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Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered
nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial
ecosystem. Studies on the influence of engineered nanomaterials (carbon andmetal/metal oxides based) on plant growth indicated
that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth
of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are
not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered
nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing
conclusions, have been drawn frommost studies on the interactions between engineered nanomaterials with plants.Therefore, this
paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different
plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant
and cellular level.

1. Nanotechnology: In General

The nanotechnology process began with the generation,
manipulation, and deployment of nanomaterials, represent-
ing an area holding significant promise for a wide range of
applications [1–5]. Nanotechnology has become a dynam-
ically developing industry, with multiple applications in
energy, materials, computer chips, manufacturing, health
care, and medical diagnosis [2, 3]. Products that are derived
from nanotechnology are known as nanomaterials [4]. It
is believed that there are over 800 nanomaterial products
currently available in themarket, and it is expected to increase
over the next few years [5–7]. Thus, through 2014, it also
approximated that an excess of 15% of all products on the
worldwide market would have some type of nanotechnology
integrated within their production processes [6].

1.1. Nanomaterials. Generally, nanomaterials refer to a
colloidal particulate system, with size ranging from 10

to 1000 nm, possessing unique properties, such as size-
dependent qualities, high surface-to-volume ratio, and
promising optical properties [4, 5]. The main categories of
nanomaterials are carbonaceous [8], semiconductor, metal
oxides [9, 10], lipids [11], zero-valent metals [12], quantum
dots, nanopolymer [13], and dendimers [14], with differ-
ent kinds of features, such as nanofibers, nanowires, and
nanosheets (Table 1). The preparation of nanomaterial typi-
cally involves a direct and synthetic route that yields particles
in the nanosize range, followed by the application of grinding
or milling, high pressure homogenization, and sonication to
reduce its size [15, 16]. Meanwhile, the bottom-up process
in synthesizing nanomaterials involved reactive precipitation
and solvent displacements [17].

It is very important to realize that nanomaterials, due
to their enhanced contact surface area, might be poisonous,
an effect which might be absent in its bulk counterpart,
especially in an open agricultural ecosystem [9, 10]. Examples
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Table 1: Classification of nanomaterials.

Categories of nanomaterials Description References

Nanoparticles

Submicron or even ultramicron size particles obtainable as high
performance radiant resistant materials, magnetic materials, solar
battery materials, packaging materials, and magnetic fluid
materials

[11, 12]

Nanotubes and nanofibers Nanometer size long linear material, optical materials, micro
conductors, microfibers, nanotubes of PEEK, PET, and PTFE [8]

Nanofilm Films utilized as gas catalyst materials [18]

Nanoblock Nanometer crystalline materials produced by substantial accuracy,
developing controlled crystallization or nanoparticles [19]

Nanocomposites Composite nanomaterials, which use nanosize reinforcements
instead of conventional fibers or particulates [15]

Nanocrystalline solids

Polycrystals with the size of 1 to 10 nm and 50% or more of solid
consists of inherent interface between crystals and different
orientations. The clusters that formed through homogenous
nucleation and grow by coalescence and incorporation of atoms.

[16]

of these cases are solid matrices with nanomaterials that
have a nanostructure freely attached to its surface, where it
can moderately be expected to break free or leach out once
coming into contact with water or air, or when subjected to
reasonably foreseeable mechanical forces [14].

1.2. Engineered Nanomaterials. More than 1300 commercial
nanomaterials, with widespread of potential applications, are
currently available [15–17, 19]. Carbon nanotubes and related
materials were discovered in 1985 [8]. By 2011, the annual
worldwide production of carbon-based nanomaterials was
estimated to exceed 1000 tons, with some of the factory’s
capacity reaching to 1500 tons per year [20–22]. The first
product was shown to be multiwall carbon nanotubes, with
concentric cylinders reaching to 10𝜇m in length and 5–
40 nm in diameter [21]. Consequently, a single walled carbon
nanotube (SWCNTs) has been synthesized with the assis-
tance of Co/Ni catalyst [23].This fullerene structure exhibited
promising electrical/thermal conductivity and mechanical
properties. For example, a single walled carbon nanotube has
a strength-to-weight ratio that is 460 times stronger than that
of steel [23, 24].The behavior of carbon-based nanomaterials
is reflective of different environments and conditions [22].
For example, once the carbon-based nanomaterials have been
introduced to the human health area, it will group itself
with other tubes and rods as high aspect ratio nanomaterials,
similar to asbestos [25]. Meanwhile, due to its inherent
hydrophilicity, carbon-based nanomaterials tend to precipi-
tate and aggregate in aqueous mediums [21]. Some studies
have focused on the surface functionalization of carbon-
based nanomaterials, such as the attachment of polyethy-
lene glycol, noncovalent modification, self-assembly, and
conjugation of phospholipids, lysophosphtidylcholide, and
lysophosphatidylcholine to increase its stability, especially
in aqueous suspension [26, 27]. This, in return, increases
the application range of carbon-based nanomaterials and
its derivatives in catalyst, fuel cell electrodes, orthopedic
implants, plastics, battery, super capacitors, water purification
system, conductive coatings, adhesive, sensors electronics,
composites, aircraft, and automotive industries (Figure 1).

It has been documented that carbon-based nanomaterials
such as nanotubes and fullerenes could be degraded under a
wide range of conditions, whereby fullerene has a tendency
to be taken up by wood decay fungi and metabolized
[21–27]. The fullerene nanoparticles would accumulate in
microbial cells, followed by eatingmechanism of worms, thus
increasing the possibility of nanomaterials to be incorporated
into the food chain [24].

The next class of engineered nanomaterials is metal-
containing materials, such as metal oxides [9]. The synthesis
ofmetal oxides andmetal nanoparticles could be achieved via
several routes. Grinding of bulkmaterials is the usual practice
for synthesizing metal oxide nanoparticles [9, 32]. The range
of nanoparticulate metal oxides includes both individual
(e.g., CeO

2
, TiO
2
, ZnO, CrO

2
, MoO

3
, and Bi

2
O
3
) and binary

oxides (e.g., BaTiO
2
, LiCoO

2
, and InSnO).This series ofmetal

oxide found awide industrial application. For example, owing
to its ultraviolet blocking ability and visible transparency
of nanoparticle foam, ZnO and TiO

2
are extensively being

used in cosmetics, sunscreen, and bottle coatings [33]. It was
reported that in 2005–2010, the production of ZnO and TiO

2

for the application of skin care products reached to 1000 tons
per year [34]. Moreover, CeO

2
is finding major utilization

as a combustion catalyst in diesel fuels to enhance emission
quality, as well as in oxygen pumps, gas sensor, solar cells, and
metallurgical ceramic/gas applications [35].

2. Engineered Nanomaterials: In Living System

The advent of nanomaterials has seen increased production
recently, and its interaction with living organisms is a signif-
icant cause of concern [10–14, 36]. Manufactured ENs enter
living systems through intentional and unintentional releases
such as solid/liquid waste streams frommanufacture facilities
and atmospheric emissions [4]. Nanomaterials can come into
contact with living organisms via multiple routes (Figure 2),
such as incidental release, direct release from industrial
products or processes, as well as commercial products during
intended uses that in turn enter the sewer-to-wastewater
treatment plants [37, 38].
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Its application continues in biosolids from wastewater
treatment fields, pesticides applied to agricultural, paints,
fabrics, personal health care, and accidental spill of materials
during manufacturing, contact during usage of consumer
products, and direct infiltration or runoff of excretion from
humans or livestock [39]. For example, ENs have been
applied to remediate groundwater, where its filtration from
stack emissions needs a new generation of nanostructured
sorbents for an effective removal [40–42]. Compared to the
nanomaterials from diesel emission, the emitted nanoma-
terials from wastewater would eventually be deposited on
the surface water bodies and land despite the fact that the
treatment for avoiding aggregationmay lead to its buoyancy’s
increment. Once the nanomaterials reach land, they have
the potential to pollute soil, migrate into surface/ground
water, and interact with biota. This nanoparticle can also
be transported to an aquatic system by rainwater and/or
wind runoff. Upon release to water, dispersed nanomaterials
are anticipated to behave based on the phenomenon of
colloidal science [39]. Generally, colloidal suspensions of
ENs are generally unstable, where particles may approach
each other close enough for attractive Van der Waals force
to become dominant over repulsive electrostatic forces and
steric hindrance [41, 42]. This resulted in particles adhering
to each other, followed by sedimentation [40]. Furthermore,
natural waters contain other adherent matters such as solid,
dissolved, or colloidal materials. In addition, the suspensions
of dispersed nanomaterials are stable only under narrow
ranges of environmental conditions, where ionic strength,
pH, and the presence of natural organic matter should be
taken into account [37, 38]. For example, seawater has a high
pH and ionic strength, thus, electric double layers of colloid
particles are smaller compared to freshwater [39, 43]. This in
turn allowed closer interparticle approach, leading to higher
aggregations.

