
Apriori algorithm and F represent the reconstructed frequent
itemset minded from the distorted database by our method.

The support error metric is evaluated by (19), which
reflects the relative error in the support values. We measure
the average error based on the frequent itemsets which are
correctly identified to be frequent, that is, FNF, with the given
minimum support s, ;,:

1 Sf—s
p=|Fnﬁ|fz |f f|. (19)

s
ernf °f

The identity error metrics are given in (20). 0" indicates
the percentage of false positive, that is, the percentage of
reconstructed itemsets which do not exist in the original fre-
quent itemsets. o~ indicates the percentage of false negative,
that is, the percentage of original frequent itemsets which are
not correctly reconstructed as frequent:

Ao

lFl 20)
_ IFI-|FnF]|
o =——— .

|F|

The corresponding metrics are illustrated in Figure 3. For
the part of metric p, the intersection of two frequent itemsets
F and F is maybe empty. Under this condition, we do not
compute the result of p.

5.3. Results Analysis. We evaluate our method by measuring
the support error and the two identity errors shown in
formulas (19), (20), and we conduct our experiments on the
three given datasets described in Section 5.1. We compare
our method with MASK which distorts the original dataset
with only one parameter value p. If the personalized distorted
vector of our method is P, then p = min(P). In our
experiments, the elements in the personalized distorted
vector P in formula (5) are generated following the uniform
distribution with the range of [0.8, 0.95]. The average value of
vector P is 0.8741. In order to protect all the items or attributes
in a dataset, the parameter p in MASK must be set as 0.8.
Therefore, we compare our method with the MASK having
the parameter p as 0.8.

5.3.1. Comparisons with Different Minimum Support. The first
experiment was conducted on the T3.14.D500K.N10. In this
experiment, we set the minimum support from 0.05% to
0.95% with the step length as 0.05%. For each minimum
support, we ran the MASK and our personalized method
100 times and compute the average values and the standard
deviations of evaluation metrics. The results are shown in
Figures 4, 5, and 6.

From Figures 4, 5, and 6, we can see that our method
can have smaller error than MASK. This is because the
MASK has to distort all the items or attributes in the
maximum distorting level in order to protect each item
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FIGURE 3: Evaluation metrics.
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FIGURE 4: Support error p versus minimum support on
T3.14.D500K.N10.
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FIGURE 5: Frequent itemset added ration o* versus minimum
support on T3.14.D500K.N10.

or attribute, while our method distort different items with
different distorting level. The results show that our method
only leads to half of support error p of MASK in the dataset
T3.14.D500K.N10. Besides, from Figures 5 and 6, we can see
that our method can have much smaller deviations of identity
errors.
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FIGURE 6: Frequent itemset lost ration ¢~ versus minimum support
on T3.14.D500K.N10.
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FIGURE 7: Support error p versus minimum support on BMS-
WebView-1x10.

We conducted the same experiments on the real dataset
BMS-WebView-1x10. For this dataset, we set the minimum
support from 0.2% to 0.55% with the step length as 0.05%, and
for each minimum support, we ran the algorithms 20 times.
As the average value of elements in vector P is 0.8741, we also
ran the MASK with parameter p as 0.8741. Besides, we ran the
MASK with p as the maximum value of P, that is, 0.95.

We show the results in Figures 7, 8, and 9, and the results
here show that our method is much better than MASK with p
as 0.8. However, the results of our method are much similar
to the results of MASK with p as 0.8741, the average value
of vector P for our method. Similar results can be found in
Figures 13, 14, and 15 on the dataset T40.110.D100K.N942.
But the MASK with p as 0.8741 cannot protect all the items
or attributes, because some attribute needs protection with
privacy level smaller than 0.8741, such as 0.85. For the three
metrics, the results of MASK with p as 0.95 are better than
our method. This is because the privacy protection level of
each attribute in our method is between 0.8 and 0.95.

5.3.2. The Impact of the Size of Dataset. We conduct the
second experiment to evaluate the impact of the size of

0.5F
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03F

0.2

0.1}

A-._.ﬁ“_____*____.#_.__ :

0
1.5 2 2.5 3 3.5 4 4.5 5 55 6

Minimum support

-o- MASK-0.8 -a- MASK-0.95

o MASK-0.8741 —o— Personalized

FIGURE 8: Frequent itemset added ration ¢* versus minimum

support on BMS-WebView-1x10.
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FIGURE 9: Frequent itemset lost ration ¢~ versus minimum support
on BMS-WebView-1x10.

dataset on the reconstruction errors shown in formulas (19),
(20). The dataset BMS-WebView-1x10 is formed from the
dataset BMS-WebView-1 by copying it 10 times. Similarly, we
set the minimum support of frequent itemset mining from
0.2% to 0.55% with the step length as 0.05% and run the
algorithms 20 times for each minimum support.

The corresponding results in Figures 10, 11, and 12 show
that the reconstruction errors on BMS-WebView-1x10 are
much smaller than the errors on BMS-WebView-1 for both
MASK and our method. Note that the frequent itemsets dis-
covered from BMS-WebView-1 are the same as the frequent
itemsets discovered from BMS-WebView-1x10. This gives us a
thought that if we want to improve the reconstruction results,
we can copy the original dataset many times and distort
the new dataset and send it to the cooperated party. Then
the cooperated party can accurately discover the interesting
patterns without knowing the original private information.

5.3.3. Comparisons with Different Lengths of Frequent Item-
set. The third experiment is conducted on the dataset
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FIGURE 14: Frequent itemset added ration o™ versus itemset length
k on dataset T40.110.DI00K.N942.

T40.110.D100K.N942. In this experiment, we set the min-
imum support as 1.45%, and we run the corresponding
algorithms 5 times and get the average values. We also set the
parameter p of MASK as 0.8, 0.8741, and 0.95 separately.

For the minimum support 1.45%, the maximum length of
original frequent itemsets is 8, and the number of frequent
k-itemset is shown in Table 2. Then we compare the result
on each itemset length from 1 to 8. The results shown in
Figures 13, 14, and 15 demonstrate that our method performs
better than MASK with p as 0.8 for each itemset length and
performs very similar to the MASK with p as 0.8741.

In Figure 13, as the intersection set of frequent 8-itemsets
reconstructed by MASK with p as 0.8 and original frequent
8-itemsets is an empty set, the support error cannot be
computed; then the value cannot be shown. We cannot
conclude the clear trend of the reconstruction error with
the itemset length increasing. In Figure 14, when k is 8, the
frequent itemset added ratio increased sharply. By carefully
analyzing the results, we found that many new frequent
itemsets have the support very close to the minimum support,
which leads to the heavy identity error.
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TaBLE 2: The number of frequent k-itemsets.

k 1 2 3 4 5 6 7 8
|[F| 690 4869 293 368 483 469 331 25

6. Conclusions

In this paper, we solve the problem of how to provide the
personalized privacy protection on different attributes or
items while discovering the frequent itemsets. Based on the
classic randomized response technique, we proposed a per-
sonalized privacy-preserving method. Besides, we proposed
a method to improve the efficiency of counting the frequent
itemsets by mapping the frequent itemset vector into a value.
Experimental results show that the personalized privacy
protection method can have much better performance than
the traditional privacy protection method which provides
the same privacy protection for the different items. From
the experimental results, we can see that we can copy the
original dataset many times to create a new dataset and then
distort this new dataset. Then the others can discover the
frequent itemsets with smaller error at the expense of more
computation and communication cost.
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