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Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of disorders characterized by the accumulation of triglycerides
within the liver. The global prevalence of NAFLD has been increasing as the obesity epidemic shows no sign of relenting.
Mitochondria play a central role in hepatic lipid metabolism and also are affected by upstream signaling pathways involved in
hepatic metabolism. This review will focus on the role of mitochondria in the pathophysiology of NAFLD and touch on some
of the therapeutic approaches targeting mitochondria as well as metabolically important signaling pathways. Mitochondria are
able to adapt to lipid accumulation in hepatocytes by increasing rates of beta-oxidation; however increased substrate delivery to
the mitochondrial electron transport chain (ETC) leads to increased reactive oxygen species (ROS) production and eventually
ETC dysfunction. Decreased ETC function combined with increased rates of fatty acid beta-oxidation leads to the accumulation
of incomplete products of beta-oxidation, which combined with increased levels of ROS contribute to insulin resistance. Several
related signaling pathways, nuclear receptors, and transcription factors also regulate hepatic lipid metabolism, many of which are

redox sensitive and regulated by ROS.

1. Introduction

NAFLD is a broad term used to encompass a range of
disorders ranging in severity from excess triglyceride accu-
mulation in the liver to hepatic steatosis and eventually
fibrosis, cirrhosis, and hepatocellular carcinoma. With the
increasing prevalence of obesity and the metabolic syndrome,
the prevalence of NAFLD has been reported to be about 20%
[1]. Hepatic lipid accumulation results from a combination of
uptake from circulating free fatty acids (FFAs), de novo lipo-
genesis, and dietary fats [2]. This lipid accumulation leads to
hepatic steatosis, which is characterized by the accumulation
of triglycerides (TGs) as lipid droplets within hepatocytes
[3]. Progression to nonalcoholic steatohepatitis (NASH) is
defined by steatosis with hepatocyte injury and the presence
of inflammation, cell death, and fibrosis. Once a patient has
developed nonalcoholic steatohepatitis (NASH), progression

to cirrhosis can occur with about 10-29% of NASH patients
developing cirrhosis within 10 years [4]. As with other causes
of cirrhosis, those with cirrhosis secondary to NASH are
at an increased risk of hepatocellular carcinoma, with 4-
27% of patients with NASH induced cirrhosis developing
hepatocellular carcinoma. It is not known whether steatosis
also precedes NASH; however simple steatosis has often been
observed to precede steatohepatitis. A number of factors con-
tribute to the deposition of fat within the liver. Carbohydrate
intake increases serum insulin levels which promotes lipoge-
nesis. Furthermore, increased carbohydrate metabolism leads
to increased abundance of acetyl-coenzyme A (acetyl-CoA),
which can be used as a substrate for lipogenesis. Both insulin
and glucose activate signaling pathways leading to lipoge-
nesis. Insulin stimulates sterol regulatory element binding
protein-lc (SREBP-1c), a transcription factor which targets
many of the enzymes required in the lipogenesis pathway [5].



Glucose activates carbohydrate responsive element binding
protein (ChREBP), another transcription factor upregulating
the machinery for fatty acid synthesis [6].

While the factors leading from fat accumulation to the
inflammatory changes and cell injury which occur in NASH
have not yet fully been elucidated, a “two-hit” hypothesis
has been suggested [7, 8]. The first hit has been suggested
to be triglyceride accumulation within the hepatocyte. The
second hit constitutes factors that increase oxidative stress
and increase inflammation [7, 9, 10]. Mitochondria are at the
center of cellular metabolism and not only generate energy
from and provide energy for a variety of metabolic process
but also are central for the coordination and integration of
the various interwoven pathways defining the cell’s metabolic
program. This review will focus on alterations in mitochon-
drial function as well as the upstream signaling pathways
which converge on the mitochondria and their role in the
pathogenesis of NAFLD and implications for treatment.

2. The Role of Mitochondria in
the Etiology of NAFLD

Excess of hepatic lipids lies at the heart of NAFLD, and
mitochondria orchestrate hepatic lipid metabolism. FFAs can
either enter the mitochondria to undergo beta-oxidation or
undergo esterification into TGs. These TGs can then lead to
the formation of lipid droplets in the liver or be secreted as
very low density lipoproteins (VLDLs).

2.1. Mitochondrial Adaptations to NAFLD. Mitochondria
play a pivotal role in fatty acid metabolism. Long chain
fatty acids enter into the mitochondria utilizing carnitine
palmitoyltransferase-1 (CPT-1) to undergo fatty acid oxi-
dation and supply reducing equivalents for the mitochon-
drial electron transport chain (ETC). Typically, hepatocyte
lipogenesis and lipid uptake are matched relatively equally
with fatty acid oxidation and lipid export from the liver as
cholesterol. Insulin resistance results in lipolysis in adipose
tissue, increased concentration of fatty acids in the serum,
and subsequently increased uptake by the liver. In an effort to
compensate for increased fat deposition, liver mitochondria
are able to increase the rate of fatty acid oxidation [11-16].
In ob/ob mice, increased rates of fatty acid oxidation were
found to correlate with increased expression of the requisite
enzymes [17-19]. While there is some disagreement in the
literature, the majority of studies in humans suggest that
increased fatty acid oxidation persists starting with simply
fatty liver disease and continuing to mild and severe NASH
[20-24]. The exact mechanism underlying the increase in
fatty acid oxidation is imprecisely understood; however
increased availability of the pool of free fatty acids to be
used as substrates may be partially responsible [25, 26].
The involvement of other upstream signaling pathways will
be discussed in depth later. While fatty acid oxidation is
able to be upregulated to compensate for increased depo-
sition of fat, multiple studies have shown that liver ATP
levels are decreased in NAFLD [27-30]. Furthermore, ATP
levels appear to decrease in parallel with the progression
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of NAFLD [28, 31]. This apparent discrepancy can likely be
explained by changes in the enzymatic activities of the
ETC. Increased expression of uncoupling protein 2 (UCP-
2) expression resulting in uncoupling of ETC from ATP
production may also contribute to decreased ATP levels [32,
33]. While a clear picture of the time course has not emerged,
reductions in the enzymatic activity of the ETC complexes
have been demonstrated in human and rodent models of
NAFLD, with reductions in the activities of complex I [29, 34—
37] and complex IV [17, 35-37] having been most often
reported. Decreased ETC activity can lead to an overall
impairment in mitochondrial respiration [38-41]; however
discrepancies exist in the literature and may in part be due
to a degree of uncoupling and thus increased respiration
secondary to such factors as increased UCP-2 expression.