Since the last decade, an intensive wealth of acute toxicity
studies focusing on biological and ecological effect on short-
term effect of ENs has garnered interest. However, there is
still a gap of research interest in the effect on the presence
of ENs in living environments. For example, studies on the
estimation of appropriate exposure are hampered by the
deficiency of knowledge of rates of release or concentrations
of nanomaterials in the environment [44]. There is also
a lack of knowledge related to the theory of estimating
environmental concentrations focusing on the releasing rate
[45, 46]. It has been reported that the existing theory of
behavior of chemicals and particulates in the environment
is not aligned with the characteristics of nanomaterials.
Recently, the theory is only based on the direct measurement
and assessment on the existing nanomaterials in living sys-
tems, focusing much more on the parameters involved (e.g.,
acidity, pH, charged ions, and level of organic matter) for the
release mechanism [42]. Those theories reported two main
conclusions; first, the quantity estimation of nanomaterials
in water surface is in accordance to the prediction rather
than the actual measurement. Second, nanomaterials could
be dissolved, latched onto chemical molecules/ions, clamped,
transformed into other chemicals by microorganism, or
undergone amineralization before being 100%degradedwith

the dissolution of organic carbon or the generation of CO
2

[47–49]. There are some reports that claimed that whether
or not it is followed by degradation of the dissolved material,
the process of dissolutionmakes nanoparticles disappear and
become less persistent. In principle, the methods measuring
CO
2
production require a larger amount of test materials

[48].
With that inmind, studies that aremore extensive need to

focus on the possibility of the potential places where ENs are
concentrated, agglomerated, or interacted with organic mat-
ters [49]. This is important, especially in cases of wastewater
treatment, where it will likely be sites for the accumulation
of some ENs in sewage. There is also the possibility of bioac-
cumulations through the concentration of ENs in particular
organs [39, 50]. Through the bioaccumulation process, the
aggregation of ENs will end up with sedimentation, where
the organism may take up ENs via inhalation or ingestion.
Some may also transfer the microorganism across epithelial
surfaces (e.g., lining of the lungs, gills, skin, or intestines).
Meanwhile, microorganism can also take up ENs via simple
diffusion transport across cell membranes, or even after
membrane damage [51]. In this case, the transfer mechanism
relies on the dispersion, concentration, and dissolving of
ENs before ingestion. In addition, some semiconductor-
engineered nanomaterials could also be concentrated by the
waters, which could be directly transferred to the ecosystems’
food chains [52–54]. For example, a recent study about the
achievable transfer of quantum dots in a simple aquatic
food chain has been conducted, and it was reported that
nanomaterials could be transferred to rotifers via dietary
uptake of ciliated protozoans. Other studies claimed that
there is some potential for transferring nanomaterials across
food chain levels, depending on the material type and food
chain [54, 55].

This creates problems for aquatic microorganism, since
nanomaterials themselves have an antibacterial or virucidal
effect, especially in cases such as silver nanoparticles [56]. For
example, studies related towater and land dwelling organisms
have shown awide range of effects on the presence of different
ENs onmicroorganism, invertebrates, and fish.The results so
far pointed out the potential for hazardous effects at lethal
and sublethal levels (e.g., behavior, reproduction, growth, and
development) towards the production of reactive O

2
species,

inflammatory responses, and cytostatic effects [57–59]. This
is supported by some of the studies on the potential effects
on themovement of ENs to embryos, accumulation, and food
chain transfer [58].

With that in mind, some issues should be addressed and
highlighted concerning the presence of ENs in the living
system. The issues ranged from the behavior of nanoma-
terials manufacturers in the environment, the stability of
ENs, effect on aquatic/sedimentary biota not being similar
to nonnanomaterials of the same materials, and suitable
protection of the ecosystem while permitting the advantages
that nanotechnology offers to be fully developed [58–61].
This started with the knowledge of colloidal science, which
could provide evidence of the physical and chemical charac-
ters of nanomaterials in the receiving environment [48–51].
Generally, small particles tend to agglomerate or aggregate
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relative to other colloidal, which accounts for its particulate
being present in the environment [34]. In the context of the
environment, ENs may be present and cannot be disasso-
ciated by either dissolution or agglomeration [44]. As far
as we can tell, there are no peer-reviewed publications on
the concentration of ENs in environmental compartments,
such as surface water or soil [35, 37–41]. Indeed, the quantity
estimation of ENs is based on its predicted rather than the
actual values, which could be considered suitable metrics
of the accurate measurement of ENs in living system risk
assessment not being finalized and still under discussion
[32]. Several considerations should be taken into account
in the assessment effect of nanomaterials in living systems,
where the exposure concentration/doses should be realistic.
In this case, the assessment should not only cover the free
nanoparticle form, but also all physical and chemical species,
aggregated matter, and associated/deposited matter with
other organic compounds. This would have influenced ENs
bioavailability, which will in turn determine the biological
uptakes.

2.1.EngineeredNanomaterials inAgriculture. Engineered nano-
materials research and development, in agricultural appli-
cations, probably facilitated and framed the next stage of
development of genetically modified crops (GMCs), animal
production input, biocides, and precision farming system
[59–64]. Similar to other technologies, low-cost ENs and
field application technologies are required for their applica-
tions in agriculture [1–5]. Nanotechnology is the result of
the improvement associated with a variety of economical
applications for superior plant growth. Applications of ENs
motivate earlier plant germination as well as enhance plant
production (Figure 3).

Nanoagriculture utilizes nanotechnology to improve the
yield of plants for food, fuel, and other uses. Researchers
report a big gap in knowledge about the effects of nanopar-
ticles on rice, tomatoes, corn, and other food crops [63–
65]. The build-up and uptake of ENs differs and these
kinds of components mainly rely on the type of plant, the
chemical composition, and the size of ENs [66–68]. Some
plants are capable of uptaking and accumulating engineered
nanomaterials.The interaction of plant cell with the ENs leads
to the modification of plant gene expression and associated
biological pathways, which eventually affect plant growth and
developments [67–69]. The effects of ENs on different plant
species can vary greatly with plant growth stages, method,
and duration of exposure and depend on the ENs shape,
size, chemical composition, concentration, surface structure,
aggregation, and solubility [68].

To our knowledge, the first report relevant to the effects
of bulk and ENs on Sage (Salvia officinalis L.) is in [69].
Nanomaterials improved seed germination in plants but can
have contrary effects on others [63, 64]. In these instances,
studies on ENs aspects are on the nanoparticles dosage in
the various mediums, their chemical and physical properties,
the mechanisms permitting them to pass through cellular
membranes and cell walls. The specific properties, which
might be in connection with positive and negative effects of
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Figure 3: General application of engineered nanomaterials in
agricultural.

nanoparticles and the mechanism underlying nanoparticles
trophic transports are necessary as well [65]. Moreover,
the existing application methods need to be reviewed for
improved efficiency of nanomaterials on future targets. The
necessity of further studies on the possible risks related to
the use of nanomaterials and their potential adverse effects
is needed [60–62].

Research indicates that extended amounts of ENs are
highly toxic to aquatic life, bacteria, and human cells in
vitro. At the nanoscale, even normally benign substancesmay
become hazardous. According to the particle physics and
studies of fine atmospheric contaminants, ENs are usually
in the size range that stays suspended for days to weeks if
released into the air [54–56]. ENs are inhaled and collected
in all regions of the respiratory system of the plant. Because
ENs is small, they follow airstreams more easily than larger
particles are simply collected and taken in standard ventilated
enclosures [5–9].Therefore, a particular concern is the ability
of the nanoparticle directly taken up by individual cells
and cell nuclei, especially through the respiratory system.
Bioaccumulation is another topic of concern [10–12, 36]. As
the properties ofmaterials at the nanoscale variable are poorly
understood, it is not possible to provide a generic assessment
of health and environmental risks [53–55].

Therefore, the interaction associated with plant cell and
ENs led to the modification of plant gene expression. It
connected biological pathways, which eventually affect the
plant growth and development. This is due to the unique
properties of ENs that can modify their physicochemical
properties and give different effects on plant growth, depend-
ing on nanomaterials surface structure, size, shape, chemical
composition, concentration, solubility, and aggregation [63].
Hence, ENs ought to be designed to have all necessary
properties such as effective concentration with high effec-
tiveness, stability, and solubility, time-controlled release in
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1

2 3

4

Figure 4: Interaction of engineered nanomaterials in the envi-
ronment. (1) Engineered nanomaterials absorbed directly to plant
root. (2) Engineered nanomaterials mixed with water medium. (3)
Engineered nanomaterials mixed with water and transferred to
plant. (4) Engineered nanomaterials stayed in the soil.

response to certain stimuli, enhanced targeted activity, and
less toxicity with safe and easy mode of delivery to avoid
repeated applications [67, 69]. The vast majority of research
works done for each different nanomaterials and product in
agriculture is thereof to investigate its potential toxicity before
its use could consider safe.

