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Melatonin has a cellular protective effect in cerebrovascular and neurodegenerative diseases. Protection of brain endothelial cells
against hypoxia and oxidative stress is important for treatment of central nervous system (CNS) diseases, since brain endothelial
cells constitute the blood brain barrier (BBB). In the present study, we investigated the protective effect ofmelatonin against oxygen-
glucose deprivation, followed by reperfusion- (OGD/R-) induced injury, in bEnd.3 cells. The effect of melatonin was examined by
western blot analysis, cell viability assays, measurement of intracellular reactive oxygen species (ROS), and immunocytochemistry
(ICC). Our results showed that treatment withmelatonin prevents cell death and degradation of tight junction protein in the setting
of OGD/R-induced injury. In response to OGD/R injury of bEnd.3 cells, melatonin activates Akt, which promotes cell survival, and
attenuates phosphorylation of JNK, which triggers apoptosis.Thus, melatonin protects bEnd.3 cells against OGD/R-induced injury.

1. Introduction

Stroke is the third most frequent worldwide cause of adult
death [1, 2]. Specifically, about 80% of all strokes are ischemic,
resulting from arterial occlusion in the brain [1]. Reperfu-
sion after occlusion results in serious brain injury, due to
overproduction of reactive oxygen species (ROS), calcium
overload [3, 4], and blood-brain barrier (BBB) injury [5].
Finally, in ischemic stroke, the brain is damaged because of
hypoxia and oxidative stress [6–10]. Reactive oxygen species
(ROS) play a key role in the pathogenesis of many diseases,
including central nervous system (CNS) diseases [11–14].
During ischemic stroke, the excessive generation of ROS
leads to inflammation and cell apoptosis [15–21] and induces
mitogen-activated protein kinase (MAPK) signaling [22–
24]. c-Jun N-terminal kinase (JNK), one of the MAPKs, is
activated by a variety of cell stresses, including hyperosmotic
shock, hypoxia, and ROS [25, 26]. JNK plays key roles

in apoptosis and inflammation [27, 28]. JNK signaling is
activated by inflammatory cytokines and promotes neu-
ronal cell death [29]. Endothelial cells are also damaged by
activation of JNK signaling, in response to oxidative stress
[30]. Several studies have demonstrated that, in hypoxia and
a state of reoxygenation, cells induce apoptotic signaling
through JNK and p38 MAPK [31, 32]. The BBB controls
the exchange of materials between blood and the brain and
plays an important role in the homeostatic regulation of the
brain microenvironment [33]. The tight junctions between
capillary endothelial cells, which form an essential structural
component of the BBB [34], include membrane proteins like
occludin [35] and claudins [36, 37]. Several studies have
suggested that hypoxia causes alterations of the tight junction
proteins Claudin 5, occludin, ZO-1, and ZO-2, which affect
BBB permeability [38, 39]. In addition, vascular endothelial
growth factor (VEGF) is an inducer of vascular leakage [40]
and is also known as vascular permeability enhancing factor
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[41, 42]. During ischemia, VEGF interacts with receptors for
VEGF on the ischemic vessels and contributes to disruption
of the BBB [43, 44]. Zhang el al. demonstrated that inhibition
of VEGF reduces BBB permeability [43]. Melatonin is syn-
thesized in the pineal gland and has been known to function
as an antioxidant [45]. Melatonin reduces the cellular toxicity
of ROS in ischemia and reperfusion (I/R) brain injury [46].
In an in vivo cerebral ischemia model, several researches
have demonstrated that melatonin treatment reduces brain
damage in the setting of ischemia or hypoxia-induced injury
[47, 48]. In vitro, melatonin protects primary neuronal
cells from apoptotic death [49] and enhances survival of
human neuroblastoma cells [50] in the setting of oxygen-
glucose deprivation- (OGD-) induced injury. Furthermore,
melatonin suppresses VEGF expression in cancer cells [51,
52] and inhibits serum VEGF levels in patients [53]. In
the present study, we investigate whether melatonin protects
brain endothelial cells against oxygen-glucose deprivation
followed by reperfusion- (OGD/R-) induced injury.We show
that melatonin reduces the generation of ROS, prevents
disruption of the BBB by stabilizing expression of tight
junction proteins and suppressing VEGF expression, and
attenuates phosphorylation of JNK, a mediator of cellular
apoptosis. Therefore, our results suggest that melatonin is
important in protecting the BBB against cerebral ischemic
damage.