2.2. Mechanisms Leading to Mitochondrial Dysfunction.
While metabolic adaptations occur to compensate for the
increased liver fat load, mitochondrial dysfunction eventually
occurs. Indeed, studies in human and rodents have demon-
strated that enzymatic activities of the ETC complexes are
reduced in NAFLD. While the exact mechanisms remain
poorly understood, several processes have been proposed to
contribute to impaired enzymatic activity. Increased genera-
tion of reactive oxygen species (ROS) has been demonstrated
in NAFLD and likely plays a role in impairing ETC activity.
Increased ROS production in NAFLD has been suggested to
result from a more reduced quinone pool and an overall more
reduced redox state within the mitochondrial matrix [42].
ROS have been documented to damage the ETC [43, 44] as
well as causing mutants in the mitochondria DNA [45]. The
ETC has also been shown to be sensitive to redox modulation
by reactive nitrogen species (RNS) [46-48]. A study using
ob/ob mice demonstrated tyrosine nitration of mitochondrial
proteins and showed that ETC activity could be restored by
scavenging reactive nitrogen species [17]. Increased TNF-
« may contribute to RNS by increasing the expression of
iNOS and resulting in peroxynitrite formation [17]. Indeed,
TNF-« levels have been shown to be increased in NAFLD
[49-51] and correlate with oxidative damage to mtDNA
[52], and treating ob/ob mice with an anti-TNF antibody
was shown to reverse the impaired ETC enzymatic activity
in this model [17]. Decreased levels of adiponectin likely
also contribute, although perhaps indirectly, to decreased
ETC activity in NAFLD. Lower levels of adiponectin have
been demonstrated in NAFLD [53-55], and adiponectin KO
mice had decreased ETC enzymatic activities which were
restored by adenovirus mediated expression of adiponectin
[56]. Undoubtedly, the mechanisms leading to mitochondrial
dysfunction in NAFLD are complex and multifactorial. Alter-
ations of the related upstream signaling pathways alter in
NAFLD and how they affect mitochondrial function will be
addressed in more detail below.

2.3. Contribution of Oxidative Stress to the Pathogenesis of
NAFLD. Early in the course of NAFLD, increased flow of
reducing equivalents through the ETC provided from the
increased beta-oxidation of fatty acids results in increased
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mitochondrial reactive oxygen species (ROS) production,
which are derived primarily from complexes I and III [29, 32,
57, 58]. ROS is a blanket term used to refer to a variety of
free radical species, and the primary form of ROS produced
by the mitochondria is superoxide. Superoxide is generated
in the mitochondria through the one electron reduction of
oxygen at several sites within the ETC where a two-electron
carrier donates electrons to a one electron carrier [59]. Sites
within both complexes I and III have redox potentials making
the generation of superoxide thermodynamically favorable.
Within complex I, electron transfer from FMNH, to Fe-S is
thought to be the major site of superoxide generation while
in complex III the transfer of electrons from ubiquinol to
cytochrome b; results in the formation of a ubisemiquinone
radical capable of donating an electron to oxygen [60, 61].

Different types of lipids vary in their ability to lead to
increased ROS production. Per molecule, polyunsaturated
fatty acids provide more reducing equivalents to the ETC
resulting in the production of more ROS and can inhibit
glycolysis thereby shifting cellular metabolism away from
glucose toward lipid utilization [62]. Polyunsaturated fatty
acids can actually improve hepatic steatosis and reduce
oxidative stress [63]. Lipids are not the only molecules
contributing to oxidative stress in NAFLD. Free cholesterol
has been shown to accumulate in the liver [64, 65] due to
increased synthesis [66] and impairs hepatocyte antioxidant
defenses by depleting mitochondrial glutathione [67]. This
increased cholesterol burden also results in susceptibility to
cytokine induced apoptosis [67].

However, the ETC is not the only source of ROS. As noted
above, the ETC becomes progressively impaired in NAFLD,
leading to an accumulation of FFAs in the cytosol that
cannot be completely oxidized. These FFAs can be oxidized by
peroxisomal beta-oxidation or microsomal omega oxidation.
Peroxisomal fatty acid oxidation leads to hydrogen peroxide
production [68], while microsomal fatty acid oxidation leads
to oxidative stress through the ability of cytochrome P4502El
and cytochrome P4504A to partially reduce oxygen [69].
Indeed, in models of steatosis, peroxisomal and microsomal
fatty acid oxidation has been shown to be increased [20,
70].

ROS can react with fatty acids leading to lipid peroxida-
tion and the formation of reactive aldehydes such as trans-4-
hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA)
[71]. Oxidatively modified proteins have been shown to accu-
mulate in NAFLD [72,73], and peroxidation of mitochondrial
membrane phospholipids may further contribute to ETC
decline [74]. Interestingly, 4-HNE has been shown to form
adducts with UCP-2 leading to an increase in its activity [32]
perhaps explaining some of the uncoupling and decreased
ATP production in NAFLD.

Recent data have suggested that oxidative damage to
cardiolipin may play a role in impaired insulin signaling and
the metabolic syndrome. ALCAT1 catalyzes the synthesis of
a form of cardiolipin that is more oxidatively sensitive and
itself may also be upregulated by oxidative stress. ALCAT1
knockout was further shown to preserve mitochondrial
function, prevent diet induced obesity, and improve signaling
indicating that the oxidative modification of cardiolipin may

be an important mechanism linking oxidative stress with
insulin resistance and NAFLD [75].

Increased ROS production also results in increased
expression of a number of cytokines which have been shown
to play a pathological role in NAFLD including Fas ligand,
TNF-a, TGF-beta, and IL-8 [76]. TNF-« and IL-6 have both
been found to be elevated in the liver and serum of patients
with steatohepatitis [77], and normalization of the levels of
these cytokines has been shown to blunt the progression of
NAFLD [78].

While mitochondrial dysfunction plays a key role in
NAFLD as well as insulin resistance, it has been unclear
at exactly which stage in the pathogenesis of these condi-
tions mitochondrial function becomes altered. One recent
study has suggested that insulin resistance precedes overt
mitochondrial dysfunction [79]. However, this study did not
quantify the time course of increased reactive oxygen species
production but did demonstrate that oxidative stress was
critical for the inevitable decline in mitochondrial function
[79]. Therefore, it is conceivable that increased ROS pro-
duction may well precede impaired insulin signaling and
mitochondrial dysfunction, which will be discussed in more
depth later.