3. Engineered Nanomaterials:
On Plant Growth

The possibility of plants interacting with ENs is increased
with the application of its production and application in
the variety of instruments and goods. Underneath particular
growing environments, plants may possibly absorb essential
and nonessential elements, which to certain concentration,
might result in toxicity [70–72]. It has been documented that,
toxic elements with no known function in biological systems
usually accumulate in plant tissues and cause some lethal
effect for nontolerant species [55, 71]. ENs can reach plants
through direct application, accidental release, contaminated
soil/sediments, or atmospheric fallouts, which results in a
significant negative effect on food crops and food chains
(Figure 4).

It is worse when these toxic elements are transferred
from plants to consumers. Research studies on selenium
have found that selenium-laden plants can be used to supply
selenium deficiencies in ruminants and other animals, even
at very narrow and low deficiencies and toxicities [63, 72].
This has been supported by other studies that focused on the
toxicity of various types of plants, including radish (Raphanus
sativus), corn (Zea mays), lettuce (Lactuca sativa), cucumber
(Cucumis sativus), rape (Brassica napus), and many more
[69, 70]. However, the biodegradation screening method of
measuring dissolved on toxicity of both carbon and metal-
based nanomaterials is inapplicable. Indeed, most studies

concentrated on the uptake, accumulation, translocation, and
biotransformation of ENs.

3.1.Carbon Based EngineeredNanomaterials: On Plant Growth.
A wide production of carbon-based nanomaterials has led
to its potential release in living systems, either intentionally
in discharges, or unintentionally in spillages, and greater
possibilities of the adverse environmental effects [8]. Among
carbon-based nanomaterials, the most studied materials
are fullerene C

70
, fullerol (C

60
(OH)
20
), and carbon nan-

otubes. As carbon-based nanomaterials are considered highly
hydrophobic with the tendency to aggregate, it could be
expected to settle in the living system [73]. This hydrophobic
property would enhance the carbon-based nanomaterials’
capability to interact with many organic substances. Thus,
the only low surface friction of carbon nanotubes is required
to assist the flow of organic substances into the cytoplasm
[74]. Some edible plants can take up some carbon-based
nanoparticle, with specific uptake mechanism and accumu-
lation. Properly functionalized ENs provided better pene-
tration through the cuticle. This in turn allows for a slow
and governed discharge of active ingredients on reaching
the target weed. For instance, appropriately functionalized
lipophilic nanosilica gets absorbed into the cuticular lipids of
insects by physisorption, damages the protective wax layer,
and induces death by desiccation.

3.1.1. Fullerene: On Plant Growth. It has been reported that
the presence of fullerene in the form of black aggregates is
more plentiful in seeds and roots compared to the leaves
and stems for rice seeds [73–75]. However, in mature plants,
more robust translocation from the roots of the aerial part
of the plant is observed. Thus, fullerene aggregates were
mostly present in or near the stems vascular system and
leaves, whereby the roots have been devoid of fullerene
[74]. The aggregation of fullerene in leaves indicated that
they followed the transmission route of nutrients and water
through the xylem [76]. It is believed that the individual
fullerenes nanoparticle entering the plant roots through
osmotic pressure, capillary forces, and pores in the cell
walls by the intercellular plasmodesmata, or by means of
the greatly regulated symplastic routes [77, 78]. Only the
fullerene particles with a diameter of less than the pore
diameter of the cell wall could simply pass through and reach
the plasma membrane [74].

3.1.2.Fullerol: On Plant Growth. Thesmall size and hydropho-
bicity properties inducing a permeability of fullerol through
the cell wall pores in the plant cell suspension leads to
minimal uptake of the nanoparticles [79]. Consequently, the
fullerol have accumulated at the interface between the cell
wall and plasma membrane [77]. This accumulation also
occurred between adjacent epidermal cell walls, showing its
apoplectic mode of transport in the plant tissues [77, 79].

3.1.3. Carbon Nanotubes: On Plant Growth. Carbon nan-
otubes (CNTs) may have possibly single or multiple layers
of carbons established in a cylinder [80–84]. CNTs behave as
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fibers, with its properties very different from bulk carbon or
graphite [81]. Thus, CNTs possess excellent tensile strength
and are possibly the strongest, smallest fiber known [82–84].
Most studies are increasingly carried out in order to obtain
the uptake and transport mechanism of carbon-based nano-
materials into intact plant cells [85–87]. There is proof that
CNTs could translocate to systemic sites, such as fruits, leaves
and roots, which could involve a strong interaction with
the cells of the tomato seedling. This resulted in significant
changes in total fruits, leaves, and roots gene expression [86].
CNTs have phytotoxic effects on plant cells due to aggregation
and causes cell death in a dose dependent manner [73]. Cell
death is demonstrated by electrolyte leakage and the swelling
of the cell plant.

Theoretically, single wall carbon nanotube is too large
to penetrate the cell wall. However, the evidence of an
endocytosis-like structure of the plasma membrane in an
Arabidopsis thaliana leaf cell indicates the existence carbon
nanotubes and is extremely relevant to guide for additional
studies with other edible plants [88, 89]. Then, researches
with cell suspensions of Nicotiana tabacum cv. Bright Yellow
found that the water-soluble single wall carbon nanotube
with a length of less than 500 nmhas penetrated the intact cell
wall and membrane over fluidic phase endocytosis [90, 91].
Due to its small size, carbon nanotubes tend to interact with
the polysaccharides and proteins in the cell wall and elicit
hypersensitive retorts mimicking plant pathogens, leading to
cell mortality [80–83].This is supported by the recognition of
noncovalent interactions involving rice mortality and carbon
nanotubes. Thus, CNTs could possibly improve root growth
of cucumbers (Cucumis sativus), onions (Allium cepa), and
nanotube sheets formed by both functionalized-CNTs and
nonfunctionalized CNTs on root surfaces, but none entered
the roots [92, 93].Though CNTs were discovered to diminish
root growth in tomato plants, recent works reported that
CNTs penetrated tomato seed coat and significantly enhance
seedling growth and seed germination rates [93–95].

3.1.4. MWCNTs: On Plant Growth. Multiwalled carbon nan-
otubes (MWCNTs) are 1mm long and 20 nm in diameter
[96–99]. MWCNTs are taken up by the seeds and roots
system via the creation of new pores and water uptake in
order to develop tomato seedlings [100, 101]. In this case,
MWCNTs are visualized to be on the root surface before
eventually piercing the epidermal and root hair cell walls
and cap of the seedlings [102]. Furthermore, some studies
described that MWCNTs permeate tomato seeds and boost
the germination rate by improving the seed water uptake
[101]. The MWCNTs elevated the germination of seed to up
to 90% in 20 days compared to 71% in the control sample
and the plants’ biomass [103]. Other researches pointed out
that the cell walls of rice cell suspension restrict the entry
of the MWCNTs into the cellular cytoplasm, forming black
clumps that strongly wrap around and associate with the cells
[100]. The presence of the clumps, with an increase in the
concentration of carbon nanomaterials, would increase in
both size and number [101]. This hypersensitive response is
thought to be in charge of preventing the entry of MWCNTs

through the plant cell walls [101–103]. For example, the seeds
treated with MWCNTs showed a few aggregate nanotubes in
the vascular system, and none in the tissues. Meanwhile, in
the zucchini species, there are no negative effects noticed on
seed germination and root elongation within the examined
range of MWCNTs [104].

3.1.5. SWCNTs: On Plant Growth. The dimension of typical
single walled carbon nanotube (SWCNTs) is about 1 to
2 nm in diameter and 0.1 𝜇m in length [24, 105, 106]. Some
studies indicate that the surface modifications of carbon-
based nanomaterials increased its widespread, dispensability,
and water column stability [107–111]. Contrarily, no uptake of
SWCNTs and its functionalized roots of cucumber seedling
are found after treatment for 84 h. In the form of nanotube
sheet, the SWCNTs were found adhered to the external
surface of the main and secondary roots [112, 113]. However,
current results are insufficient to determine the translocation
of SWCNTs from the root systems to the aerial parts of the
plant [110–116].

3.1.6. Graphene: On Plant Growth. Graphene is a two dimen-
sional crystalline allotrope of carbon, which can be described
as a one atom layer of graphite. At high concentrations of
graphene (1000 mgL−1), the root hair growth of red spinach
and cabbage decreased compared to the control plant [117–
119] (Figure 5). This is due to the accumulation of graphene
using H

2
O
2
visualization, together with visible signs of

necrotic damage lesions and proof of a massive electrolyte
leakage, indicating an oxidation stress mechanism [28, 118,
120].