2. Materials and Methods

2.1. Cell Culture. Murine brain endothelial cells (bEnd.3 cells;
ATCC, VA, USA) were purchased from ATCC and cultured
in Dulbecco’s modified Eagle’s medium (DMEM, Hyclone
Laboratories, UT, USA), supplemented with 10% (v/v) fetal
bovine serum (FBS, Hyclone Laboratories, UT, USA) and 100
units/mL of penicillin/streptomycin (Hyclone Laboratories,
UT,USA), at 37∘C in a humidified atmosphere in the presence
of 5% CO

2
[54]. bEND.3 cells were used at 13 passages in this

study.

2.2. Oxygen-Glucose Deprivation (OGD) and Reperfusion.
Confluent cells were transferred to an anaerobic chamber
(Forma Scientific, OH, USA) (O

2
tension, 0.1%) and washed

three times with PBS. Then, culture medium was replaced
with deoxygenated, glucose-free balanced salt solution, and
cells were incubated for 6 h. Following oxygen-glucose depri-
vation (OGD) injury, cells were incubated for 18 h under
normal growth conditions, with or without drug treatment
[55].

2.3. Drug Treatment. Melatonin was purchased from Sigma
(Sigma, MO, USA) and dissolved in ethanol. An equivalent
volume of ethanol (final: 0.01%) or water was added to
control and all melatonin-containing wells. bEnd.3 cells were
exposed to 1–100 nM melatonin for 24 h before OGD/R
injury.The present study consisted of four groups: (1) normal
control (NC), bEnd.3 cells cultured with normal media
without OGD injury; (2) experimental control (EC), bEnd.3
cells cultured in nontreatedmedium for 18 h after 6 h of OGD

injury; (3) 10 nMmelatonin (Mel 10 nM), bEnd.3 cells treated
with 10 nM melatonin for 24 h before 6 h of OGD injury;
these cells were then cultured in nontreated medium for 18 h;
(4) 100 nM melatonin (Mel 100 nM): bEnd.3 cells were also
treated with 100 nMmelatonin (100 nMmelatonin group) for
24 h before 6 h of OGD injury.These cells were then cultured
in nontreated medium for 18 h. In Akt inhibitor groups, we
treated 100 nM Akt inhibitor (Sigma, MO, USA) together
with melatonin.

2.4. Hoechst 33258 and Propidium Iodide (PI) Staining. Cell
viability was evaluated by staining bEnd.3 cells with Hoechst
33258 dye (Sigma, MO, USA) and propidium iodide (PI;
Sigma, MO, USA). Hoechst dye was added to the culture
medium (2-3 𝜇g/mL) and samples were then incubated at
37.8∘C for 30min. PI solution was then added (2–5𝜇g/mL)
just before cells were observed with a microscope (BX51;
Olympus) equipped with epifluorescence and a UV filter
block. PI-positive cells were counted as dead cells [56].

2.5. Cell Viability Assay. bEnd.3 cells (2 × 105 cells/mL) were
seeded in 98-well plates to monitor all experiment con-
ditions, including pretreatment, OGD injury, and reperfu-
sion. Next, cells were rinsed twice with phosphate-buffered
saline (PBS), and culture medium was replaced with serum-
free medium and 100𝜇L 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyl tetrasodium bromide (MTT) (Sigma, MO, USA)
solution (5mg/mL in PBS) per well. After 1 h of incuba-
tion, medium was removed and dimethyl sulfoxide (DMSO)
was added to solubilize the purple formazan product of
MTT treatment. The supernatant from each well was ana-
lyzed using an ELISA plate reader (Labsystems Multiskan
MCC/340; Fisher Scientific, PA, USA) at a wavelength of
570 nm, with background subtraction at 650 nm. All exper-
iments were repeated at least three times. Cell viability in the
control medium, without any treatment, was represented as
100%. Cell viability was reported as a relative value, compared
to the control group.