2.4. Antioxidant Based Therapies. Given the abundance of
data suggesting that oxidative stress plays a key role in
the progression of NAFLD, several studies have assessed
the efficacy of antioxidant based therapies. Vitamin E is an
antioxidant with the ability to prevent the propagation of
free radicals and has therefore been a logical choice in the
treatment of NAFLD [80]. A small pilot study of 16 patients
with biopsy proven NASH demonstrated increased levels of
proinflammatory cytokines in the NASH patients [81]. The
study was conducted over a 12-week period with lifestyle
modification resulting in an improvement in liver function
tests (LFTs); however there was no independent effect of
vitamin E treatment [81]. Longer treatment duration of 6
months with vitamin E and vitamin C in 45 patients did
demonstrate a statistically significant improvement in hepatic
fibrosis after vitamin treatment; however there was significant
variability among the patients and no effect on the level of
inflammation [82]. Similar treatment duration of vitamin
E in children with NASH demonstrated improvement in
LFTs [83]. More recently, the PIVENS trial performed over
two years with vitamin E or pioglitazone in nondiabetic
patients with NALD showed improvement in steatohepatitis
on posttreatment liver biopsies [84]. While there may be a
benefit of vitamin E treatment for NAFLD, enthusiasm has
been tempered by a meta-analysis showing increased all-
cause mortality from high dose vitamin E treatment [85],
although some have questioned these results [86]. Given the
available data, vitamin E therapy is only recommended in
nondiabetic NAFLD patients with biopsy proven NASH [87].
While vitamin E has been the most studied antioxidant com-
pound in NASH, various others have been studied. Betaine
is an antioxidant and choline derivative which decreases
oxidative stress by increasing levels of s-adenosyl-methionine
through enhanced homocysteine recycling [88]. A study



treating rats with diet induced NAFLD with betaine found
decreased liver fat accumulation, decreased TNF-« levels,
and increased cytosolic antioxidants [51]. However, clinical
trials with betaine have not been as promising. In a study of
35 patients with biopsy proven NASH, while 12 months of
betaine treatment slowed the progression of steatosis, it has
no effect on serum insulin and glucose or proinflammatory
cytokines and antioxidants [89]. N-Acetylcysteine (NAC) is
glutathione precursor capable of detoxifying nitric oxide as
well as blocking lipid peroxidation and thus was another
logical choice. A study in Wistar rats suggested that S-
nitroso-N-acetylcysteine (SNAC) was able to prevent the
development of NAFLD induced by a choline deficient diet.
Another study confirmed that SNAC treatment was able
to prevent the development of microvascular steatosis in
ob/ob mice and went on to demonstrate that it could reverse
microvascular steatosis [90]. A study in Sprague-Dawley rats
showed that the protective effects of SNAC may be due to
its ability to inhibit the progression of fibrosis, as SNAC
treatment decreased liver area occupied by collagen and
resulted in downregulation of TGF-f1, HSP-60, collagen-
la, and tissue inhibitors of metalloproteinase-2 [91]. Studies
in other models of cirrhosis have confirmed the antifibrotic
effects of SNAC [92, 93]. However, large scale clinical trials
have yet to be conducted, and initial trials have not been
overly encouraging. 35 patients with biopsy proven NASH
included in a study of were treated with NAC or placebo for
4 weeks without a significant benefit of NAC on LFTs [94];
however the study did not include a posttreatment biopsy to
assess the extent of fibrosis. Another more recent study of
30 patients with NALD treated with NAC versus vitamin C
demonstrated an improvement in LFTs with NAC treatment
but was limited by its lack of placebo control group and also
had no posttreatment biopsy [95]. Resveratrol, which has
been implicated in improved cardiovascular outcomes and
is the agent supposedly responsible for the “French paradox”
[96], has also been studied in NAFLD. It has been shown to
reduce hepatic lipogenesis [97], decrease oxidative stress [98],
and improve steatosis [98, 99] in models of NAFLD perhaps
through activation of Sirtl [100, 101] and AMP activated
kinase (AMPK) [102]. Resveratrol’s ability to activate AMPK
may be due to inhibition of mitochondrial complexes III and
V therefore impairing ATP synthesis [103, 104]. However,
data from clinical trials are lacking.

In additional to conventionally thought of antioxidants,
part of the ability of metformin to improve insulin sensi-
tivity and reduce hepatic steatosis may be due to decreased
mitochondrial ROS production. In rats, metformin was
shown to decrease reverse electron transport mediated ROS
production at complex I in isolated mitochondria perhaps
due to a reduction in mitochondrial membrane potential
[105]. However, the ability of metformin to suppress ROS has
not been demonstrated in vivo, and it is unclear to what extent
reverse electron transport contributes to mitochondrial ROS
production with physiological substrates [106]. Metformin
also has a number of important signaling effects which will be
discussed further later. Clinical trials studying metformin in
patients with NASH have shown an improvement in amino-
transferases while not having a significant effect on liver
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histology [107-109]. In a randomized control trial, Haukeland
et al. also found no effect of 6 months of treatment with
metformin on liver histology [110]. A recent meta-analysis
failed to demonstrate a benefit of metformin treatment for
NAFLD when looking at liver histology or aminotransferases
[111]. Therefore, the current guidelines do not recommend
metformin for the specific treatment of NASH [87].

3. Insulin Resistance

3.1. Mechanism of Insulin Resistance and Its Association with
NAFLD. There is a clear association between insulin resis-
tance and NAFLD, with impaired insulin signaling almost
always occurring in conjunction with NAFLD. Given the
close association between the two, each has been implicated
in the pathogenesis of the other; however debate continues
as to whether insulin resistance is a cause or consequence
of hepatic steatosis and NAFLD. While insulin typically pro-
motes glucose uptake as well as lipogenesis, insulin resistance
describes resistance against the ability of insulin to trigger
glucose uptake in liver, muscle, and adipose tissue. Insulin
stimulates glycolysis primarily through activation of glucok-
inase [112]. Insulin also activates sterol regulatory element
binding protein 1-c (SREBP-1c), a transcription factor which
stimulates liver pyruvate kinase, acetyl-CoA carboxylase,
fatty acid synthase, stearoyl-CoA desaturase, and Spot 14,
all of which are involved in fatty acid synthesis [113]. Given
that insulin acts to increase lipogenesis, it might be thought
that, in conditions of insulin resistance, fatty acid synthesis
would be decreased. However, it has been shown that, in
states of insulin resistance, insulin loses its ability to decrease
glucose production, while maintaining the ability to stimulate
lipogenesis [114]. For instance, even with significant insulin
resistance as determined by serum glucose levels, insulin was
able to activate SREBP-1c and promote lipogenesis [115].
Studies in several animal models have suggested that
insulin resistance precedes and is a cause of subsequent
hepatic steatosis [116]. Hepatic steatosis was also shown to
occur in human populations with postreceptor mutations in
the insulin signaling pathway leading to insulin resistance
[117]. However, while the lipogenic effects of insulin and the
hyperinsulinemia that is characteristic of insulin resistance
likely play a role in the accumulation of hepatic fat, it
has long been suspected that hepatic lipids precipitate the
development of insulin resistance. One early hypothesis pro-
posed that an accumulation of hepatic lipids in combination
with decreased mitochondrial beta-oxidation of fatty acids
reroutes these fatty acids toward the production of diacyl-
glycerol and ceramide [118-122] resulting in the induction
of stress induced kinases and subsequently impaired insulin
signaling [123, 124]. However, this hypothesis has fallen out
of favor recently for a number of reasons. First of all, it has
been shown that accumulation of DAG and ceramide does
not obligatorily lead to insulin resistance and is unlikely to
be causative in insulin resistance [125]. Furthermore, in mice
with genetic defects impairing fatty acid mobilization or oxi-
dation, hepatic steatosis occurred without insulin resistance
[116,126]. One study generated mice with liver overexpression
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of acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) and
showed that while these mice developed hepatic steatosis,
they did not develop glucose or insulin intolerance [127].
These studies provided support for the notion that steatosis
can occur without preceding insulin resistance and also called
into question the idea that hepatic lipid accumulation leads to
insulin resistance. Additionally, increased hepatic fatty acid
beta-oxidation using PPAR agonists did not improve insulin
resistance in type 2 diabetic patients [128] and has actually
been shown to worsen insulin resistance in some rodent
models [128-130].