For example, intracellular reduction oxidation system
probably has an essential function in the induction of cell
death induced by graphene [28] (Figure 6). It described the
accumulation graphene as leading to cell death, shown by
electrolyte leakage from cells [119]. Via graphene treatment,
the root surface area of cabbage significantly improved, and
it may be that an excess of graphene resulted in the swelling
in Origanum vulgare and Origanum [117, 118]. Graphene is
known as inducing phytotoxic effects in plant cells due to
the accumulation mechanism. This causes cell death and the
accumulation in a dose-dependent manner [121, 122]. There
is certainly proof that graphene could translocate to systemic
sites, such as fruits, roots, and leaves, which engage in a
strong interaction with the cells of tomato seedlings, leading
to substantial modifications in total gene expression in fruits,
leaves, and roots and exerting toxic effects [123–126].

With that, it is unexpected to find the toxic effects of
graphene on terrestrial plant species, in tomato, cabbage, and
red spinach [124, 125].The similar growth pattern observed in
tomato, cabbage, and red spinach using graphene nanomate-
rials was reported in [117, 124, 127]. At higher concentrations
of graphene (1000mgL−1), the root hair growth of red spinach
and cabbage compared to control plants was reduced [117]
(Figure 7).

Overproduction associated with the accumulation
induced by graphene could produce substantial plant
growth inhibition, and biomass reduction reported that



8 The Scientific World Journal

0 500 1000 2000

G concentration (mg/L)

0

5

10

15

20

25

Ro
ot

 le
ng

th
 (c

m
)

(a)

0 500 1000 2000

G concentration (mg/L)

0

2

4

6

8

10

12

14

Sh
oo

t l
en

gt
h 

(c
m

)

(b)

0 500 1000 2000

G concentration (mg/L)

0

0.05

0.1

0.15

0.2

0.25

Ro
ot

 w
ei

gh
t (

g)

(c)

0 500 1000 2000

G concentration (mg/L)

0

0.2

0.4

0.6

0.8

1

Sh
oo

t w
ei

gh
t (

g)

(d)

0 500 1000 2000

G concentration (mg/L)

0

2

4

6

8

10

12

14

16

18

Le
af

 n
um

be
r

Cabbage
Tomato
Red spinach

(e)

0 500 1000 2000

G concentration (mg/L)

Le
af

 ar
ea

 (c
m

2
)

0

5

10

15

20

25

30

Cabbage
Tomato
Red spinach

(f)

Figure 5: Effect of graphene (G) on of red spinach, cabbage, and tomato seedlings. 21 days seedlings growth onHoaglandmediawith graphene
(0, 500, 1000, and 2000 mgL−1) were utilized for all measurements. (a) Root length, (b) shoot length, (c) root weight, (d) shoot weight, (e)
leaf number, and (f) leaf area [28].

the production of accumulation could be a main factor in
the toxicological effects of nanostructured materials [128].
Declaration of accumulation production by means of H

2
O
2

visualization in addition to visible signs of necrotic damage
lesions and evidence of a massive electrolyte leakage all
indicated an oxidative stress mechanism mediated through
the necrotic pathway, which requires further study [117, 127].
The assessment of graphene toxicity targets terrestrial
plant species [125, 126]. It applies a prolonged exposure
period with different concentrations to measure potential
risks.

3.2. Metal and Metal Oxide Nanomaterials: On Plant Growth.
Estimates for the production of metal/metal oxide nanopar-
ticles revealed that the quantities produced will probably rise

from 2000 tons in 2004, to over 58,000 tons yearly between
2011 and 2020 [129–132]. Metal/metal oxide nanoparticles
display size dependent properties, such as fluorescence, pho-
tocatalytic degradation, or magnetism, which has biotechno-
logical applications in soil remediation, sensor development,
and agrochemicals [130, 131]. In natural living systems, the
effect of metal/metal oxide by plants is expected to depend
largely on the chemical properties, colloidal properties such
as sediments, soil or sludge, and organic content [133, 134].
Themost studiedmetal-based nanomaterials are TiO

2
, CeO

2
,

Fe
3
O
4
, and ZnO nanoparticles. Indeed, Fe

3
O
4
nanoparti-

cle induces some stability effect on aquatic suspensions of
fullerene and carbon nanotubes. It has been documented that
the effect of humic acids and varying pH can combine the
effects on the fate of Fe

3
O
4
nanoparticle by increasing pH,
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Figure 6: Effects of graphene (G) on accumulation of H
2
O
2
in leaves tested by means of the ROS-sensitive dye DAB of red spinach, cabbage,

and tomato seedlings. 21 days leaves treated with or without 1000mgL−1 graphene were utilized for all measurements. (a), (c), and (e) are
cabbage, tomato, and red spinach leaves without graphene, respectively. (b), (d), and (f) are cabbage, tomato, and red spinach leaves with
graphene (1000mgL−1), respectively. The brown staining shows the formation of a brown polymerization product when H

2
O
2
reacts with

DAB. (g) Effect of graphene (1000 mgL−1) on the accumulation of H
2
O
2
in treated leaves as measured utilizing DAB [28].

(a) (b) (c)

(d) (e) (f)

Figure 7: Behavior of graphene (1000mgL−1) on the root surface of tomato seedlings grown in Hoagland medium. (a, d) SEM image of the
untreated control of tomato root elongation and root hair zone, respectively. (b) Root elongation zone of tomato root and (c, e, and f) showing
surface detachment and aggregates of G on the tomato roots surface treated with G [28].
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resulting in a higher level of aggregation. A similar effect was
recently shown for CeO

2
.

Metal nanoparticles, under low concentration conditions,
play a key role at the limit of plant tolerance in the devel-
opment of plants [132]. If plants absorb an excess of metals,
toxic effects can obvious, including the decrease of growth
and irregularities in cell division [129–131]. In this case,
excess metal nanoparticles, acting as cofactor for enzymes,
are involved in the formation of intermediate metabolites.
However, the response of plants to metal nanoparticle varies
with the nature of the metal, type of plant species, and the
stage of growth.

3.2.1. Au: On Plant Growth. Gold (Au) is categorized as a
harmful substance, and the toxicity of Au in many organisms
has been reported in ionic or dissolved form [135–138].
The toxicity of Au has been harnessed in the form of
Au nanoparticles to act as antibacterial agents in biocide
coating, soap, toothpaste and shampoo, and is the most
prevalent nanoparticle in over 25 consumer products [136,
137].The production and the usage of Au nanoparticles in the
environment and its potential discharge to the environment
might cause severe toxicity problems in the long run [139–
141].

For example, Brassica juncea,Medicago sativa showed an
increase in Au uptake, with a conforming improvement in
the substrate of Au concentration and exposure time [142–
144]. The Au nanoparticles located in the nucleus and the
applications of defamation suggested at both species are
regarded as hyperaccumulators of Au nanoparticles [145–
147]. Additionally, it is documented that Au nanoparticle are
transported inside the cells through plasmodesmata. Trans-
mission electron microscope images of rice roots revealed
that various Au particle sizes are deposited inside the root
cells in the form of vacuoles [143]. The cell damage occurred
due to penetrations of large Au nanoparticles entering via
small pores [142–145]. Au nanoparticles are reported to
disrupt the root tip cells of onion (Allium cepa), thus dam-
aging the cell division process by causing the formation of
chromatin bridge, cell disintegration, and stickiness [148].

3.2.2. Ag: On Plant Growth. Potential applications of silver
(Ag) nanoparticles in biomedicine include imaging applica-
tions and chemical sensing. Ag nanoparticles are synthesized
using various methods, chemical, electrochemical, photo-
chemical, laser ablations, and others [10]. Although bulk Ag
is considered “safe,” Ag nanoparticles need to be examined
for environmental impact and biocompatibility if they are
to be produced for in vivo usage on a large scale [149–
151]. Furthermore, exposure data had shown Ag nanoparticle
to be prevalent in the environment, at low but increasing
concentrations, with estimation of up to 0.1 and 2.9mgL−1 at
the sludge and surface water [152–154]. Thus, some reports
suggested the biological effect of Ag nanoparticles might be
seen at concentrations of up to 1000 times lower than that for
the dissolved Ag+ ions [153]. Furthermore, some results from
the research proved that the toxicity of Ag nanoparticle is
minor at exposures as low as 5mgL−1, with greater inhibitions

of growth [152, 154, 155]. It is clear that Ag nanoparticles
within the environment pose a potential risk to greater
plants, and therefore, the function of ecosystems [153–156].
Ag nanoparticles show adverse effects on seed germinations,
root, and shoot growth at concentrations of 4500𝜇gmL−1,
6000𝜇gmL−1, and 3000 𝜇gmL−1 on species of rice (Oryza
sativa), Mung bean (Vigna radiata), and Chinese cabbage
(Brassica campestris), respectively [157–159].

Furthermore, Ag nanoparticles with sizes of approxi-
mately 40 nm have the potential to cause toxic effects in
Chlamydomonas reinhardtii algae and Cucurbita pepo [160–
164]. In the case of Cucurbita pepo, Ag nanoparticles induced
4.4 to 10 times more reductions in biomass and transpiration
rates, rather than bulk sizes [29, 164–167]. Meanwhile, the
limits of uptake and the distribution of Ag nanoparticles have
been studied forMedicago sativa and Brassica juncea species
[29, 168–177] (Figure 8).