2.6. Lactate Dehydrogenase (LDH) Assay. Cytotoxicity in all
treatment groups was quantified by measuring the amount of
LDH released into the culture medium fromOGD/R-injured
cells [57, 58]. LDH release (cytotoxicity %) was calculated
by dividing the value at the experimental time point by the
maximum value. The maximum LDH release was measured
after freezing each culture at −70∘C overnight, followed by
rapid thawing, which induced nearly complete cell damage.

2.7. Determination of Intracellular ROS. The level of intracel-
lular ROS in each treatment group was measured using a flu-
orescent probe, 2,7−dichlorodihydrofluorescein diacetate
(DCF−DA; Invitrogen, CA, USA), as previously described
[59]. Cells were plated at a density of 1 × 106 cells/mL and
treated with melatonin for 24 h. After melatonin pretreat-
ment, OGD injury and reperfusion were conducted. Then,
bEND.3 cells were treated with 5𝜇M DCF-DA for 30min
at 37∘C. After washing with PBS, fluorescence was measured
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with a microscope (Nikon TS100-F ECLIPSE) equipped with
a CCD camera (Hamamatsu Photonics) [54].

2.8. Western Blot Analysis. After pretreatment, OGD injury,
and restoration, cells were washed rapidly with ice-cold
PBS, scraped, and collected. Cell pellets were lysed with
ice-cold RIPA buffer (Sigma, MO, USA). The lysates were
centrifuged at 13,200 rpm for 1 h at 4∘C to produce whole-
cell extracts. Protein content was quantified using the BCA
method (Pierce, IL, USA). Protein (20𝜇g) was separated
on a 10% SDS-polyacrylamide (PAGE) gel and transferred
onto a polyvinylidene difluoride (PVDF) membrane. After
blocking with 5% bovine serum albumin, prepared in Tris-
buffered saline/Tween (TBS-T; 20 nM Tris (pH 7.2); 150mM
NaCl; 0.1% Tween 20), for 1 h at RT, immunoblots were
incubated overnight at 4∘C with primary antibodies that
specifically detect Akt (1 : 2000, Cell Signaling, MA, USA), p-
Akt (1 : 2000, Cell Signaling, MA, USA), JNK (1 : 2000, Cell
Signaling, MA, USA), p-JNK (1 : 2000, Cell Signaling, MA,
USA), Claudin 5 (1 : 1000, Santa Cruz, CA, USA), VEGF
(1 : 1000, Millipore, MA, USA), Bax (1 : 2000, Cell Signaling,
MA, USA), or 𝛽-actin (1 : 2000, Cell Signaling, MA, USA).
Next, blots were incubated with HRP-linked anti-mouse and
-rabbit IgG antibodies purchased from Abcam (Cambridge,
MA, USA) for 1 h at RT. Enhanced chemiluminescence was
performed by ECL (Pierce, IL, USA) [54].

2.9. Immunocytochemistry (ICC). The expression of VEGF
and Claudin 5 in bEnd.3 cells was confirmed by immuno-
cytochemistry. Cells in all experimental groups were washed
three times with PBS, fixed with 4% paraformaldehyde for
3 h, and then washed with PBS. bEnd.3 cells were perme-
abilized with 0.025% Triton X-100 and blocked for 1 h at
RT with dilution buffer (Invitrogen, CA, USA). Primary
anti-rabbit VEGF (1 : 500, Millipore, MA, USA) and anti-
rabbit Claudin 5 (1 : 500, Santa Cruz, CA, USA) antibodies
were prepared in dilution buffer, added to samples, and
incubated for 3 h at RT. Primary antibody was then removed
and cells were washed three times for 3min each with
PBS. Later, samples were incubated with FITC-conjugated
goat, anti-rabbit (1 : 200, Jackson Immunoresearch, PA, USA)
or Rhodamine-conjugated donkey, or anti-rabbit secondary
antibodies (1 : 500, Millipore, MA, USA) for 2 h at RT. Cells
were washed again three times for 3min each with PBS and
stained with 1 𝜇g/mL 4,6-diamidino-2-phenylindole (DAPI)
(1 : 100, Invitrogen, CA, USA) for 10min at RT. Fixed samples
were imaged using a Zeiss LSM 700 confocal microscope
(Carl Zeiss, NY, USA).