Recently, support has grown for the hypothesis that
increased fatty acid beta-oxidation actually leads to insulin
resistance. In a series of elegant experiments, Koves et al.
demonstrated that the increased beta-oxidation that occurred
in high-fat diet fed rats led to the accumulation of incom-
pletely oxidized fatty acid intermediates and also depleted
TCA cycle intermediates [131]. In their study, lipid induced
insulin resistance was actually reversed by blocking fatty
acid beta-oxidation. Furthermore, data are accumulating
to suggest that an excess lipid burden renders cells less
metabolically flexible, that is, less able to switch between
fatty acid oxidation and glucose oxidation. Recent work
has suggested that carnitine acetyltransferase (CrAT) may
permit much of this flexibility. CrAT converts acetyl-CoA
to its esterified membrane permeable form, thus allowing
mitochondrial utilization of acetyl-CoA and relieving the
feedback inhibition exerted by acetyl-CoA. The importance
of CrAT and the metabolic flexibility that it affords was
confirmed by mice harboring a muscle specific knockout
which subsequently develop glucose intolerance [132].

The idea that excess oxidation of fatty acids may impair
glucose uptake and catabolism is not new and was actually
proposed in 1963 by Randle et al. in what has come to
be known as the Randle cycle [133]. Certainly, it makes
evolutionary sense that, during periods of increased fatty
acids oxidation, the body would want to maintain serum
glucose levels. Fatty acids are used as the preferred fuel source
primarily during the fasted state, and given the paramount
importance of maintaining serum glucose concentrations in
states of nutrient depletion, mechanisms have evolved to
inhibit glucose oxidation during fatty acid oxidation [134].
Indeed, fatty acid oxidation has been shown to inhibit several
steps along the pathway of glucose utilization. Fatty acid
oxidation exerts its greatest inhibitory effect on pyruvate
dehydrogenase (PDH) activity. Fatty acid oxidation leads to
an increase in the ration of NADH to NAD+ as well as acetyl-
CoA to CoA, which results in feedback inhibition of PDH
activity in part due to activation of pyruvate dehydrogenase
kinase (PDK) [135]. This leads to an accumulation of citrate,
which is an allosteric inhibitor of phosphofructokinase-
1 (PFK-1) leading to an increase in glucose 6-phosphate,
which inhibits hexokinase [136]. Inhibition of PDH also
preserves intracellular levels of pyruvate and lactate to be
used for gluconeogenesis [137]. Therefore, treatment strate-
gies that have been devised to increase fatty acid oxidation
may actually have a deleterious effect on insulin resis-
tance, which may further exacerbate lipid accumulation and
NAFLD.

These findings fit well with the mitochondrial adapta-
tions that occur in NAFLD, which were discussed above.
Increased mitochondrial beta-oxidation initially acts as a
compensatory mechanism to deal with the increased depo-
sition of FFAs in the liver. However, this increased fatty
acid oxidation comes at a cost, primarily increased ROS
production which occurs secondary to increased substrate
supply without increased energy demand exacerbated in
conditions of decreased exercise. These may also explain
part of the beneficial effects of exercise on insulin resistance.
Mitochondrial function remains intact early in this process
as studies have demonstrated that insulin resistance clearly
precedes the development of mitochondrial dysfunction [79].

Overproduction of ROS likely plays a key mechanistic
role linking fatty acid oxidation with insulin resistance.
In cultured hepatocytes, it has been shown that saturated
fatty acids are able to induce increased mitochondrial ROS
production, which resulted in c-Jun NH(2)-terminal kinase
(JNK) activation and subsequently insulin resistance as
demonstrated by decreased insulin stimulated tyrosine phos-
phorylation of IRS-2 and serine phosphorylation of Akt [138].
Inhibition of CPT-1 with etomoxir has also been shown to
block the insulin resistance in cell lines induced by saturated
fatty acid treatment [138, 139].

However, the role of ROS production in insulin resistance
is likely more complex. At low dose, ROS can actually
enhance insulin signaling by inhibition of protein-tyrosine
phosphatase (PTPIB) [140, 141], which is known to negatively
regulate insulin signaling [142]. Antioxidant supplementation
has also been shown to attenuate the insulin sensitizing effects
of physical exercise [143, 144], which is also known to increase
mitochondrial ROS production [145]. Additionally, ROS
likely serve as important signaling molecules upregulating
PGC-la expression and various antioxidant enzymes [145-
147]. Thus studies using antioxidants in NAFLD should be
interpreted in light of not only the deleterious effects of ROS
but also their signaling roles.

Further complicating the use of antioxidant therapy in
NAFLD is the specificity of ROS which are scavenged. For
instance, scavenging superoxide with superoxide dismutase
(SOD) produces hydrogen peroxide and has been shown to
actually exacerbate steatohepatitis unless glutathione, which
scavenges hydrogen peroxide, was replenished [148].

3.2. Improving Insulin Signaling through the Reduction of
Hepatic Fatty Acid Oxidation. The accumulation of hep-
atic lipids in NAFLD had initially provided the impetus
to devise therapeutic approaches to increase hepatic lipid
metabolism. Some initial success with decreasing hepatic
lipids was found with compounds such as 3,5-diiodo-1-
thyronine [149]. Other approaches have aimed at increasing
CPT-1, the rate limiting step in fatty acid beta-oxidation [150].
While lipid accumulation in the liver causes NAFLD, the
process of fatty acid oxidation also contributes to the patho-
genesis of NAFLD, as discussed above. Indeed, Koves et al.
demonstrated that reducing rates of fatty acid beta-oxidation
by knocking down malonyl-coA decarboxylase imparted
resistance against diet induced glucose intolerance [131].
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FIGURE 1: Pathways involved in the development of NAFLD. The role of mitochondria is highlighted as increased reactive oxygen species
(ROS) production leads to inactivation of the ETC resulting in decreased ATP levels and impaired energy supply. Mitochondrial damage by
ROS also leads to impaired fatty acid oxidation (FAO). Incomplete FAO may also occur as a result of ROS production and contribute to insulin
resistance and further hepatic fatty acid accumulation. ROS production also leads to the activation of a number of cytokines known to play a
role in the pathogenesis of NAFLD. Insulin signaling plays a key role in NAFLD. Insulin signals through SREP-1c, which activates lipogenesis.
In states of insulin resistance, this ability to stimulate lipogenesis is maintained while the ability to stimulate glucose uptake is reduced. Glucose
stimulates lipogenesis as well but does so by activating ChREBP. LXR/FXR and RXR also play key roles in increasing lipogenesis. Signaling
through AMPK decreases lipogenesis by inhibiting ACC. However, AMPK also has very broad effects on the cellular energy state leading to
decreased levels of ATP and subsequent activation of pyruvate kinase, phosphofructokinase, and pyruvate dehydrogenase. The PPAR family
of transcription factors plays an important role in lipid metabolism with PPAR« stimulating fatty acid oxidation and PPARy increasing
peripheral update of lipid by adipocytes. PGC-1a is a transcription factor which can lead to activation of gluconeogenesis when activated by
CREB or ROS production. However PGC-1« also leads to increased mitochondrial biogenesis when activated by AMPK or metformin which
may ameliorate NAFLD.

