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Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly
applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable
land-use configurations. We used a landscape-scale study area of 302 km* in northern Victoria, south-eastern Australia, which has
been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage)
were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of
land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared
spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario
would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm
depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well
as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land

uses in sustainable management of soil services in changing agricultural landscapes.

1. Introduction

That soils are fundamental to a wide range of ecosystem
services needs to be acknowledged to avoid further soil degra-
dation and to identify sustainable land-use change. Several
recent conceptual works have used an ecosystem service
approach to highlight the importance of soils to the sustained
prosperity and welfare of humankind [1-4]. Nonetheless,
decreases in the supply of soil ecosystem services like water
quality regulation and soil structure stabilization are symp-
tomatic both of ongoing loss of soil natural capital and
of ongoing disregard of the full range of soil services in
production systems [3, 4].

Better integration of ecosystem service knowledge in soil
management systems requires holistic yet straightforward

approaches to the quantification and mapping of soil ecosys-
tem service supply [5]. Rutgers et al. [6] and van Wijnen et
al. [7] are recent examples, although these studies did not
provide approaches for quantifying changes in multiple soil
ecosystem services in response to changing management—a
critical knowledge gap recognised by Haines-Young et al. [8].

Full consideration of all soil ecosystem services at land-
scape to regional scales will rarely be possible, necessitating
firstly the identification of priority services and secondly the
nomination of soil properties to represent these services.
Bennett et al. [9] identified 11 “final” soil ecosystem services
that are directly utilised to benefit humans (versus supporting
“intermediate” services). Priority services are identified as
those that offer the greatest benefit within that landscape
context but that also act as likely “surrogates” for the provision



of other services [9]. All soil services are essentially aggregates
of soil processes, where processes are inputs, losses, transfers,
and transformations of material and energy [2,10]. For exam-
ple, the intermediate soil service “organic matter cycling”
(nomenclature of [9]) is the result of various processes (litter
comminution, decomposition, and humification), which are
expressed as rates. Full temporal quantification of multiple
process rates at landscape scales is not feasible. Instead, soil
properties (e.g., soil organic carbon content) can be used to
represent the end-point of processes/services (e.g., carbon
sequestration) and changes in soil properties used as an
indication of change in potential service supply [11].

Accurate prediction of changes in soil services/properties
will rely both on the direct measurement of properties and
on the use of soil-specific biophysical models. In this context,
changes in soil properties are simulated continuously in
response to changes in soil processes as a result of interactions
among soil, water, vegetation, and the atmosphere [12]. There
are many soil simulation models, some of which have been
recommended for soil services assessment [13]. For example,
Aitkenhead et al. [14] introduced the MOSES model for quan-
titative assessment of selected ecosystem services calibrated
for a range of soils in the UK. In Australia, Agricultural
Production System Simulator (APSIM) was developed as a
modelling framework, consisting of soil, plant, and manage-
ment component modules, to simulate diverse production
systems specific to Australian soils and conditions [15, 16].
APSIM has considerable potential as a tool for modelling
changes in soil properties [13] because soil properties are
simulated continuously in response to changes in weather,
management, and vegetation [15, 16]. It has been applied
to the prediction of changes in soil organic carbon (SOC)
content as a result of changes in land management [17-
19]. In addition, APSIM has been successfully tested in the
simulation of soil water balance [20-22].

Soil simulation models are traditionally point-based,
whereas soil ecosystem services are best represented as con-
tinuous surfaces for decision-making. Interpolation is re-
quired and kriging offers an objective and rigorous approach
to interpolating between spatially-distributed data points
and, thus, to mapping soil services [23, 24]. The use of kriging
[25] to produce soil property maps has been demonstrated
frequently for SOC [26-29]. Although many studies applied
these techniques at field scales with high sample densities
[26, 28], some dealt with sparser sampling schemes at much
broader scales. For example, Kumar and Lal [27] estimated
the spatial distribution of SOC across an area of 117599 km*
using 920 sample points (~ one sample per 128 km?). Simi-
larly, Zhang et al. [29] produced a map of SOC for the Repub-
lic of Ireland based on kriging interpolations using an average
sample density of two per 100 km?. Clearly, in the context
of broad-scale changes in soil properties, a key requirement
is to choose a sampling intensity that accommodates cost
and logistical constraints, but that is also sufficient for
capturing change trends at appropriate scales within accepted
levels of error. Here, while demonstrating the advantages of
kriging from grid samples for regional estimations of soil
properties, McBratney and Webster [24] concluded that the
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best sampling strategy would be a regular grid scheme with
the highest affordable number of observations.