2.10. Statistical Analysis. Statistical comparisons were per-
formed using independent t-tests for two groups. SPSS
software was used for all analyses. Data were expressed as
mean± S.E.M. of three independent experiments.Differences
were considered significant at #

𝑃 < 0.1, ∗𝑃 < 0.05, and
∗∗

𝑃 < 0.001.

3. Results

3.1. Melatonin Attenuates the Cell Death of bEND.3 Cells after
OGD/R-Induced Injury. To confirm the protective effect of
melatonin on OGD/R-induced injury, we first conducted an
MTT assay to check cell viability in all treatment groups
(Figure 1(a)). Cell viability showed that the OGD/R injury
exposed group exhibited decreased cell viability, compared
to the normal control group (100% cell viability in the normal
control group; 39% cell viability in theOGD/R injury exposed
group). We checked the cell viability by pretreatment with
melatonin 1 nM to 100 nM. Cell viability in 1 nM and 5 nM
melatonin pretreatment group was almost not different from
the OGD/R injury exposed group. Treatment with 10 nM
melatonin also did not change cell viability compared to
the OGD/R injury exposed group (48% cell viability in
the Mel 10 nM group). However, treatment with 100 nM
melatonin obviously increased cell viability after OGD/R-
induced injury, compared to the normal control group (62%
cell viability in the Mel 100 nM group) (Figure 1(a)). In
addition, we evaluated cytotoxicity in bEND.3 cells following
OGD/R injury using an LDHassay (Figure 1(b)). Cytotoxicity
was 12% in the normal control group but was 28% in the
OGD/R injury exposed group. Cytotoxicity in 1 nM and 5 nM
melatonin pretreatment group was not largely different from
the OGD/R injury exposed group. Treating cells with 10 nM
melatonin resulted in 21% cytotoxicity and treating cells with
100 nM melatonin resulted in 18% cytotoxicity (Figure 1(b)).
Considering cell viability and cytotoxicity data, we decided
two concentrations of melatonin (10 nM melatonin concen-
tration (among the low concentrations: 1 nM, 5 nM, and
10 nM) and 100 nMmelatonin concentration (among the high
concentrations: 50 nM, 100 nM)) to compare the effect of
melatonin easily. We also conducted Hoechst/PI staining to
check the dead cells in all groups (Figure 1(c)). Hoechst/PI
staining images showed that onlymelatonin treatment groups
were almost not different from the normal control group.
PI-positive cells (dead cells) evidently were increased in
the OGD/R injury exposed group, compared to the normal
control group. 10 nM and 100 nM melatonin treatment pro-
moted cell survival and inhibited cell death against OGD/R-
induced injury. In the 100 nMmelatonin treatment group, the
protective effect of melatonin against OGD/R injury death in
bEND.3 cells was more obvious than in the 10 nM melatonin
treatment group (Figure 1(c)). Taken together, these findings
suggest that melatonin attenuates OGD/R-induced damage
in brain endothelial cells.