Pharmacological approaches to inhibiting CPT-1 have also
been developed. Etomoxir (ethyl-2-[6-(4-chlorophenoxy)
hexyl]-oxirane-2-carboxylate) blocks CPT-1 and its use in
humans has been shown to decrease plasma glucose levels
and was accompanied by increased expression of GLUT4
on the cell membranes of myocytes [151]. In mice treated
with etomoxir, insulin signaling was improved even though
diacylglycerol and triacylglycerol were shown to accumulate
within myocytes [151]. A recent study treated diet induced
obese mice with the CPT-1 inhibitor oxfenicine and found
improved glucose tolerance and insulin sensitivity as well as
evidence of improved insulin signaling and decreased toxic

metabolites of lipid metabolism [152]. Similarly, the CPT-1
inhibitor teglicar has been shown to decrease endogenous
glucose production as well as improve insulin sensitivity in
rat and mice fed a high-fat diet [153].

4. Signaling Pathways and Nuclear Receptors

To this point, control of metabolism and its alterations in
NAFLD have been discussed at the cytosolic and mitochon-
drial levels. However, the metabolic program of the cell is
intricately controlled by a set of interwoven singling path-
ways, transcription factors, and nuclear receptors (Figure 1).
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4.1. AMPK. As discussed above, mitochondria have the
ability to adapt to the changing metabolic demands of the
cell, and several elegant and interwoven pathways allow them
to do so. Among the most important and well-studied factor
is AMPK. AMPK is a serine/threonine protein kinase which
acts as a sensor of the cell’s energy state. An increased ratio of
AMP to ATP indicates a relative energy deficiency and results
in activation of AMPK [154]. AMPK is a heterotrimer with
its alpha subunits performing catalytic functions and its beta
and gamma subunits serving regulatory roles. Displacement
of ATP bound to the regulatory domain by AMP or ADP
results in allosteric activation of AMPK [155], protects the
alpha subunit from dephosphorylation, and promotes the
phosphorylation of threonine 172 causing additional activa-
tion [156]. Carbohydrates such as glycogen can inhibit AMPK
by binding to a site within the beta subunit [157]. Upstream
kinases also play a role in the activation of AMPK with
liver kinase Bl (LKBI) and calcium calmodulin-dependent
protein kinase § (CAMKKJ) both catalyzing the activating
phosphorylation of threonine 172, the former due to changes
in energy state and the latter due to calcium influxes [158,159].
Activation of AMPK turns on catabolic processes, which
increase the availability of cellular ATP, such as fatty acid
oxidation, and turns off processes like lipid synthesis which
consume ATP [160, 161].

It has been suggested that the glucose lowering effect of
AMPK activation results from its interaction with acetyl-
coA carboxylases. Several studies have demonstrated the
importance of acetyl-CoA carboxylases 1 and 2 (ACCI and
ACC2) in the development of hepatic steatosis and hepatic
insulin resistance. These enzymes generate malonyl-CoA
which not only serves as a precursor of fatty acid synthesis
but also inhibits fatty acid oxidation by inhibiting CPT-
1. Inhibition of both ACC1 and ACC2 decreases levels of
malonyl-CoA, lowers hepatic lipids, and improves insulin
sensitivity in a high-fat diet rat model of NAFLD [162].
ACCI has been shown to be phosphorylated by AMPK [163,
164], inhibiting the synthesis of malonyl-CoA. In elegant
experiments replacing the serine residues phosphorylated by
AMPK with alanine, Fullerton et al. demonstrated that the
inability to phosphorylate ACC1 leads to glucose intolerance
and hepatic insulin resistance [165]. Importantly, their study
demonstrated increased hepatic lipogenesis, glucose produc-
tion, and insulin sensitivity in the fed state [165].

Activation of fatty acid oxidation may be detrimental for
the metabolic syndrome given its reciprocal inhibition of
glucose uptake and oxidation. Therefore, the ability of AMPK
to stimulate fatty acid beta-oxidation might be expected
to have some untoward effects on NAFLD and insulin
resistance. However, it has been demonstrated that AMPK
activation overcomes the inhibitory effect of fatty acid oxida-
tion on glucose utilization [166, 167]. While AMPK promotes
fatty acid oxidation by ACC inactivation and subsequently
decreased levels of malonyl-CoA, it also stimulates glucose
uptake and glycolysis. Indeed, AMPK has been shown to act
in an insulin independent fashion to stimulate glucose uptake
[160]. AMPK exerts its effects on lipid and carbohydrate
metabolism by targeting a number of key enzymes [161].

AMPK inhibits ACC, which decreases the level of malonyl-
CoA both decreasing lipogenesis and relieving the inhibition
on fatty acid beta-oxidation exerted by malonyl-CoA on
CPT-1 [168]. AMPK stimulates phosphofructokinase (PFK-
2), which stimulates glycolysis [169]. AMPK also improves
glucose transport and increases glycolysis by recruiting
GLUT4 to the plasma membrane due to phosphorylation of
Akt substrate 160 [170].

Interest in modulation of AMPK for treatment of
metabolic conditions arouse in part due to the observation
that it is able to stimulate glucose uptake in an insulin
dependent fashion [171,172]. AMPK has also been implicated
in the action of biguanides and thiazolidinediones and will be
discussed later [160].

In addition to activation of AMPK, simply decreasing
the energetic state of the hepatocyte may have important
effects on decreasing hepatic gluconeogenesis and decreasing
serum glucose levels. Decreased cellular ATP levels relieve
the feedback inhibition exerted by ATP on L-type pyruvate
kinase [173] and phosphofructokinase [173] as well as pyru-
vate dehydrogenase [174]. AMP also can increase the ability
of 2,6-bisphosphate to stimulate phosphofructokinase and
inhibit fructose-1,6-bisphosphatase [175].