We used a novel combination of methods including
field sampling, biophysical modelling (APSIM), and spatial
interpolations (e.g., kriging) to produce landscape-scale maps
indicating changes in the supply of soil services from current
to future management scenarios. We selected a study area in
northern Victoria, south-eastern Australia, to illustrate the
utility of this approach for considering priority soil services
in decisions relating to changing configurations of land-use
practices at landscape scales. We focused on two priority
services, namely, carbon sequestration and water storage.
We used a landholder defined scenario of future land-use
configurations (involving increased complexity/diversity) to
predict effects of land-use change on the spatial distribution
of two soil properties (hereafter “indicators”), namely, SOC
content (indicating carbon sequestration) and volume of
water stored in soil (indicating water storage). Our aims were
to quantify and map the distribution of service indicators
(representing priority services) under both current and future
land-use configurations and to demonstrate the utility of our
approach in supporting land-use decisions by highlighting
locations where management resources could be targeted
to maintain or enhance the supply of priority soil services
(11, 30-32].

2. Methods

2.1. Approach Overview. Our unique approach (Figure 1)
included representative sampling of soils across the study
area according to a geostatistically-valid design, analysis
of selected soil properties in a subset of reference soil
samples, development of mid-infrared calibration models for
the prediction of soil properties in the remaining samples,
parameterising and configuring the APSIM model to predict
indicators (representing priority services) under current and
future land-use scenarios, and applying spatial interpolations
(kriging) in a GIS environment to produce maps of current
and of likely future changes in the distribution of these
indicators across the entire study area. In addition, a hotspot
map of soil services change was produced to help evaluate the
likely trade-offs and opportunities arising from future land-
use configurations.

2.2. Study Area. This study encompasses a case-study land-
scape of 30,200 ha (302 km?) in northern Victoria, between
35 24.53' and 35° 41.23'S and 143° 37.72' and 143° 54.22'E,
south-eastern Australia (Figure 2). The region has a warm
grassland climate (Australian Bureau of Meteorology—
http://www.bom.gov.au/iwk/climate_zones/) and typically
experiences hot and dry summers and cold winters and an
average annual rainfall of 370 mm falling mostly in winter
and spring (June to November). Mean monthly minimum
temperatures range from 3.3°C (August) to 18.4°C (January),
and mean monthly maximum temperatures range from
13.1°C (July) to 35.8°C (January; climate data based on 25-year
data from nearby Swan Hill and Kerang weather stations).
There is no detailed soil survey of the study area. Accord-
ing to the Australian Soil Classification [33] and the Victorian
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FIGURE 1: Approach overview, summarising the multiple steps leading to the production of indicator maps (representing priority services)

under current and future land-use configurations.

GMU250 geomorphology database [34], the dominant soil
orders are Sodosols (or Solonetz in World Reference Base
(WRB) soil classification) and Vertosols (or Vertisols in WRB
soil classification), generally in the western and eastern sides
of the study area, respectively. The region contains several
water bodies, some of which are recognised as part of the
Ramsar Convention on Wetlands, [35]. The Victorian Land
Use Information System 2009 dataset [36] lists the principal
land uses within the study area as domestic livestock grazing,
mixed farming and grazing, and cereal dry cropping. The
landscape has been extensively cleared for agriculture, and
the remaining native vegetation is highly fragmented and/or
restricted to riparian zones. Historical clearing and intensive
agriculture in this landscape have contributed to degradation
of soil capital through erosion, compaction, and localised
salinisation [37, 38].

Many land parcels within the study landscape have come
under the ownership and management of a single entity and
are part of a 25-year plan to extensively reconfigure land
uses for improved agricultural production and for improved
environmental stewardship. Associated changes in the
location and types of agricultural and restoration practices
will directly and indirectly affect the supply of soil services
[31], making this an ideal landscape for examining service

changes under likely future scenarios. The 25-year plan is
specific to 6,441 ha, a subset of the 30,200 ha study area, and
includes proposed land uses on a continuum from less inten-
sively managed systems (“ecological estate” with and without
minor grazing and eucalypt plantation) to more intensively
managed systems (mainly irrigated cropping, limited
perennial pasture, and perennial horticulture; Figure 2).