Various groups have examined the cellular uptake and
cytotoxicity of Ag nanoparticles in plant systems. Research
on the seed germination and the root growth of zucchini
plants in hydroponic solution modified with Ag nanopar-
ticles displayed no negative effects, whereas reductions in
plant biomass and transpirationwere observed on prolonging
the plants’ growth in the presence of Ag nanoparticles. The
genotoxic and cytotoxic impacts of Ag nanoparticles were
studied, utilizing the root tips of onions. Results of Ag
nanoparticles impaired the stages of cell division and caused
cell disintegration [162, 164]. There are some reports on
greater toxic effects in the Chlamydomonas reinhardtii algae
exposed to Ag nanoparticles as AgNO

3
, at the particle size of

40 nm [164].
There are some studies concentrated on effect of Ag

nanoparticle on aquatic plant [168–170].The studies reported
on usage of Lemnaminor L. clone St to study the phytotoxicity
of Ag nanoparticles. The final results demonstrated that the
inhibition of plant growth was apparent after exposure to a
wide range of Ag nanoparticle (20 to 100 nm), even at low
concentrations (5mgL−1) [169–171].

The effects of Ag nanoparticles have also been assessed in
many different researches involving plantmediums [178].The
studies focused on soil nematodes, soilmicrobial community,
and other related concerns. It has documented that Ag
nanoparticles with sizes of up to 29 nm employed visible
reduction effects on the germination of lettuce seeds and
cucumber, but no toxic effect has been observed and reported
on the reduction germination of barley and ryegrass exposed
to Ag nanoparticles. Ag nanoparticles with sizes <100 nm
have also shown to reduce the biomass and transpiration of
pumpkin (Cucurbita pepo) [160]. It reported increased Ag
nanoparticles content in the common grass Lolium multiflo-
rum, with increasing Ag nanoparticles’ concentration. Addi-
tionally, the cytological effects of onion (Allium cepa) have
been reported to include disturbed metaphase, stickiness,
chromatin bridge, and other effects.Themajority of nanotox-
icological researches showed on plants thus far have utilized
alternative methods rather than soil media. Most of these
researches have been done in an aqueous solution, such as
basal medium, deionized water, or Hoagland medium [161].
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Figure 8: Antifungal effect of Ag nanoparticles on culture filtrate and cell. Scanning electron microscopy images of hyphae of Alternaria
alternata treated with silver, copper, or copper/silver nanoparticles. Fungal hyphae grown on potato dextrose agar plates as (a) control or
supplemented with 15mgL−1, (b) Ag, (c) Cu, or (d) Ag/Cu nanoparticle solution, respectively, Photos were taken at seven days after the
incubation period [29].

Few researches documented the toxicity effects of Ag
nanoparticles on seed germination, plant uptake, and translo-
cation of nanoparticles in soil [172–174]. Furthermore, the
toxicity and bioavailability of Ag nanoparticles to species
Polyboroides radiatus and Sorghum bicolor were measured
in both soil medium and agar [175–177, 179]. Polyboroides
radiatus and Sorghum bicolor in agar media displayed Ag
nanoparticles’ concentration dependent-growth inhibition
and the EC50s values of Polyboroides radiatus and Sorghum

bicolor calculated to be 13 and 26mgL−1, respectively [178,
180]. Polyboroides radiatus were not affected by the impedi-
ment within the test concentration in the soilmedia. S. bicolor
showed a slightly reduced growth rate [178]. Bioavailability
and effect of Ag-ions dissolved from Ag nanoparticles are
noted to be less in soil than in agar. The results of this
research confirmed that bioaccumulation, phytotoxicity, and
dissolution of Ag nanoparticles are clearly influenced by the
exposure medium [180].
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(a) (b)

Figure 9: Scanning electron microscope images for NPs/lettuce seeds. In the aqueous phase, the SEM image shows that metal oxide NPs
(TiO2 NPs 1000mgL−1) (a) and (CuO NPs 1000mgL−1) were adsorbed on the seed surface (b) [30].

All such studies throw light on the need for a more geno-
toxic and cytotoxic evaluation by considering the properties
of Ag nanoparticles, uptake, translocation, and distribution
in different plant tissues.

3.2.3. Cd: On Plant Growth. The short-term effects of Cad-
mium (Cd) nanoparticles for the root growth of carrot,
cucumber, tomato, and lettuce species were examined, utiliz-
ing standard toxicity testing [180–194]. The results indicated
that the seedling growths were inversely related to the
exposure concentration of Cd, and among the tested plants,
the sensitive endpoint appeared in order of tomato, carrot, let-
tuce, and cucumbers [181–183].The root growth has not been
meaningfully inhibited by the presence of Cd nanomaterials,
except for tomatoes, but remarkably promoted by particular
Cd nanomaterials [182]. Microscopic images displayed the
roots of tested plants exposed to Cd showed a reduction in
the root wilt and diameter and the disintegration of the root
epidermis; the clutter root surface exhibited evident stress in
Cd solution [184–186]. After the addition ofCdnanoparticles,
many root hairs and a lack of disintegration on the surface
soft of the root system were observed, and Cd nanoparticles
crystals were also detected on the plants’ root surface [187–
189].

3.2.4.TiO
2
:OnPlantGrowth. Althoughtitaniumoxide nanopar-

ticles (TiO
2
) are extensively utilized in daily life products,

the research of their uptake and translocation in the plant
is restricted, particularly on food crops [195–215]. Due to
its small size (<5 nm), TiO

2
nanoparticles tend to form

a covalent bond with most of the no-conjugate natural
organic matter, translocate, and following the tissue and cells’
specific distribution [198–202]. The overall toxic effects of
TiO
2
nanoparticles are found in the algal species, such as

Desmodesmus subspicatus [216]. Furthermore, TiO
2
nanopar-

ticles produce reactive oxygen species upon interaction with

organisms or ultraviolet radiation [199–214]. For example,
with the presence of TiO

2
, the root of A. thaliana releases

mucilage and forms a pectin hydrogel capsule neighboring
the root [205, 208].

TiO
2
nanoparticles show an increase in nitrate reeducates

in Soybean (Glycine max), enhance the ability to absorb/use
water, and stimulate the antioxidant system. For example,
TiO
2
nanoparticles treated seeds produced plants that had

73% more dry weight, three times higher photosynthetic
rates, and 45% rise in chlorophyll a formation compared
to the control over the germination period of 30 days
[215]. The growth rate of spinach seeds, on the contrary,
is proportional to the size of the materials, indicating that
the smaller the nanomaterials, the better the germination.
Some studies claimed that the TiO

2
nanoparticles might have

elevated the absorption of inorganic nutrients, accelerated
the breakdown of organic substances, and caused quenching
by oxygen free radicals formed during the photosynthetic
process, consequently improving the photosynthetic rate
[217, 218]. To increase seed germination rate, the key is
the penetration of nanomaterials into the seed [30, 219,
220] (Figure 9). Meanwhile, TiO

2
, in the anatase phase,

increases plant growth in spinach by improving nitrogen
metabolism that promotes the adsorption of nitrate [30, 218,
219]. The same study indicated the negative effects of TiO

2

nanoparticles towards the seed germination percentage and
the number of roots for the species Oryza sativa L. This, in
turn, accelerates the conversion of inorganic nitrogen into
organic nitrogen, thus increasing the fresh and dry weight
[221].

Using bulk and nanosized TiO
2
at 60mgL−1 promoted

sage and seed germination percentages [69, 200]. Exposure of
sage seeds to 60mgL−1 bulk and TiO

2
nanoparticles gained

the lowest mean germination time, but higher concentra-
tions did not increase the mean germination time [198,
199]. Application of seeds to TiO

2
nanoparticles increased
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the vigor index of sage compared to the control and bulk TiO
2

treatments.
For spinach seeds, TiO

2
nanoparticles assisted water

absorption, and consequently accelerated seed germination
[30, 217]. Thus, some studies declared that altered TiO

2

nanoparticles were tested in the liquid phase on the plant
model Vicia faba, which was exposed to three nominal
concentrations: 50, 25, and 5mg commercial sunscreen TiO

2

nanoparticles per liter for 48 h. Plant growth, photosystem
II maximum quantum yield, genotoxicity by micronucleus
test, and phytochelatins levels indicated a lack of alteration
compared to the control samples. TiO

2
nanoparticles seem

not to exert deleterious effects on our plant model in 48 h,
but the observed important clogging onto the roots [222]. It
is shown that a combination of nanosized TiO

2
could improve

the nitrate reductase enzyme in soybean (Glycine max),
increase its abilities of absorbing and utilizing fertilizer and
water, encourage its antioxidant system, and actually hasten
its germination and growth [223]. In addition, it is stated that
the positive effects of TiO

2
could be due to antimicrobial

properties of ENs, which can improve the strength and
resistance of plants to stress.