Given its ability to increase pathways leading to lipid
catabolism, activation of AMPK has been targeted in ther-
apeutic approaches for NAFLD. Interestingly, some of the
beneficial effects of metformin may be due to its ability
to modulate AMPK signaling. Metformin has long been
known to improve insulin sensitivity [176-178] and decrease
hepatic gluconeogenesis, and it has therefore logically been
investigated as a treatment option for NAFLD. Initial interest
for this concept came from a study showing that metformin
can activate AMPK in liver and skeletal muscle and that inhi-
bition of AMPK blocked the ability of metformin to decrease
hepatocyte glucose production [179]. However, it has been
suggested that metformin can also act independently of
AMPK, with AMPK knockout mice still demonstrating
decreased gluconeogenesis and lower blood glucose levels
after metformin treatment [180]. This study went further to
show that metformin decreased cellular levels of ATP and
increased the ratio of AMP to ATP [180]. These results are
not unexpected in light of data indicating that metformin
can inhibit complex I of the mitochondrial ETC [181, 182].
While perhaps not exclusively inhibiting complex I [183]
and likely having broader less specific effects by binding to
membrane phospholipids [184], it is clear that metformin
can alter the overall energetic state of the cell. Increased
AMP levels induced by metformin treatment have also been
shown to inhibit adenylate cyclase thereby reducing levels
of cAMP and consequently PKA activation [185]. Impaired
ability to activate PKA inhibits the downstream signaling
effects of glucagon and reduces fasting glucose levels [185].
Therefore inhibition of adenylate cyclase via increased AMP
levels likely represents an important mechanism by which
metformin reduces blood glucose levels. Thus, whether it is
through activation of AMPK or otherwise, much of the effect
of the beneficial effect of metformin is likely derived from
modulation of cellular energy balance [186].



In addition to metformin, small molecules have been
designed to specifically target AMPK. The small molecule
A-769662, a member of a thienopyridone family of AMPK
activators, was shown to increase fatty acid oxidation, down-
regulate the machinery necessary for lipogenesis, and reduce
plasma triglyceride and glucose levels [187]. Cardiotrophin is
a cytokine with known hepatoprotective effects and has been
shown to decrease hepatic triglyceride accumulation and
reduce inflammation in a model of NAFLD largely through
its ability to activate AMPK [188]. 5-Aminoimidazole-4-
carboxamide-1-beta-D-ribofuranoside (AICAR) is another
pharmacological activator of AMPK, which is metabolized to
ZMP, an analog of AMP. It has been shown to have beneficial
effects on insulin sensitivity and improves glucose uptake
in models of type 2 diabetes and may also be of benefit in
NAFLD [189, 190]. Alpha-lipoic acid is an antioxidant which
has been shown to activate AMPK and decrease hepatic
steatosis [191]. Other AMPK activating compounds have been
developed as well; however clinical trials are still pending for
most of these drugs.

4.2. Peroxisome Proliferator-Activated Receptors (PPARs).
Three different PPAR isoforms exist: «, y, and /6 [192].
PPARa has an important role in increasing fatty acid oxi-
dation in mitochondria, peroxisomes, and microsomes [193-
195]. PPAR« forms a heterodimer with retinoid-X-receptor
(RXR) which then binds to its nuclear response element
[196]. PPAR« is thought to act as a sensor of hepatic lipid
balance, and fatty acids have been shown to bind to PPAR«
leading to its activation and thus increased beta-oxidation
[197]. Some studies have suggested that deficiency of PPA«
contributes to hepatic steatosis [198]. Fibrates are the most
important class of drugs known to act as PPAR« agonists
and have been used as treatment options for diabetes and
the metabolic syndrome. A number of animal studies have
suggested that PPAR« agonists may be of benefit for NAFLD
[51, 199, 200]. However, only a few clinical studies have been
conducted and demonstrated minimal benefit. After a 54-
week treatment course with either fenofibrate or atorvastatin
or both, a study of 186 patients with liver steatosis showed
no biochemical or imaging evidence of NAFLD in 42% of
patients treated with fenofibrate compared with 67% treated
with atorvastatin and 70% treated with both [201]. Again, the
beneficial effects observed in this study may have been due
to the effect of fenofibrate on lowering TG and LDL levels
[201]. In another small study of 16 patients with biopsy proven
NAFLD, triglyceride levels were again improved and insulin
resistance was moderately improved; however there was not
histological improvement on repeated liver biopsy [202].

As discussed above, unopposed activation of fatty acid
beta-oxidation may lead to reduced glucose uptake and
utilization via the Randle cycle. Indeed, overexpression of
PPAR« has been shown to be detrimental to cardiomyocytes
resulting in impaired glucose and cardiomyopathy reminis-
cent of that seen in patients with uncontrolled diabetes [203].
Therefore, targeting PPARa may not be the optimal strategy
for treating NAFLD. Nevertheless, the fibrate class of drugs
agonizes PPAR« and several studies have shown a beneficial

Oxidative Medicine and Cellular Longevity

effect. This benefit may be due to PPAR«’s broader effect
on lipid metabolism. Indeed, PPARa has been shown to
decrease plasma triglyceride levels largely through its ability
to increase lipoprotein lipase mediated triglyceride clearance
as well as decreasing the availability of triglycerides for
VLDL secretion [204]. Furthermore, PPAR« has been shown
to lower TNF-« levels [205], another effect that could be
beneficial in NAFLD.

PPARy is targeted by the thiazolidinediones (TZDs),
which have been shown to be of benefit in type 2 diabetes.
It has been shown to be critical for the uptake and storage of
triglycerides by adipose tissues [206], thereby lowering serum
triglyceride levels and reducing the amount of substrate avail-
able for hepatic fatty acid beta-oxidation. Compared with
PPARa, alarger number of clinical trials have been conducted
looking at PPARy agonists, primarily TZDs, in the treatment
of NAFLD. One early study demonstrated that treatment with
rosiglitazone reduced steatosis and necroinflammation in
patients with biopsy confirmed NASH [207]; however more
recent studies have suggested that rosiglitazone had no effect
on necroinflammation or fibrosis but recapitulated its ability
to reduce hepatic steatosis [208, 209]. Other studies using
pioglitazone have shown that this thiazolidinedione is able
to improve hepatic steatosis and markers of inflammation as
well as decrease hepatic fibrosis [210, 211]. Importantly, in
the PIVENS trial, which compared pioglitazone or vitamin
E treatment with placebo, while a pioglitazone treatment
did not reach significance for reduction in NAFLD activity
score, significantly more patients achieved resolution of
NASH with pioglitazone than with control and histological
benefits were demonstrated on liver biopsy [84]. While
the guidelines suggest that pioglitazone can be used for
treatment of biopsy proven NASH [87], its use has also
been associated with a higher rate of congestive heart failure
[212]; therefore it should be used with extreme caution
and in patients who have cardiac comorbidities. Of note,
pioglitazone has led to weight gain in a number of the
studies mentioned, which is perhaps not unexpected given
the effect of PPAR-gamma on increasing FFA incorporation
into peripheral adipose tissue. TZDs have also been shown
to activate AMPK [213], which may be partially due to their
ability to alter the energy state of the cell [214, 215] but
is likely also adiponectin [216, 217] and PPAR mediated
[218].