2.3. Soil Sampling and Analysis. We used a 2km grid as the
starting point for the soil sampling design on the basis that
grid sampling is often recommended when ordinary kriging
is to be used for spatial distribution predictions [28]. Such a
sampling scheme minimises the kriging variance, that is, the
standard error of prediction [39, 40]. A 2km sampling grid
was proposed in this study because of its capacity to provide
an adequate sampling intensity within cost and logistical
constraints. When overlain on the study landscape, the 2 km
grid yielded c. 60 strata (segments) that coincided with
accessible land parcels covered by the abovementioned 25-
year plan. One sampling point was chosen at the centre of
each of these strata or from the nearest available location,
leading to an irregular-grid sampling scheme consisting of 60
sampling points (Figure 2).
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FIGURE 2: Study area location, the distribution of proposed land uses in the future (25-year) land-use scenario (covering a total area of 6,441 ha)

and the associated irregular-grid used to sample soils in this study.

Each sampling point was located in the field, and an area
0f 10 by 10 m was defined for sampling. Within each sampling-
point area, three randomly located subsamples were collected
from each of three soil depths (0-10, 10-20, and 20-30 cm)
using a soil auger of 8.25cm internal diameter (AMS Inc.,
ID, USA). Subsamples from each depth were bulked to give
a single composite sample per depth per sample-point area.
Separate intact cores (custom-made 7.5 x 10 cm core) were
also collected for bulk density determination.

The 180 soil samples (60 sampling points x 3 depths) were
air-dried and passed through a 2mm sieve in preparation
for mid-infrared (MIR) spectral analysis. A subset of 60 soil
samples were analysed for selected chemical and physical
properties (see Table 1), and MIR spectroscopy was then used
to estimate these properties in the remaining 120 samples. For
MIR spectral scanning, a sub-sample (approximately 7 g) of
each soil was finely ground to an approximate particle size of
less than 0.1 mm diameter using a vibrating mixer ball mill
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TABLE 1: Analysed soil chemical and physical properties of 60 sampling points (n = 60) at each of three depths from the study area in northern
Victoria, south-eastern Australia. Data were produced through conventional analysis methods as well as mid-infrared spectroscopy”.

Soil properties Min Max Mean SD Median
Organic carbon (%)*

0-10 cm 0.3 4.5 1.3 0.8 1.2

10-20 cm 0.2 2.4 0.8 0.4 0.7

20-30 cm 0.1 1.6 0.6 0.3 0.5
pHCaClzb

0-10cm 54 8.7 7.1 0.7 71

10-20 cm 5.6 9.3 7.5 0.7 7.6

20-30cm 52 9.3 7.7 0.9 7.8
EC (dS/m)*

0-10 cm 0.04 5.46 0.68 1.01 0.27

10-20 cm 0.05 9.80 1.09 1.62 0.49

20-30 cm 0.04 10.72 1.60 2.08 0.75
Clay (%)¢

0-10 cm 6 60 40 10 42

10-20 cm 11 61 43 10 46

20-30 cm 6 61 46 12 49
Sand (%)

0-10cm 25 93 48 13 45

10-20 cm 17 84 43 14 38

20-30 cm 16 93 39 17 35
Bulk density (g/cm®)

0-10cm 1.0 1.6 1.3 0.1 1.3

10-20 cm 1.2 1.6 1.4 0.1 1.4

20-30cm 1.2 1.6 1.4 0.1 1.4

*Dry combustion and Walkley-Black methods [41].

pr in 0.01 M CaCl,, 1:5 extraction ratio [42].
“EC in 1:5 water extraction ratio [43].
dHydrometer method [44].

*Conventional analysis methods were applied to 61 reference samples (i.e., 61 out of the 180 study samples), and MIR spectroscopy was used to predict properties

in the remaining samples.

(Retsch, Haan, Germany) set on a vibrational frequency of
205! for 3 min.

2.4. Analysis of Soils Using MIR Spectroscopy and Partial
Least-Squares (PLS) Regression. We used a Spectrum-One
(PerkinElmer, Wellesley, MA, USA) Fourier transform MIR
spectrometer to collect diffuse reflectance MIR spectra of the
complete set of 180 soils following a methodology described
elsewhere [45, 46]. Soil MIR spectroscopy provides the
possibility of rapid, inexpensive, and simultaneous charac-
terisation of various chemical properties in large numbers of
samples [2, 45, 47]. Moreover, the repeatability and repro-
ducibility of this technique among different laboratories have
been found to be superior to the performance of conventional
soil analyses [2]. prior to partial least-squares (PLS) regres-
sion, principal component analysis (PCA) was performed
to detect any spectral outliers and to select a calibration
subset of 60 soil samples for PLS model development. PCA
revealed one sample as a spectral outlier, which along with the
calibration subset was included in the reference soil property
characterisation (Table 1).