3.2. Melatonin Decreases OGD/R-Induced ROS Production.
We measured ROS levels using DCF-DA reagent, a flu-
orescent dye that visualizes ROS. DCF-DA-positive cells
increased after OGD/R. ROS levels in melatonin pretreat-
ment groups (10 nM, 100 nM melatonin) were not largely
different from ROS levels in the normal control group. In
the OGD/R injury exposed group, ROS levels were evidently
increased compared to the normal control group. This was
partially blocked by pretreatment with 10 nMmelatonin (Fig-
ures 2(a) and 2(b)). 100 nM melatonin pretreatment clearly
decreased the number of DCF-DA-positive cells, compared
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Figure 1: The measurement of brain endothelial cell viability after OGD/R-induced injury. (a) A 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay shows that bEND.3 cells in the OGD/R injury exposed group exhibited decreased viability
compared to cells in the normal control group. Cell viability of bEND.3 cells in 1 nM and 5 nM melatonin pretreatment groups was not
largely different form OGD/R injury exposed group. bEND.3 cells in 10 nM, 50 nM, and especially 100 nM melatonin pretreatment groups
exhibited increased cell viability compared to OGD/R injury exposed group. Data are expressed as mean ± S.E.M. (#𝑃 < 0.1, ∗𝑃 < 0.05, and
∗∗

𝑃 < 0.001). (b) Cytotoxicity (%) was measured using an LDH assay. Cytotoxicity increased in OGD/R injury exposed group compared to
the normal control group. Melatonin treatment (especially 100 nM melatonin pretreatment) reduced cytotoxicity after OGD/R injury. Data
are expressed as mean ± S.E.M. (#𝑃 < 0.1, ∗𝑃 < 0.05, and ∗∗𝑃 < 0.001). (c) Dead and live cells were measured by Hoechst/PI staining.
PI-positive cells (red) are regarded as the dead cells. PI-positive cells were higher in OGD/R injury exposed group than in the normal control
group. Melatonin treatment groups (both in 10 nM and in 100 nM melatonin groups) exhibited reduced PI-positive cells compared to the
OGD/R injury exposed group. Hoechst: Hoechst 33342 (blue color) and PI: propidium iodide (red color). Scale bar = 400𝜇m.

to the OGD/R injury exposed group.This result suggests that
melatonin inhibits OGD/R-induced ROS production in brain
endothelial cells.

3.3. Melatonin Prevents Degradation of Tight Junction Proteins
against OGD/R Injury. To check the protective effect of
melatonin on the integrity of tight junctions during OGD/R,
we measured the level of Claudin 5, a tight junction protein,
by immunocytochemistry (Figure 3(a)) and western blot
analysis (Figure 3(b)). OGD/R stress obviously decreased the
expression of Claudin 5 in the bEND.3 cells compared to
the normal control (NC) group. The expression of Claudin

5 did not nearly change in the 10 nM melatonin treatment
group, compared to the experimental control (EC) group
which in exposedOGD/R injury.The expression of Claudin 5
was evidently attenuated by treatmentwith 100 nMmelatonin
(Figures 3(a) and 3(b)). This result shows that melatonin
pretreatment protects degradation of Claudin 5 following
OGD/R injury. Namely, melatoninmay prevent deterioration
of tight junctions in response to OGD/R-induced injury.

3.4. Melatonin Attenuates the Expression of VEGF after
OGD/R-Induced Injury. We conducted immunocytochem-
istry (Figures 4(a) and 4(b)) and western blot analysis
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Figure 2: Immunocytochemistry to measure ROS generation in bEND.3 cells after OGD/R-induced injury. bEND.3 cells were treated with
melatonin for 24 h before OGD/R injury. ROS levels were measured using DCF-DA. (a) ROS levels in only melatonin treatment groups
(both 10 nM and 100 nM melatonin pretreatment groups) were the same as the normal control group. ROS levels in bEND.3 cells were
increased in OGD/R injury exposed group. Under OGD/R injury, ROS levels in the melatonin pretreatment group were decreased compared
to OGD/R injury exposed group. Melatonin decreased the OGD/R-induced increase in DCF-DA-positive cells (green). (b) ROS production
was calculated by measuring the intensity of ROS. This graph shows relative intensity as a percentage of OGD/R injury exposed group. Data
are expressed as mean ± S.E.M. (#𝑃 < 0.1 and ∗𝑃 < 0.05). 2,7-Dichlorodihydrofluorescein diacetate (DCF-DA): green. Scale bar = 400 𝜇m.