PPAR /6 targets genes involved in fatty acid oxidation,
glucose metabolism, and mitochondrial respiration [219,
220]. A PPAR « and ¢ agonist, GFT505, has been shown to
improve liver steatosis in a diet induced rodent model; how-
ever its effects may have been primarily due to the observed
decrease in hepatic inflammation [221]. Similar results were
also obtained with the PPAR pan-agonist bezafibrate, which
may also play a significant anti-inflammatory role [222].

4.3. PGC-la.. PGC-la is a key transcription factor which
stimulates the expression of mitochondrial genes as well as
nuclear genes required for mitochondrial biogenesis [223].
PGC-la stimulates mitochondrial transcription factor A
(TFAM) secondary to nuclear respiratory factors (NRFs)
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1 and 2 activation [224]. In liver biopsies from NAFLD
patients, one study demonstrated that PPARGCIA, the gene
encoding PGC-1«, was epigenetically modified by methyla-
tion leading to decreased liver mitochondrial content [225].
This reduction in mitochondrial mass in combination with
increased flux through mitochondrial beta-oxidation may
further exacerbate the buildup of incompletely oxidized
metabolites and further exacerbate insulin resistance. How-
ever, PGC-la has also been shown to act downstream of
cAMP response binding protein (CREB) to induce glu-
coneogenesis [226] in part due to its ability to activate
phosphoenolpyruvate carboxykinase (PEPCK) and glucose-
6-phosphatase [227]. Therefore, activation of PGC-la may
also contribute to insulin resistance and increased serum
glucose levels. PGC-la is known to act as a redox sensor
and can be activated by oxidative stress [228, 229]. As
discussed above, oxidative stress likely plays a key role
in the development of insulin resistance. Kumashiro et al.
confirmed the presence of increased liver ROS levels in
obese diabetic db/db mice and showed that overexpression
of superoxide dismutase 1 (SOD]) in the liver of these mice
improved insulin sensitivity [230]. They went on to suggest
that improved insulin sensitivity was due to decreased ROS
induced expression of PGC-1« and the gluconeogenic genes
it is known to induce. The ability of PGC-1« to increase
the expression of mitochondrial genes while also increasing
the expression of gluconeogenic genes may therefore seem
to have contrasting effects on the pathogenesis of NAFLD.
However, whether PGC-1« is beneficial or detrimental for
NAFLD may depend on the context in which it is activated.
As an example, as discussed before, AMPK has a number
of beneficial effects in NAFLD, and it is also known to
control the expression of PGC-lx by phosphorylation and
deacetylation [231]. Still, while AMPK activates PGC-l«
it does not increase gluconeogenesis. The explanation for
this observation may be found in the effect that AMPK
has on other transcription factors. The ability of CREB to
induce gluconeogenesis depends on its ability to bind to
coactivators such as CRTC2, which allows for the assembly of
the transcriptional machinery [232]. AMPK phosphorylates
CRTC2 leading to its export into the cytosol after binding
to 14-3-3 protein [232, 233]. Transcriptional activity of HNF-
4 also increases hepatic gluconeogenesis [234], and again
AMPK has been shown to decrease its levels by both direct
phosphorylation and impairing protein stability [235, 236].
PGC-l« activation secondary to AMPK activation may not
be able to induce gluconeogenesis given the unavailability
of the necessary coactivators. Similarly, metformin has also
been shown to increase the expression of PGC-la and
stimulate transcription of mitochondrial genes, while not
resulting in activation of gluconeogenesis [237]. While part
of metformin’s inhibitory effect on gluconeogenesis is likely
secondary to activation of AMPK [238], change in the cell’s
energy state also has been shown to play a role independently
of AMPK [180]. Therefore, the effects of targeting PGC-1«
independently of AMPK will depend on the status of other
transcription factors as well as the energy state of the cell and
may lead to impaired glucose tolerance if gluconeogenesis is
also upregulated.

4.4. Liver X Receptor (LXR). LXRs are transcription fac-
tors that are critical for the control of lipid homeostasis
and act by binding to LXR-response elements [239]. LXRs
are also cholesterol sensors and regulate the absorption
and metabolism of sterols. LXRs promote hepatic steatosis
indirectly by activating SREBPIc [240] and have also been
shown to directly regulate expression of genes involved in
lipid synthesis such as fatty acid synthase [241]. Increased
expression of LXR may be a key mediator of hepatic steatosis
in NAFLD and has also been correlated with increased liver
expression of SREBP-1c [242]. There is evidence that cellular
redox state may affect LXR expression. Cholesterol reacts
with ROS and forms products such as oxysterols [243].
Oxysterol levels are increased in NAFLD patients [244],
and it is known that they act as potent LXR activators
[245]. Therefore, methods to decrease oxidative stress may
also reduce expression of LXRs. Nuclear factor erythroid-2-
derived like-2 (NFE2L2) is a key transcription factor known
to respond to cellular stress by upregulating antioxidant
genes. NFE2L2 deficiency results in increased LXR mediated
lipogenesis, whereas activation of NFE2L2 by treatment with
sulforaphane decreased LXR mediated activation of lipogenic
genes [246]. Other compounds such as liquiritigenin have
also been shown to inhibit the ability of LXR to induce hepatic
steatosis through activation of NFE2L2 [247]. In addition to
the beneficial effects of resveratrol discussed earlier, one study
demonstrated that resveratrol’s ability to decrease lipogenesis
may be in part due to decreased LXR expression secondary to
upregulation of the antioxidant gene Sestrin2 [97]. Therefore,
methods to decrease mitochondrial ROS production may
reduce hepatic steatosis by decreased LXR expression.