The calibration models for predicting SOC, pH, electrical
conductivity (EC), and percent sand, silt, and clay were
developed between MIR spectra (predictor variables) and
reference soil property values (response variables) based
on the method introduced by Haaland and Thomas [48],
which is popular in quantitative soil MIR analysis [47]. The
softwares GRAMS/AI, GRAMS 1Q, and IQ Predict, which
are part of the GRAMS spectroscopy software suite (Thermo
Fisher Scientific, Waltham, MA), were used for PCA and PLS-
regression model building and predictions. The MIR-PLS
prediction models from the calibration subset were applied
to the remaining 119 samples (see Forouzangohar et al. [45,
46]), and these predicted soil properties were used in the
remainder of the study.

2.5. APSIM for Predicting Indicators to Represent Priority
Services. Two priority soil ecosystem services were identified
for consideration, namely, carbon sequestration and water
storage. These two services were nominated by the landholder
as central to their land-use decision making (e.g., potential
involvement in both carbon and water markets) and were



identified as priority services for the benefit of humans and
the environment by Aitkenhead et al. [14]. We chose to
estimate current and future capacity to supply these services
using two indicators, namely, SOC content and soil water
storage. In this case study, the service “water storage” can
include water added as irrigation. As such, this service rep-
resents capacity of the soil to retain a scarce resource (water),
either from natural or artificial sources, in the landscape, and
to reliably provide that resource for plant growth.

Key APSIM modules used in this study were SOILWAT
[20, 49] for simulating soil water dynamics and SOILN [15,19]
for soil organic carbon. In addition, the MANAGER com-
ponents were utilised to control land-use configurations (as
below), and the plant growth modules (Agpasture, Soybean,
Oat, Wheat, Lucerne, and Eucalyptus grandis) were used to
simulate the production systems corresponding to current
and future land uses.

Two scenarios of indicator predictions were examined for
the study landscape: one based on the current distribution
of land uses and another based on a proposed future land-
use configuration over the next 25 years (Figure 2). To isolate
the effects of land-use change, climate change over the 25-
year period was assumed to be negligible although some
models predict lower rainfall and higher temperatures [50] in
the study area, which could affect our indicator predictions.
Data from a recent 25-year period (1985 to 2009) were
used to represent climate in 25-years-time. In addition, to
further avoid effects of interannual climate variability, daily
weather data were defined for a “typical year” comprised
of 12 “typical” months, each based on the average monthly
rainfall and the distribution of rain days from two nearby
weather stations (Swan Hill and Kerang, located, resp., to the
north and south of the study area). Daily weather data for
these weather stations were sourced from the SILO climate
database (http://www.longpaddock.qld.gov.au/silo/) hosted
by the Queensland Climate Change Centre of Excellence [51].

To represent the current land-use scenario (time = 0
years), APSIM was configured to simulate two land uses:

(1) dry cropping system, as a continuous winter cereal
cropping simulated by the Wheat module, with
removal of soil surface plant residues 30-45 days after
harvest in preparation for opportunistic sowing in late
autumn (leaving the soil surface bare for 4-5 months),

(2) pasture/grassland under intensive grazing, simulated
by the Agpasture module, with regular fortnightly
grazing to a remaining herbage of 500 kg/ha.

In addition, to represent the future land-use scenario (time =
25 years), APSIM was configured to simulate five new land
uses (Figure 2):

(1) ecological estate (protected for restoration of peren-
nial native vegetation, predominantly grasslands and
shrublands), simulated by the Agpasture module,
with no plant biomass removal,

(2) ecological estate with limited grazing, simulated by
the Agpasture module, with two grazing events per
year to a remaining herbage of 1000 kg/ha,
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(3) irrigated cropping system, as summer-winter rota-
tional cropping systems, simulated by the Soybean,
Oats, and Wheat modules of crops, assuming no-
tillage systems, and including no removal of soil
surface plant residues after harvest,

(4

~

irrigated permanent lucerne stand (3 year ley), sim-
ulated by the Lucerne module, assuming regular
harvest at flowering and removal of 95% of harvested
plant material,

(5

~

eucalypt plantation, simulated by the Egrandis and
Agpasture modules using the Canopy module to
account for light and water competition between
trees and intertree herbage (including no removal
of plant biomass); note that APSIM currently lacks
modules for tree species other than eucalypts, so,
we treated limited areas of perennial horticulture as
eucalypt plantations for the purposes of this study
(i.e., perennial horticulture is not considered further).