(Figure 4(c)) to confirm the expression of VEGF in all
treatment groups. This result indicated that the expression
of VEGF became considerably elevated after OGD/R injury
in the bEND.3 cells. However, the expression of VEGF was
reduced by melatonin treatment (both 10 nM and 100 nM
melatonin pretreatment) (Figures 4(a) and 4(b)).This finding
suggests that melatonin attenuates the expression of VEGF in
brain endothelial cells following OGD/R-induced injury.

3.5. Melatonin Protects bEND.3 Cells via Akt Activation
and JNK Suppression. To investigate whether Akt signaling
was activated in OGD/R-induced stress, we first measured
the phosphorylation status of Akt by western blot analysis
(Figure 5(a)). Phosphorylation of Akt is associated with acti-
vation of Akt signaling and cell survival. Our result suggests
that the protein expression of phosphor-Akt/Akt in the EC
group is attenuated compared to the NC group. Expression
of phosphor-Akt in the 10 nM melatonin treatment group
did not nearly change compared to the EC group. However,
expression of phosphor-Akt in the 100 nM melatonin treat-
ment group was higher than in the EC group (Figure 5(a)).
Next, we also examined the phosphorylation status of JNK
by western blot analysis (Figure 5(b)), because the phos-
phorylation of JNK correlates with activation of apoptosis
signaling. The expression of phosphor-JNK was decreased
by melatonin treatment after OGD/R-induced injury. Pre-
treatment with 100 nM melatonin resulted in the obvious
inhibition of JNK signaling whereas JNK activation in 10 nM
melatonin pretreatment group was not largely different from
the EC group (Figure 5(b)). These results suggest that mela-
tonin 100 nM increases Akt activation and suppresses JNK
activation. To confirm the relationship between melatonin
and Akt signaling, we checked the expression of Bax by

western blot analysis (Figure 5(c)). We confirmed that the
protein expression of Bax in the bEND.3 cells was increased
under OGD/R injury compared to the NC group. Also,
10 nM and 100 nM melatonin treatment reduced the protein
expression of Bax under OGD/R injury. When we checked
the expression of Bax in OGD/R injured bEND.3 cells with
Akt inhibitor andmelatonin pretreatment, we confirmed that
Akt inhibitor pretreatment did not reduce the expression of
Bax in melatonin pretreatment groups (Figure 5(d)). These
findings indicate that melatonin may promote Akt signaling
and suppress JNK signaling. Specifically, melatonin may
attenuate the expression of Bax, known as an apoptotic
protein through Akt activation in brain endothelial cells
following OGD/R stress.