Therefore, the acute toxic effects of TiO
2
nanoparticles are

considered low, with the effects not following a clear dose-
effect relationship.This is perhaps due to particle agglomera-
tion and subsequent sedimentation. Genomic DNA quantifi-
cation was detected in the root tips of cucumber after seven
days and indicated that plants treated with 2000–4000mgL−1
of TiO

2
nanoparticles reduced the genomic DNA compared

to the control sample [205, 208]. The toxic effect of TiO
2

nanoparticles is possibly not attributed by the released Ti2+
ions from particles that are tentatively proved by the limited
dissolution of Ti from a TiO

2
sample [200].

However, the presence of TiO
2
also positively impacts

the plants’ growth. For example, TiO
2
nanoparticles were

observed to promote the growth of spinach through an
improvement in nitrogen metabolism and photosynthetic
rate.

3.2.5. Al
2
O
3
: OnPlantGrowth. Phytotoxicity of uncoated and

phenanthrene-coated alumina (Al
2
O
3
) nanoparticles showed

that uncoatedAl
2
O
3
nanoparticles at 2mgL−1 concentrations

inhibited the root elongation of cucumber, corn, carrot,
cabbage, and soybean [224–226]. It is mentioned that the
toxic effect is probably not nanospecified but is due to the
dissolution of Al

2
O
3
nanoparticles. The effects of submicron

Al
2
O
3
particles were investigated to evaluate the chemical

material that might be toxic towards the growth of seedling
roots [225–228]. Thus, particle surface characteristics play a
critical role in the phytotoxicity of Al

2
O
3
nanoparticles [227].

This supported the fact that the presence of Al
2
O
3
can

stunt root growth in cucumber, corn, carrot, cabbage, and
soybean, although preliminary findings suggest extremely
high concentrations of such particles are necessary to induce
damage [229–231]. The presence of Al

2
O
3
nanoparticles did

not have a negative effect on the growth of Lolium perenne
and Phaseolus vulgaris in the tested concentration range
[232, 233]. Al

2
O
3
nanoparticles concentration in rye grass

improved the control analysis by 2.5 times, with no uptake
was observed in kidney beans, which inferred the difference
in the uptake and distribution efficiency of different plants by
similar nanoparticles [234–239].

3.2.6. Fe
3
O
4
: On Plant Growth. The excess amount of iron

oxide (Fe
3
O
4
) as a magnetic nanomaterial resulted in some

negative effect towards plant growth. For example, “Chloro-
phyll a” levels were amplified at low Fe

3
O
4
nanoparticles fluid

concentrations, while at higher concentrations it inhibited it
[240–242]. A small inhibitory effect was discovered on the
growth of the plantlets that led to brown spots on leaves at
higher volume fractions of Fe

3
O
4
nanoparticles fluids [243–

245]. The excess Fe
3
O
4
nanoparticles treatment produced

some oxidative stress, which in turn affected photosynthesis
and resulted in decreased rates of metabolic process [246–
248]. The oxidative stress was induced by the Fe

3
O
4
fluid

concentration in the tissues of living plants [245–247].
In order to overcome such limitations, the coating pro-

vides Fe
3
O
4
nanoparticles with a large adsorption surface

and biocompatible properties [249–252]. For example, in the
case of pumpkin (Cucurbita pepo), the presence of carbon
coated-Fe

3
O
4
at certain concentrations within some cells and

in extracellular space decreases the problems for plant tissues
and the amount of chemicals released into the environment
[250]. Furthermore, the influence of tetramethylammonium
hydroxide coated Fe

3
O
4
nanoparticles on the growth of corn

(maize) found that the chlorophyll level increased at low
Fe
3
O
4
nanoparticle fluid, while at higher concentrations it

was inhibited [253].
A slight inhibitory effect was observed in the growth of

the plantlets, which in turn resulted in brown spots on leaves
at greater volume fractions of the magnetic fluid [254, 255].
The oxidative stress was induced by the Fe

3
O
4
nanoparticles

fluid towards the living plant tissue [256–258]. The excess
Fe
3
O
4
nanoparticles generated some oxidative stress, affected

photosynthesis, and resulted in the reduction of metabolic
process rates.

3.2.7. Zn/ZnO: On Plant Growth. Zinc (Zn) and zinc oxide
(ZnO) are categorized as commonly used metal/metal oxide
engineered nanomaterials. Zn is an essential micronutrient
for humans, animals, and plants [259–263]. ZnO is mostly
utilized in a range of applications such as sunscreens and
other personal care products, solar cells, and photocatalysis,
biosensors, and electrodes [261]. According to the analysis
of 289 soil samples collected from different countries in
the world, Zn/ZnO deficiency was found to be the most
widespread micronutrient deficiency and the fourth most
important yield-limiting nutrient after nitrogen, phosphorus,
and potassium [260–262].

Due to its increasing utilization in consumer products,
it is quite possible that through both accidental release and
deliberate application, Zn/ZnO might find their way into
atmospheric environments, whether terrestrial or aquatic
[263–266]. It induces noticeable effect on many organisms,
especially on plants, which are an essential base component
to all ecosystems [267].
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A number of researchers described the key role of
Zn/ZnO nanomaterials for plant growths and yield [265–
267]. For example, higher plant mostly absorbs Zn as a
divalent cation (Zn2+), which acts either as a functional,
structural, or as themetal component of enzymes or a regula-
tory cofactor of numerous enzymes [266]. Zn nanomaterials
are needed for chlorophyll production, fertilization, pollen
function, and germination. Among the micronutrients, Zn
affects the susceptibility of plants via drought stress [263].The
germination rate of the plant may be affected in the presence
of Zn and ZnO. ZnO nanomaterials are hazardous and affect
both the chromosomal and the cellular facets. Clear root ger-
mination effects, due to the presence of ZnO, were observed
for the species of Buckwheat (Fagopyrum esculentum) [31]
(Figures 10 and 11). Furthermore, the presence of the ZnO
nanoparticles also promoted the permeation of onion (Allium
cepa) roots and effected the roots’ elongation, genetic mate-
rials, and metabolisms. The ZnO suspension meaningfully
inhibited root growth of corn, with the termination of root
development.

Growth of roots was halted with seed soaking and
incubation in the suspension of Zn/ZnOnanoparticles. It also
indicates that Zn2+ ismore toxic in ryegrass species compared
to ZnO nanoparticles [31, 258–268]. The root growths are
found in seedling of ryegrass, radish, and rape exposed to less
than 10 mgL−1 of ZnO/Zn nanoparticles.The toxicity of ZnO
nanoparticle could not mostly come from its dissolution at
the root surface, but also inside the tissue [31].

The toxicity of ZnO nanoparticle and Zn2+ could be
derived by two theories; a chemical toxicity based on chem-
ical composition and the stress or stimuli caused by the
size, shape, and surface of the ZnO nanoparticles [266].
Both theories significantly affected the cell culture response
of the plants. A number of mechanisms underlined the
efficiency of Zn/ZnO. Depending on the plant species and
the experimental conditions, the most important mechanism
may be Zn/ZnO utilization in tissues, called the internal
efficiency, or Zn/Zn uptake, called the external efficiency
[267]. This, in turn, helped ZnO nanoparticle enter the root
cells and inhibit seedling growth.

3.2.8. Cu/Cu
2
O: On Plant Growth. Copper/Copper oxide

(Cu/Cu
2
O) nanoparticles could block water channels

through adsorption and increase the possibility for radical
penetration into onion roots [269–271]. This, in turn, spoils
the complete stages of cell division and cellular metabolism
[270]. The bioavailability and toxicity of Cu nanoparticles
to the Mung bean (Phaseolus radiates) and wheat (Triticum
aestivum) species employed plant agar test as a growth
substrate for the homogenous exposure of nanoparticles.
The rate of growth for both species were inhibited; as a
result of exposure to Cu, nanoparticles and the seedling
length of tested species are inversely related to the exposure
concentration of Cu nanoparticles.

The toxicity and bioavailability of Cu nanoparticles were
observed on the plants Mung bean (Phaseolus radiates)
and wheat (Triticum aestivum). The observation employed
plant agar test as the growth substrate for the homogeneous

exposure of nanoparticles [272–274]. The growth rates of
both plants were inhibited, and due to the exposure to
nanoparticles and the seedlings, the lengths of the tested
species were inversely related to the exposure concentration
of the nanoparticles [273]. Wheat crop showed a greater
accumulation of Cu nanoparticles in its roots due to the roots’
morphology.The bioavailability was estimated by calculating
the bioaccumulation factor defined as the Cu nanoparticles
concentration in the plants, divided by the concentration
of Cu nanomaterials in the growth media [275]. Growth
inhibition of a seedling exposed to different concentrations
of Cu nanomaterials on Mung bean (Phaseolus radiates)
was more sensitive compared to wheat (Triticum aestivum)
[276]. A cupric ion released from Cu nanoparticles had
negligible effects on the concentration ranges of the present
study, and the apparent toxicity was clearly the result of Cu
nanomaterials [277, 278].