Five soil types of the Mallee region in north-western Victoria,
Australia, were chosen from the APSIM soil database to
underpin APSIM modelling. The soils were chosen from
those generic sites that had similar characteristics to sampled
soils and were further parameterised for SOC, EC, pH, parti-
cle size distribution, and bulk density using our measures of
the 60 reference soils.

2.6. Mapping Service Indicators. Ordinary kriging was used
to estimate spatial distribution of service indicators over the
study area under both current and future land-use scenarios.
We used ArcGIS 10.0 (ESRI Inc., CA, USA) to produce
distribution maps of indicators (SOC content and soil water
storage) based on kriging between the 60 sample points. Here,
the average distance between neighbouring sample points
was 1300 m, so that a lag size of 1300 m was used in the semi-
variogram models (which depict the spatial autocorrelation
of the sample points and define the weights of the kriging
functions). With 10 lags of this size, semivariograms of up
to 13,000 m were fitted for each service indicator under each
scenario. The exponential functions were best fitted through
semivariogram modelling, and nuggets were set to zero (i.e.,
it was assumed that there was no error for model-derived
values at each sample point). Using the trend analysis tool,
second-order polynomial trends were identified and fitted to
remove directional trends in SOC content data. As required,
log transformations were used to better approximate normal
distributions of input data. Given a 2km sampling grid, a
range of 2,300 m was identified as appropriate when fitting the
semivariogram models in all cases. In spatial interpolation of
SOC content, each kriging average was obtained using a four-
sector searching neighbourhood, searching for a maximum
of 5 and a minimum of 2 points in each sector. In mapping
soil water storage any points beyond the 2300 m range was
not involved in predictions.

2.7. Mapping Hotspots of Service Change. Changes in the two
service indicators between current and future scenarios were
normalized to a 0-1 scale through linear scaling [52]. This
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TABLE 2: Predicted service indicators under both current and new land uses for a predominant clay soil in the study landscape. Values were
derived from 25-year simulations based on average properties of the clay soil to 30 cm depth.

Soil organic

Soil water Aboveground biomass to

carbon (t/ha) storage (m’/ha) soil water storage kg/mz'a

Current land uses

Dry cropping 30° 760 0.8

Intensive grazing 30° 680 0.9
Future land uses

Ecological estate 34 710 39

Ecological estate with grazing 33 690 23

Eucalypt plantation 34 750 84.5

Irrigated no-till cropping 38 1200° 2.2

Irrigated permanent lucerne 27 1170° 11

* Aboveground biomass data is derived from APSIM simulations.
®Initial soil organic carbon content in equilibrium (modelling assumption).
“Soil water topped up by irrigation.

allowed comparison of relative estimated changes in the two
priority services, with a combined value of -2 indicating
maximum negative change in both and of +2 indicating
maximum positive change in both. These combined values
were then used to produce a “hotspot” map (where a hotspot
indicates positive change in both [30]) encompassing the 60
sampling points.

2.8. Assessing Uncertainties of Spatial Interpolations. The
overall reliability of the indicator prediction surfaces (maps)
over the entire study area was assessed using the mean pre-
diction error and the standardized Root-Mean-Square Error
(standardized RMSE). A mean prediction error close to zero
(i.e., relative to the magnitude of the average prediction error)
and a standardized RMSE close to one indicate relatively
unbiased predictions of service supply/change. The reliability
of the kriging model predictions for specific points over
the study area was expressed as the ratio of performance
deviation (RPD), which is the ratio of natural variation in
the sample set (standard deviation, SD) to the size of the
average prediction error (i.e., the higher the RPD, the more
reliable the prediction [53]). An RPD value of <1.4 indicates
poor performance, RPD > 1.4 indicates acceptable model
performance for qualitative to semiquantitative analysis, and
RPD > 2.0 indicates excellent performance [54].

3. Results and Discussion

3.1. Soil Properties. There was significant variation in mea-
sured soil properties across the study area (Tablel). For
example, SOC concentration to 10 cm depth ranged from 0.5
to 4.5% over distances of c. 10 km in the northern sections.
Generally, SOC concentrations were greatest in northern and
eastern sections (>2%) and least in central sections (<1%).
The pH values ranged from slightly acidic (5.2 at 30 cm depth)
to alkaline (9.3 at 30 cm depth), and EC ranged from 0.04 to
10.7 dS/m, reflecting patterns of localised surface salinization.
Similarly, soil texture varied across the study area, with

percent clay in the top 30 cm ranging from 6 to 61% and sand
from 16 to 93% (Table 1).