4. Discussion

Ischemic stroke causes oxidative stress in the brain as well as
various neuropathological impairments [60]. BBB disruption
is commonly observed in stroke patients [61, 62]. BBB dam-
age is aggravated by reperfusion after ischemia [63]. ROS are
generated during cerebral ischemia-reperfusion injury and
lead to severe brain damage by promoting the cell apoptosis
pathway [64, 65]. Also, ROS cause BBB hyperpermeability,
brain edema, hemorrhage, and inflammation [66]. In the
present study, we induced OGD/R injury, which is known
as an appropriate in vitro model of stroke [67, 68], in
brain endothelial cells to investigate the effect of ischemia-
reperfusion injury. Recent research suggests that antioxidants
attenuate oxidative damage induced by ischemia-reperfusion
injury by decreasing mechanisms of ROS production [69].
Previous researches have suggested that antioxidants preserve
BBB disruption and attenuate ROS generation after cerebral
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Figure 3: The measurement of the tight junction protein in bEND.3 cells after OGD/R-induced injury. (a) The level of Claudin 5, a tight
junction protein, was evaluated by immunocytochemistry. This image shows that expression of Claudin 5 in the experimental control (EC)
group decreased compared to the normal control (NC) group. Melatonin increased the expression of Claudin 5 under OGD/R injury (green).
In the Mel (10 nM) and Mel (100 nM) groups, the expression of Claudin 5 was higher than in the EC group. Claudin 5 was preserved in the
melatonin treatment group, followingOGD/R-induced injury. Scale bar: 200 𝜇m, Claudin 5: red, and 4,6-diamidino-2-phenylindole (DAPI):
blue. (b) Western blotting showed that the relative protein level of Claudin 5 was reduced in EC compared to the NC group.The relative level
of Claudin 5 was increased in Mel (10 nM) and Mel (100 nM) groups, compared to the EC group. The bar graph shows the quantification of
Claudin 5 protein in all groups. 𝛽-Actin was used as an internal control. Data are expressed as mean ± S.E.M. (∗𝑃 < 0.05). (i) Normal control
(NC): bEnd.3 cells cultured with normal media without OGD injury, (ii) experimental control (EC): bEnd.3 cells cultured in nontreated
medium for 18 h after 6 h of OGD injury, and (iii) 10 nM melatonin (Mel 10 nM): bEnd.3 cells treated with 10 nM melatonin for 24 h before
6 h of OGD injury. These cells were then cultured in nontreated medium for 18 hr. (iv) 100 nM melatonin (Mel 100 nM): bEnd.3 cells were
also treated with 100 nMmelatonin (100 nMmelatonin group) for 24 h before 6 h of OGD injury.These cells were then cultured in nontreated
medium for 18 h.
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Figure 4: The measurement of VEGF expression in bEND.3 cells after OGD/R-induced injury. (a) The level of VEGF was evaluated by
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Figure 5: The measurement of JNK, Akt, and Bax expression in brain endothelial cells after OGD/R-induced injury. (a) Western blotting
showed that the relative protein level of phosphor-Akt was reduced in EC compared to the NC group. The protein level of phosphor-Akt
was increased in Mel (100 nM) groups, compared to the EC group. The bar graph shows the quantification of phosphor-Akt/Akt protein in
all groups. (b) Western blotting showed that the relative protein expression of phosphor-JNK increased in the EC group, compared to the
NC group. The relative level of phosphor-JNK decreased in Mel 10 nM and Mel 100 nM groups, compared to the EC group. The bar graph
shows the quantification of phosphor-JNK/JNK protein in all groups. (c) Western blotting showed that the relative protein expression of Bax
increased in the EC group, compared to the NC group.The protein level of Bax decreased inMel 10 nM andMel 100 nM groups, compared to
the EC group.The bar graph shows the quantification of Bax protein in all groups. (d)Western blotting showed the relative protein expression
of Bax by melatonin and 100 nM Akt inhibitor pretreatment under OGD/R injury. The expression of Bax was increased in the EC treatment
group, compared to the NC group. The protein level of Bax was increased in Mel 10 nM and Mel 100 nM groups with 100 nM Akt inhibitor
copretreatment, compared to the EC group. The bar graph shows the quantification of Bax in all groups. 𝛽-Actin was used as an internal
control. Data are expressed as mean ± S.E.M. (#𝑃 < 0.1, ∗𝑃 < 0.05, and ∗∗𝑃 < 0.001). Protein kinase B (Akt), phosphorylated Akt (p-Akt),
c-Jun N-terminal kinases (JNK), and phosphorylated JNK (p-JNK).
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ischemia reperfusion in vivo [70–72] and in vitro [73, 74].
Melatonin is known as an antioxidant [75], a powerful free
radical scavenger [76–78], and the cellular protector against
various oxidative stress-associated diseases [79, 80]. Several
studies in animals have suggested that melatonin reduces
cellular damage by decreasing ROS in ischemia-reperfusion
injury [46, 81, 82] and ischemia-hypoxia injury [83]. In
the present study, we confirmed that melatonin reduces
OGD/R-induced ROS generation in brain endothelial cells
and prevents cell death of brain endothelial cells following
OGD/R injury. Hypoxia causes degradation of tight junction
proteins, such as Claudin 3, ZO-1 and ZO-2, and occludin
[38, 39]. Several studies have demonstrated that claudins are
major proteins in tight junctions [84–87], which are essential
structural components of the BBB [34]. And, Claudin 5 is an
important molecule that promotes disruption of the BBB in
hypoxic conditions [88]. Tao et al. have demonstrated that
melatonin prevents degradation of ZO-1, a tight junction
protein that protects against ischemic injury in endothelial
cells [89]. To determine the protective effect of melatonin on
impaired BBB function caused by ischemia reperfusion, we
examined Claudin 5 protein expression in brain endothelial
cells following OGD/R injury. Our findings suggest that
melatonin may prevent BBB disruption during ischemia-
reperfusion injury by inhibiting degradation of the Claudin 5
tight junction protein.Hypoxia results in increased paracellu-
lar permeability [38, 90–92], leading to formation of cerebral
edema [93]. Hypoxia induces the expression of VEGF [94–
97], which is considered as one of the most important factors
that stimulates the formation of new blood vessels [94, 95].
VEGF increases the permeability of blood vessels [92, 98, 99]
and leads to vasogenic edema [100–103]. Several studies have
demonstrated that VEGF increases BBB permeability [99],
while inhibition of VEGF reduces BBB permeability [43].
Melatonin protects BBB hyperpermeability and reduces brain
edema in ischemic stroke [104, 105]. Also, recent research has
shown thatmelatonin reduces expression ofVEGF in hypoxic
damage [53, 106–108]. In the present study, our results showed
that melatonin reduced the expression of VEGF in brain
endothelial cells following OGD/R-induced injury. In oxida-
tive stress, ROS acts as an important mediator to activate
the MAPK pathway [23, 24]. The phosphatidylinositol-3-
kinase/protein kinase B (PI3K/Akt) signaling pathway is
considered to be one of the cell survival pathways [109].Many
researches have demonstrated that Akt plays a major role
in protection from cell death under oxidative stress [110–
115] and attenuates ROS production, which protects cells
[116]. In brain endothelial cells, Akt enhances cell survival
and inhibits apoptosis [117–119]. Melatonin promotes Akt
signaling to protect cells in response to stress [120]. In the
present study, our result showed that melatonin enhanced
Akt activation following OGD/R injury. This finding may
indicate that melatonin protects brain endothelial cells via
Akt activation in the setting of ischemia-reperfusion injury.
In addition, Akt can protect cellular apoptosis by regulating
a proapoptotic protein such as Bax [121–124]. Several studies
demonstrated that melatonin may regulate the Bax expres-
sion and may be involved in the apoptosis signaling [125,
126]. In the present study, our results showed that melatonin