4.5. Farnesoid X Receptor (FXR). Bile acids play an important
role in the absorption of lipids and fat soluble vitamins;
however they also possess signaling roles [248]. Bile acids act
as ligands for FXR [249], which is critical for lipid and glucose
homeostasis as well as cellular inflammatory pathways [250].
FXR promotes fatty acid beta-oxidation and suppresses lipo-
genesis through its ability to inhibit transcription of SREBP-
1c and ChREBP [251, 252]. Indeed, FXR expression has been
shown to be decreased in NAFLD patients concomitantly
with increased expression of LXR and SREBP-1c [253]. PGC-
la has been shown to be an important activator of FXR
[254]. This makes physiological sense as increased mitochon-
drial content would be beneficial for the coupling of the
reducing equivalents provided by fatty acid oxidation with
oxidative phosphorylation. FXR has not been demonstrated
to be directly regulated by oxidative stress; however crosstalk
exists between the FXR and LXR pathways. For instance,
NFE2L2 activation can deacetylate FXR which can lead to
increased levels of small heterodimer partner (SHP) which
can inhibit LXR mediated gene transcription [246]. FXR also
regulates glucose homeostasis as well, with FXR agonists
having been shown to decrease gluconeogenesis through
decreased expression of PEPCK, glucose-6-phosphatase, and
bisphosphatase while also improving postreceptor insulin
signaling [255]. FXR plays an additional role in reducing
hepatic inflammation through antagonism of the nuclear



10

factor kB (NF-«B) signaling pathway [256] and reducing the
expression of profibrotic genes [257, 258]. FXR agonists such
as INT-767 have been tested in models of cholangiopathy with
beneficial effects on hepatic inflammation [259]; however
they remain to be tested in NAFLD models. The ability of
bile acids to activate FXR may explain part of their beneficial
effect in NALD. However, bile acids have also been shown
to inhibit complex I resulting in a decrease in ATP synthesis
similarly to metformin [260].

4.6. Pregnane X Receptor (PXR). PXR has a well-known
role in the metabolism and detoxification of a variety of
hormones and xenobiotic compounds and has been shown to
induce cytochrome P-450 genes necessary for these processes
[261]. However, recently PXR has been shown to stimulate
lipogenesis by targeting S14, which acts to upregulate the
machinery for lipid synthesis [262]. PXR has also been shown
to decrease fatty acid oxidation in part due to decreased
expression of CPT-1 [263]. Additionally, PXR decreases
gluconeogenesis by antagonizing the ability of PGC-la to
interact with HNF-4« [264] and also by repressing FOXOL,
which has been demonstrated to contribute to increased
gluconeogenesis in NAFLD [265]. In a mouse model, PXR
deletion has been shown to increase mitochondrial fatty acid
beta-oxidation, inhibit lipogenesis, decrease inflammation,
and improve insulin signaling [266]. Therefore, antagonizing
PXR may represent another therapeutic target in NAFLD.
Several PXR antagonists have been developed [267, 268]
and could potentially be tested for the efficacy in models of
NAFLD. However, given PXRs role in drug metabolism its
activation or inactivation may significantly alter the pharma-
cokinetics of other medications. This has been demonstrated
for drugs such as rifampicin which activates PXR and has
been shown to increase the metabolism of drugs such as
antiretroviral medications, oral contraceptives, thiazolidine-
diones, and benzodiazepines [269]. The converse may be true
for PXR antagonists; however detailed studies are still lacking.

4.7. SREBP-Ic. As discussed above, insulin stimulates fatty
acid synthesis largely in part due to activation of SREBP-Ic,
which activates many steps in the lipogenesis pathway. Even
with states of profound insulin resistance, inulin maintains its
ability to activate SREBP-1c in NAFLD. In NAFLD, SREBP-
Ic has been shown to be upregulated in the context of
increased expression of insulin receptor substrate- (IRS-)1
and expression of decreased IRS-2 [270]. This decreased
expression of IRS-2 relieves inhibition of Forkhead box
protein A2 (FoxA2), which has the ability to upregulate
fatty acid oxidation [270]. Thus, insulin stimulated SREBP-
Ic fits well with the concept of increased lipogenesis and
high rates of fatty acid beta-oxidation in NAFLD. Increased
mitochondrial ROS production likely also contributes to
increased SREBP-1c activation in NAFLD. In HepG2 cells,
hydrogen peroxide was shown to activate SREB-1c leading to
increased lipogenesis [271, 272].

Therefore, some therapeutic approaches have targeted
the SREBP-1c signaling pathway. Hydroxytyrosol, which is
known to have antioxidant properties, has also been shown
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to inhibit the SREBP-1c pathway and subsequently prevent
liver steatosis and improve insulin resistance in high-fat diet
fed C57BL/6] mice [273]. Treatment with hydroxytyrosol
also improves expression of mitochondrial subunits and
improved mitochondrial ETC enzymatic activity, although it
is unclear whether this is due to its inhibition of SREBP-1c
or its antioxidant abilities [273]. Herbal medicines have also
been shown to inhibit SREBP-1c signaling. Bofutsushosan
decreased the expression of SREBP-1c while also affecting a
number of other metabolic pathways [274]. This may have
been secondary to the ability of this compound to decrease
levels of TNF-«, which itself has been shown to increase
expression of SREBP-1c [275].

Additionally, AMPK activation has also been shown to
downregulate SREBP-1c (179, 276], although AMPK expres-
sion is not increased in proportion to SREBP-lc [270].
Therefore, targeting the activation of AMPK may also inhibit
signaling through SREBP-1c.

5. Conclusions

The liver plays a central role in most of the body’s metabolic
processes, and mitochondria are responsible for performing
or coordinating most of these subcellular processes. NAFLD
represents impaired regulation of hepatic lipid and glucose
homeostasis. While many of the molecular mechanisms
involved in the pathogenesis of NAFLD are still being worked
out, mitochondria lie at the core of NAFLD. Mitochondria
adapt to increasing hepatic lipid content by increasing rates
of beta-oxidation and ETC enzymatic activity. However, this
leads to the increased production of ROS. This increase in
mitochondrial ROS production likely plays an important role
in the development of insulin resistance and leads to the
function decline in activity of the ETC seen in the later
stages of NALD. Mitochondrial functional decline leads to
a mismatch between fatty acid beta-oxidation and oxidative
phosphorylation leading to the accumulation of partially
oxidized intermediates which further exacerbate insulin
resistance and leads to the progression of NAFLD. Various
interwoven signaling pathways control the cellular metabolic
program and are altered to various degrees in NAFLD. Many
of these pathways have been shown to be redox sensitive
with ROS playing a key modulatory role. Therefore, many
antioxidants have been tested in NAFLD with variable results.
Other compounds known to modulate upstream signaling
pathways have also been tested in NAFLD, many of which
have effects on beta-oxidation and other mitochondrial path-
ways. While several compounds have been tested which are
known to upregulate beta-oxidation, without concomitant
improvement in the mitochondrial ETC, this approach may
further exacerbate insulin resistance and NAFLD. Some
studies have reported positive effects of compounds which
induce fatty acid beta-oxidation while others report beneficial
effects from blocking fatty acid beta-oxidation. The effect of
enhancing versus inhibiting fatty acid beta-oxidation may
depend on the stage of NAFLD and is also affected by other
pathways which are concomitantly modulated. In recent
years, much has been learned about the pathogenesis of
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NAFLD; however few effective and mechanistically targeted
therapeutic strategies exist. Part of the difficulty is due to
the many overlapping pathways involved in NAFLD and the
nonspecific effects of many strategies tested so far. Future
treatments will likely need to be developed with greater
specificity and their efficacy may vary based on the stage in
the pathogenesis of NAFLD.
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