3.2. Service Indicators under Alternative Land Uses. Simu-
lations over a twenty-five-year period for a predominant
clay soil in the study area predicted strong potential for
increases in service indicators under the five new land
uses. For example, mean SOC content of 30t/ha under
current land uses was predicted to increase under four of
the new land uses, the highest being an estimated 38 t/ha
under irrigated no-till cropping (Table 2). Increases in mean
soil water storage were only predicted where new land
uses involved irrigation (Table 2). However, increases in the
ratio of aboveground biomass to soil water storage were
predicted from 0.8 and 0.9 kg/m’ under current land uses to
2.2kg/m’ under new irrigated land uses and to 2.3, 3.9, and
84.5kg/m’ for nonirrigated new land uses of ecological estate
with grazing, ecological estate without grazing, and eucalypt
plantation, respectively (Table 2).

3.3. Soil Organic Carbon Content: Current Status and Future
Projections. On average, soil to 30cm depth at the 60
sampling points under current management stored 35 t/ha
soil organic carbon (“SOC”; range 13-102 t/ha; Table 3). The
greatest current SOC stores (>55t/ha) were at the northern
end of the study landscape (sampling points W1, W2, W3,
W4, and W7; see Figure 2 for point locations) where sampling
points were adjacent to remnant native eucalypt woodlands
along the Little Murray River. Isolated pockets of low relative
carbon stores (<20 t/ha) were scattered throughout the study
area and were associated with general cropping, mixed
farming, and grazing (W8, W10, W12, W18, W36, R10).
Predictions of soil carbon change under the future land-
use scenario indicated a mean increase over the 25-year
period of 3t/ha to 30 cm depth at the 60 sampling points
(Table 3). Over the 6,441 ha covered by the 25-year plan, this
translated to an increase of 17,938t SOC (i.e., change from
165,119 to 183,057 t; Table 3). Simulations indicated a range
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TABLE 3: Estimates of service indicator at 60 sampling points (0-30 cm depth) and over the entire study area, under current and future (25-
year) land-use scenarios. Overall changes in each indicator were based on differences between supply on an average day under the current
scenario and on an average day in 25-year-time under the future scenario.

Indicator Sampling points Entire study area®
Min Max Mean SD
Soil organic carbon (t/ha)
Current 13 102 35 17 165,119t
Future 18 92 39 14 183,057 t
Change —11 1 3 4 17,938 t
Soil water storage (m*/ha)
Current 179 843 587 156 2,745,342 m’
Future 189 1220 719 251 3,362,834 m’
Change 0 463 132 146 617,492 m®
Study area of 6,441 ha.

% Sampling points
[ Landscape boundary

7] Water bodies
Soil organic carbon change (t/ha)

-11--4.2
-4.2--0.6
-0.6-1.3
1.3-2.4 N
mm 24-3
B 3-33
Bl 33-39
Bl 39-5
I 5-7 I
m 7-11 0 2.5 5

x  Sampling points
] Landscape boundary
71 Water bodies
Soil water change (m®/ha)
0-20
20-34
34-42
W 42-55
s 55-75
B 75-110
Hm 110-165
mm 165-275
N 275-600

(®)

FIGURE 3: Predicted changes in service indicators, (a) soil organic carbon content and (b) soil water storage, to 30 cm depth in the study
area associated with changes from current (time = 0) to future (time = 25 years) land-use scenarios. Each prediction surface represents
differences in the supply of services between an average day under the current scenario and an average day under the future scenario. (a)
Mean prediction error: 0.04; standardized RMSE: 1.06; average prediction error: 2.4; RPD: 1.5; (b) mean prediction error: —4.8; standardized

RMSE: 1.09; average prediction error: 127; RPD: 1.2.

of potential changes in SOC of up to +ll1t/ha (Figure 3(a),
Table 3).