may regulate the Bax expression through regulating Akt
activation. Considering that Bax is the proapoptotic protein,
melatoninmay protect the apoptosis of brain endothelial cells
through suppressing the expression of Bax in response to
hypoxia and reperfusion stress. JNK signaling contributes
to cellular apoptosis triggered by various stresses, including
oxidized LDL, proinflammatory cytokines, or high glucose
[127–129]. Specifically, excessive ROS generation is closely
linked to JNK activation [130–132]. JNK activation triggers
the mitochondrial apoptotic pathway [133, 134] and dis-
rupts the BBB [135]. Several studies have shown that JNK
inhibitors exert protective effects against ischemic injury
in a rodent model [136–139]. In the present study, our
findings suggest that melatonin attenuates JNK activation in
OGD/R-exposed brain endothelial cells. This result indicates
that melatonin may inhibit the death of brain endothelial
cells via JNK suppression. In conclusion, melatonin protects
brain endothelial cells against ischemic-reperfusion injury
by reducing the production of ROS, by preserving tight
junction proteins, by attenuating expression of VEGF, and by
regulating Akt activation and JNK suppression. Hence, this
study suggests that melatonin may play as the protector on
brain endothelial cells under brain hypoxic injury such as
stroke. For application to the patients with stroke, this study
has many limitations because of confirmation only in vitro
study. However, these findings may provide the basic data for
the further study on stroke.
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