With increasing concentration of Cu nanoparticles and
agglomeration of particles, the rates of bioaccumulation
increased. Bioaccumulation of Cu nanoparticles increased
with its concentration in the growth media, and their
bioavailability to the test plants was estimated by calculating
the bioaccumulation factor. Some studies demonstrated the
plant agar test as a good protocol to test phytotoxicity of Cu
nanoparticles, which is hardly water-soluble [279]. Moreover,
studies on the effects of Cu nanoparticles on the growth
of zucchini plants showed the reduced length of emerging
roots [275], although the germination of lettuce seeds in
the presence of Cu nanomaterials showed an increase in the
shoot-to-root ratio compared to the control plants [280].

Bioavailability was estimated by calculating the bioac-
cumulation factor defined as the Cu nanoparticles concen-
tration in the plants divided in the growth media by its
concentration. Growth inhibition of a seedling exposed to
different concentration of Cu nanomaterials on Mung bean
(Phaseolus radiates) was more sensitive than wheat (Triticum
aestivum). Cu2+ ions released from Cu nanomaterials had
negligible effects on the concentration ranges and the appar-
ent toxicity clearly resulting from Cu nanoparticles [276].
Thus, bioaccumulation increased with the concentration of
Cu nanoparticles and the agglomeration of the particles
[281].The increments on bioaccumulation were derived from
growth media and its bioavailability to the tested plant was
estimated by calculating the bioaccumulation factors. Studies
on the effect of Cu nanoparticles on the growth of zucchini
plants indicated a reduction in the length of emerging roots
[282]. However, the germination of lettuce seeds in the
presence of Cu nanomaterials showed an increment in the
shoot-to-root ratio compared to the control plant. The effect
of Cu nanoparticles’ toxicity to the plant and food crops
is evident, with the clear impacts on crop growth, root
length, shoot length, biomass accumulation, and germination
visualized from the contaminated plants [281].

3.2.9. Ce/CeO
2
: On Plant Growth. Cerium oxide (CeO

2
)

nanoparticles utilized in several emerging applications which
leverage the UV absorbing capacity and high O

2
storage of

CeO
2
nanoparticle and the low redox potential of the Ce
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(a)

(b)

(c)

Figure 10: Scanning electron microscope images of Buckwheat (Fagopyrum esculentum) root surface under control (left) and treatment
(right) with ZnO nanoparticles (1,000mgL−1) at a magnification of×1,000 (a), ×5,000 (b), and×150,000 (c) [31].

IV/Ce III redox couple [35]. The natural environment may
expose to CeO

2
nanoparticle from exhaust catalysts after

deposition on plant, when they are collectedwith road runoff,
or by industrial wastewaters that contain CeO

2
nanoparticles.

Very fine (<1 𝜇m) exhaust particulates cause very diffuse
pollution, and CeO

2
nanoparticles contamination does not

cause a noteworthy cerium (Ce) enrichment in natural
waters. Besides, CeO

2
nanoparticles, as the only tetravalent

metal oxide, showed very different effects on the test plant
species [35].

Possible toxicity, transport, fate and of CeO
2
nanoparti-

cles remain unknown. Some works have focused on effect
of CeO

2
(concentration at 0 to 4000mgL−1) on seeds

of tomato (Lycopersicon esculentum), cucumber (Cucumis
sativus), alfalfa (Medicago sativa), and corn (Zea mays).
The results found that CeO

2
nanoparticles meaningfully

decreased corn germination (about 30% at 2000mgL−1;
𝑃 < 0.05), and at 2000mgL−1, the germination of tomato
and cucumber was reduced by 30 and 20%, respectively
(𝑃 < 0.05) [283]. The root growth significantly promoted
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(a) (b)

Figure 11: Transmission electron microscopy images of Buckwheat (Fagopyrum esculentum) root surface under control (a) and treatment
(b) with ZnO nanoparticles (1,000mgL−1) [31].

(𝑃 < 0.05) by CeO
2
nanoparticle in cucumber and corn

but reduced (𝑃 < 0.05) in alfalfa and tomato. However,
a suspension of 2000mgL−1 CeO

2
nanoparticle had no

effect on the root elongation of radish, rape, tomato, wheat,
cabbage, and cucumber, except lettuce [257].

Furthermore, few reports consequently far have
addressed the entire life cycle of plants grown in ENs-
contaminated soil. Soybean (Glycine max) seeds germinated
and grown to full maturity in organic farm soil amended with
either ZnO ENs at 500mg/kg or CeO

2
ENs at 1000mg/kg.

In other study, the short-term effects of CeO
2
nanoparticle

in two different agglomeration states on the green algae
Chlamydomonas reinhardtii were examined. It demonstrated
that the level of dissolved cerium (III) in CeO

2
ENs

suspensions was very low and between 0.1 and 27 nM [284].
The agglomerated CeO

2
ENs caused a slight decrease of

photosynthetic yield at the highest concentrations (100M),
while no effect observed for dispersed CeO

2
ENs. The

low toxicity of agglomerated CeO
2
ENs was attributed

quantitatively to Ce3+ ions cooccurring in the nanoparticle
suspension whereas for dispersed CeO

2
ENs, dissolved Ce3+

precipitated with phosphate and not bioavailable [257, 283].

4. Engineered Nanomaterials: Interaction and
Mechanism in Plant

Interaction of ENs and plants can be categorized under phy-
totoxicity, uptake, translocation, and accumulation. Current
literature revealed that all of the aforementioned interactions
depend on the species of the plant, its type, size, chemical
composition, stability, and functionalization of ENs.

4.1. Engineered Nanomaterials: Phytotoxicity Mechanism.
Phytotoxicity studies using higher plants are an important

criterion for understanding the toxicity of ENs. The vast
majority of research dedicated to the potential toxicity of ENs
to plants and both negative and positive or inconsequential
effects have been reported [48, 52, 97]. The majority of the
reports available in the literature indicate the phytotoxicity
of ENs [94, 104]. For example, a pronounced increase in
the rate of germination was observed for rice seeds in
the presence of some of carbon nanomaterials, particularly
CNTs [101–103]. Increased water content observed in the
CNT-treated seeds during germination was compared to the
control samples. The germinated seeds grown in a basal
growth medium were supplemented with CNTs in order to
study their impact on further seedling growth [102]. The
results indicate possible use for CNTs as enhancers in the
growth of rice seedlings. Another example derived from
Al
2
O
3
nanomaterials inhibit root elongation of cucumber,

corn, soybeans, carrot, and cabbage [225–228], while ZnO
nanomaterials were reported to be one of the most toxic
nanomaterials that could terminate root growth of test
plants [260–262]. Similar studies were carried out on the
toxicology of Al

2
O
3
, SiO
2
, ZnO, and Fe

3
O
4
on Arabidopsis

thaliana, with the results showing that ZnO nanomaterials
at 400mgL−1 capable of inhibiting germination [265–267].
From a toxicological perspective, surface area and particle
size are important material characteristics. As the size of the
particles decreases, its surface area increases, and allows a
greater proportion of its atoms or molecules to be displayed
on the surface rather than the interior of the ENs [28, 117].The
increase of surface area determines the potential number of
reactive groups on the particles’ surface [117]. The change in
the structural and physicochemical properties of ENs, with
a decrease in size, could be responsible for a number of
material interactions that could result in toxicological effects
[178]. One of the earliest observations on the effect of surface
properties on toxicity of ENs showed greater toxicity than
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fine particulate of similar materials on the basis of mass
[182, 183].This has been observed with different kinds of ENs,
including TiO

2
, carbon black, Co, and Ni. It was found that

TiO
2
nanoparticle with a size of 21 nm resulted in 43 times

more inflammation than 250 nm particles based on similar
mass [198–202]. The increase in inflammation is believed to
be caused by much greater surface area of the small particles
for similarmasses ofmaterial. Another example derived from
the applicability of fluorescein isothiocyanate labeled silica
nanoparticles and photo-stable Cadmium-Selenide quantum
dots were tested for their ability to be used as biolabels, and
for promoting seed germination [285–287]. It was found that
FTIC-labeled silica nanoparticles induced seed germination
in rice, while quantum dots arrested the germination. Mul-
tiple studies showed that nanosized particles are more toxic
than microsized particles [286]. Intrinsic surface reactivity
is another factor that determined the toxicity of ENs. It
was determined that other types of crystalline anatase TiO

2

did not show size intensive toxicity for nanosized particles
[30, 219, 220]. Overall, the current phytotoxicity profile of
ENs is highly speculative and preliminary, and the effects of
their unique characteristics are poorly understood and more
studies on toxicity are required, especially on commercial
food crop [185].