Spatial predictions of SOC changes were acceptably reli-
able (RPD > 1.4; Figure 3(a)) and highlighted potential risks
and opportunities in soil carbon management [25, 30]. For
example, decreases of up to 11t C/ha were predicted near the
northern end (Figure 3(a)), corresponding with the greatest
current SOC stores (>55 t/ha). Reasons for the high relative
current SOC here were unclear, although they could relate to

the close proximity to remnant perennial vegetation and/or
to time since clearing (unknown). Nonetheless, this study’s
predictions indicate that the planned change in land use
from dry cropping to zero-tillage irrigated cropping systems
will not prevent SOC decreases, and that alternative land
uses should be examined to conserve this carbon content if
sustaining SOC content is a priority. Elsewhere, predicted
decreases of c. 4tC/ha near sampling point WI3 in the
northern section (Figure 3(a)) were associated with a planned
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land-use change from regular grazing to an irrigated lucerne
system, involving regular removal of plant material from
the soil surface. Given the already low carbon stores at this
sampling point (28.4 t/ha), alternative land uses that retain
rather than remove plant material might be considered.

Landscape locations that show high potential increases
in SOC might also be considered for targeted management.
For example, locations of maximum predicted increases
(e.g., R7, W21, and W35; Figure 3(a)) were associated with
changes from intensive agriculture to a zero-tillage irrigated
cropping system with no plant residue removal. These data
thus support strong recommendations for adoption of no-
till farming by Lal et al. [55] as an option for enhancing
SOC storage in cropland soils of relatively low current SOC
content (<30 t C/ha). Another example of an opportunity to
increase SOC stores was indicated at sampling point W12.
Here, the soil was a loamy sand of very low SOC content
(13.2t/ha), and a land-use change from mixed farming with
intensive grazing to ecological estate with limited grazing
led to predicted increases of 5.7t C/ha (43%) over 25 years
(Figure 3(a)).

Opverall, changes from intensive agriculture to ecological
estate, ecological estate with limited grazing, and eucalypt
plantations were associated with moderate increases in SOC
of 1.3 to 5t C/ha over the 25-year period (Figure 3(a)). This is
consistent with previous findings of measured SOC increases
with conversion from traditional croplands to perennial
grasslands (e.g., [56-58]). Kitterer et al. [56] reported an
average of 0.4 t/ha/yr increase in SOC content over 30 years
when a cropland was converted back to grassland in a Swedish
farm, although their study involved a wetter (542 mm/yr)
and cooler (mean annual temperature of 5.1°C) climate and
double the starting SOC content. In this study’s landscape,
limited rainfall and very hot and dry summers are likely
to be limiting factors for grassland growth, as simulated
by the APSIM-Agpasture module. Nonetheless, in terms
of percent gain in SOC through conversion of degraded
lands to natural grasslands, our results show agreement with
previously reported limits of 15-20% increases [56, 57, 59].

3.4. Soil Water Storage: Current Status and Future Projections.
Current water storage of soils reflected the predominance of
clay-textured soils in the 6,441 ha covered by the 25-year plan.
Total water stored to 30 cm soil depth on an average day under
the current scenario was estimated at 2,745,342 m> (Table 3).
On average, soils stored 587 m’/ha water without irrigation.
This value ranged from 179 m>/ha for a loamy sand soil under
regularly-grazed pasture (sample point W12) to 843 m*/ha in
a clay soil under dryland cereal cropping (sample point R7).
Land-use changes in the 25-year plan were predicted to
increase water storage by 22% (i.e., to a mean water storage
of 719m’/ha and a total storage capacity of 3,362,834 m’;
Table 3). Similarly, modelled changes in average daily soil
water storage over the entire study landscape ranged from
0 to 463m’/ha but were mostly >110m>/ha (Figure 3(b)).
Modelled soil water storage values under current and future
land-use scenarios were consistent with APSIM-generated
published works [21, 22]. For instance, volumetric soil water

in the top 30cm of selected soil profiles was predicted
and observed to be between 0.1 and 0.4 water volume/total
volume (c. 300 to 1200 m*/ha) in the nearby Murray-Darling
Basin [22].

Predicted increases in soil water storage were associated
with changes to irrigated no-till systems, and, to a lesser
degree, increases in perenniality. Irrigated no-till cropping
systems add water from outside the system and can increase
water retention through a mulching effect associated with
retained plant residues. Mean predicted increases in mean
water storage in soils under this land-use change were 54%,
from 669 m>/ha to 1,029 m*/ha (i.e., deepest red areas for
points R5, R7-R9, R14, R17, R19, W3, W4, W7, W9, WI1l,
W2L, and W35 in Figure 3(b)). Increases in soil water storage
over the 25-year period were also indicated for land uses
that increased perenniality, namely, eucalypt plantation and
ecological estate (with or without grazing). In these land
uses, increases of 8-15% in average daily water storage were
apparently due to processes affecting water infiltration and
retention and were perhaps tempered by increased losses
through evapotranspiration associated with the establish-
ment of woody species [60]. This is also consistent with stud-
ies that have indicated that the reverse land-use change (i.e.,
from woody native vegetation to cropping) was associated
with decreased soil water-holding capacity [61].