Toxic effect of ENs brought from the dissolved species
that originated fromdissolution, which in turn could increase
the damage to genetic materials, agglomeration, and biomass
production, while reducing the length of the roots [117, 183].
However, there are still positive effects on the accumulation
of nanomaterials in plants, especially in multiwall carbon
nanotube, Zn, and ZnO [265–267]. The presence of these
nanomaterials induces the germination and seedling growth
of Brassica Juncea and black gram (Phaseolus Mungo) [94].
The toxicity of various organisms depends on the nature
of particles, sizes, concentration, and exposure times [186,
187]. The theory on the extension effect remains unclear,
from nanoformulation, fraction, or size of the nanomaterials
[193, 199]. Nevertheless, some studies have indicated that the
phytoxicity observed on the exposure to ZnO nanoparticles
may be attributed solely to dissolved-Zn, which was similar
to the conclusion drawn regarding Au nanoparticles [259].
Another study discovered that the toxic effect by ZnO is
more significant in seed germinations, root elongations, and
the number of leaves, rather than other nanoparticles [263].
Furthermore, studies on the relevance of phytotoxicity on rice
(Oryza sativa) towards Au nanoparticles have been analyzed
and from the micrograph analysis found that various particle
sizes deposited inside the root cells through the small pores
of cell walls are done via cellular mechanism [136–138].

In conclusion, most of the studies demonstrated direct
exposure to specific types of nanoparticles causing significant
phytotoxicity, emphasizing the need for ecologically respon-
sible disposal of wastes containing ENs. It also highlights
the necessity for further study on the impacts of ENs on
agricultural and environment systems.

4.2. Engineered Nanomaterials: Uptake Mechanism. One of
the major research gaps on the uptake mechanism of
nanomaterials towards plants is the absence of consistent

and broadly applicable information [65, 278]. Most infor-
mation revealed that ENs could adhere to plant roots and
exert chemical or physical uptakes upon plants [245, 273].
Recently, there are an increasing number of publications
emerging on the interaction of ENs with plants [241]. The
uptake, accumulation, and build-up of nanoparticles vary,
and these factors largely depend on the type, size, and the
composition of the plant. Indeed, the verification on the
uptake mechanism of ENs is limited and is focused on
stock solutions rather than the actual concentration [102,
139]. The stock solution is prepared either from a series of
dilution or media renewable periods. As such, most method
being reportedmight not produce similar results for different
shapes, sizes, and forms of nanomaterials [187]. Most of the
data correspond to the germination stage and cell culture,
which are mostly focused on metal-based nanomaterials,
such as TiO

2
, CeO

2
, Fe
3
O
4
, ZnO, Au, Ag, Cu, and Fe. In this

case, only fullerene and fullerols showed a ready uptake in
plants.

Several avenues for the uptake of nanomaterials by plant
cells are proposed. Some of the data suggested that the nano-
materials could enter plant cells by being bound to a carrier
protein, through aquaporin, ion channels, or endocytosis
via the creation of new pores, ending up being bounded to
organic chemicals [191, 205]. This phenomenon is preferred
in the case of carbon nanotubes rather than other types of
nanomaterials [102]. Meanwhile, the greater surface area-to-
mass ratio of the nanoparticle compared to the bulk metals
induces higher reactivities compared to the surroundings
[213]. Consequently, the nanomaterials may form complexes
with membrane transporters or root exudates before being
transported into the plants. Most metal-based nanomaterials
that have been reported as being taken up by plants include
elements for which ion transporters have been identified
[278]. Once the nanomaterials enter the plant cells, it may be
transported either apoplastically or symplastically from one
cell to another via plasmodesmata [139].

However, the relations between the selectivity of the
uptake of nanomaterial and the type of plant remain
unknown and are open to exploration. Some studies sug-
gested that the gradual increase in ENs uptake was observed
with reducing granule size, and only the powder from
produced plants with ENs concentrations remains in the
sufficient range [213, 273]. For example, ZnO granule of
1.5mm weigh less than granules of 2.0 or 2.5mm, smaller
granules utilized for similar weights, resulting in a better
distribution of Zn and the higher surface contact area Zn
fertilizer, resulting in better Zn uptake [266]. Ampleworkwas
done, emphasizing the role of particle size in increasing the
efficiency of ENs uptake and higher yields.

4.3. Engineered Nanomaterials: Translocation Mechanism.
Prior to translocation, engineered nanomaterials are inter-
mediate in its mobility or phloem export. Some studies
suggested that the translocation of ENs depends on the
amount being supplied and the nature of the plant as a species
[11]. Engineered nanomaterials move from leaves to roots,
stem, and developing grain, and from one root to another.
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The higher translocation of other nutrient is recorded by the
increment on its demand [240]. The translocation mecha-
nism is initiated with the penetration of ENs through cell
walls and plasma membrane of root cells. One of the main
passages of uptake and transportations to the shoot and
leave(s) of plant is the Xylem [288, 289]. In this case, the pore
size of cell wall must be in range of 3–8 nm, which is smaller
than ENs.The penetration rate was studied with leek (Allium
porrum), and it was found that ENs pathway in the leaf was
followed with the stomatal pathway [289].

4.4. Engineered Nanomaterials: Transmission Mechanism.
The first step to understand the possible benefits of applying
nanotechnology to agriculture should be to analyze the
transmission mechanism of ENs in plants. Transmission of
ENs was detected at different levels: chains of nanomaterials-
aggregates carrying cells apparently close to the application
point, when such application was made by the “injection” of
the ENs suspension into the pith cavity of the stem, suggesting
the presence of flux of nanoparticles from one cell to another
[290]. The nanomaterials are capable of penetrating through
the leaf cuticle and into the cell cytoplasm [291, 292]. Plants
provide a potential pathway for the transport of nanomate-
rials to the environment and serve as an important route for
their bioaccumulation into the food chain [292]. The wall of
the plant’s cell acts as a barrier for easy entry to any external
agents, including ENs into plant cells. The sieving properties
are determined by the pore diameter of the cell wall, ranging
from 5 to 20 nm [290]. Only ENs aggregates with diameters
less than the pore diameter of the cell wall could easily pass
through and reach the plasma membrane [291].

There is also a chance for the enlargement of pores
or induction of new cell wall pores upon interaction with
ENs, which will in turn enhance nanoparticle transmissions
[293]. They may also cross the membrane using embedded
transport carrier proteins or through ion channels. In the
cytoplasm, the ENs may bind with different cytoplasmic
organelles and interfere with the metabolic processes at that
site [291].

When ENs is applied on the surface of leaves, they will
enter through the stomata openings or through the bases of
trichomes and then translocated to various tissues. However,
the accumulation of ENs on photosynthetic surface causes
foliar heating, which results in the alterations to gas exchange,
due to stomata obstruction that produces changes in various
physiological and cellular functions of plants.The application
of microscopy techniques visualizes and tracks the transport
and deposition of ENs inside the plants [294]. The ENs
tagged to agrochemicals or to other substances could reduce
the injury to plant tissues and the amount of chemicals
released into the environment; a certain contact is however
unavoidable, due to the strong interaction of plants with soil
growth substrates [295].

This limitation is circumvented by coating. For example,
the carbon-coated Fe

3
O
4
nanomaterials (carbon encapsula-

tion provides biocompatibility and a large adsorption surface)
in living plants such as pumpkins (Cucurbita pepo) and the
results showed the presence of nanomaterials both in the
extracellular space and within some cells [245].

One of the pathways also reported particle size of 20 nm
Ag nanoparticles may be transported inside the cells through
plasmodesmata [169–171]. Particles must enter through the
cell wall and the plasma membrane of root cells. Xylem
is one of the main passages of uptake and transportations
to the shoot and the leaves of plant. Pore size of cell wall
was in the range of 3–8 nm, which is smaller than ENs.
The penetration rates of foliar applied to polar solutes are
highly variable and the mechanism is not fully understood
[294]. Investigation in leek (Allium porrum) and broad bean
(Vicia faba) size exclusion limits and lateral heterogeneity
of the stomata foliar uptake pathway for aqueous solutes
and water-suspended nanoparticles were done in [148, 176,
177]. Thus, the nanomaterials pathway in leaf follows the
stomata pathway, which differs fundamentally from the
cuticolar foliar uptake pathway [269]. This consequently
proved the limitation of transmission and the distribution
of Ag nanoparticles in Medicago sativa and Brassica juncea.
In contrast to Brassica juncea, Medicago sativa showed an
increase in metal uptakes with a corresponding increase
in the substrate of metal concentration and exposure time
[146]. The Ag nanoparticles were located in the nucleus and
applied the definition that suggested both Brassica juncea and
Medicago sativa hyperaccumulators of Ag nanoparticles.

5. Conclusion and Prospective

This work proves that certain engineered nanomaterials
could exert chemical or physical toxicity on plants depend-
ing on its size, chemical composition, surface energy, and
species, leading to different techniques. Hence, the chal-
lenges for further research is the uptake kinetics and the
interaction mechanism within cells, and also the maximum
agreeable amount of these engineered nanomaterials that
plants can take without showing any signs of stress. An
extensive research on the toxic effects of nanomaterials could
meaningfully help by utilizing and disposing engineered
nanomaterials for the reduction of adverse effects in both of
agricultural and of environmental systems.
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