3.5. Relationships among Soil Ecosystem Services. The indi-
cator change maps highlight locations both of potential
complementarities (synergies) among priority services, as
indicated by mutual increases with changed management,
and of potential trade-offs among services, as indicated by
marked increases in one service but decreases in another.
Overall, we found mostly positive (or “synergic”; [62]) rela-
tionships among our priority soil services (Figure 4). This
suggests that they increased at the same time, due either to
simultaneous responses to the same land-use change or to
positive interactions [62]. In this context, hotspots are located
at points where the supply of multiple soil services can be
mutually and markedly improved [30].

This study found several potential hotspots as indicated
by high combined service change scores (>1 to 2; Figure 4).
For example, land-use change to irrigated no-till cropping led
to substantial estimated increases in both soil water storage
and SOC content at sampling points R7, R8, R9, R14, R17,
R19, W11, W21, and W35 (Figure 4). However, the study
also highlighted at least six instances of possible trade-offs
between services as indicated by very low combined change
scores (<0.2). Four of these cases were located at sampling
points W1, W3, W4, and W13, where future predictions
flagged likely reductions in SOC stocks. However, we doubt
this is due to any causal relationships among the services,
but, as discussed in Section 3.3, this appears to be due
to the relatively high initial SOC contents at these points
(except W13), which were not sustained by the new land
uses. Similarly, the low combined change score at W13 was
mainly due to predicted decreases in SOC associated with
regular removal of plant material under the planned irrigated
lucerne system. Elsewhere, the low combined change score
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FIGURE 4: “Hotspot” map indicating combined relative change in the two service indicators (soil organic carbon content and soil water storage)
from current (time = 0) to future (time = 25 years) land-use scenarios at each of 60 sampling points. Potential combined scores range from
-2 (maximum negative change in both indicators) to +2 (maximum positive change in both indicators).

at W16 could be attributed to negligible change in land-
use practices and thus in service provision under unchanged
climatic conditions.

3.6. Approach Limitations. We acknowledge limitations in
our approach. Our spatial interpolation method of choice,
kriging from point data, carries some limitations. Prediction

statistics were acceptable for SOC (mean prediction error
0.04, standardised RMSE 1.06, and RPD 1.5) but were less
convincing for soil water storage (mean prediction error —4.8,
standardised RMSE 1.09, and RPD 1.2). In particular, the low
RPD for soil water storage indicated nonreliable estimations
for at least some locations perhaps due to greater spatial
variation in soil water distributions than SOC.
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In addition, the APSIM model could not equally repre-
sent our diversity of land-use changes. For example, APSIM
plant modules have not been specifically developed for
diverse native plant systems (i.e., our “ecological estate”)
and for perennial horticulture systems. Moreover, it was not
feasible to fully parameterise the APSIM soil components for
the 60 sampling points in this study. Instead, we relied on
the APSIM soil database to provide default values for some
of our modelling components. This leads to uncertainties,
the quantification of which is beyond the scope of this
study. Future work will examine the implications of various
assumptions, used not only in the APSIM modelling but also
in the entire approach, through detailed sensitivity analyses.

4. Conclusion

We demonstrated a broadly applicable approach for quan-
tifying and mapping service indicators (representing pri-
ority soil ecosystem services) in an agricultural landscape
in south-eastern Australia. A feasible sampling intensity
was combined with soil MIR spectral analysis, biophysical
modeling, and spatial interpolations to provide estimates
of two soil indicators under both current and future land-
use scenarios. We showed that under the future land-use
plan, the supply of the two priority soil services (based on
indicators) would likely increase. The modelled maps provide
a basis for supporting decisions about alternative land uses
by indicating “hotspot” locations where there are mutual
increases in the supply of soil ecosystem services or locations
where there is a risk to the supply of some services. Such
knowledge informs the management of multiple services at
a range of scales from paddock to landscape and region,
both in response to markets for particular services and to
requirements or incentives for providing multiple benefits
(see, e.g., the proposed “cobenefits index” in Australia’s recent
“Carbon Credits Bill”; Commonwealth of Australia, 2011).

The proposed approach could be useful in designing
strategies for supporting sustainable soil management in
this landscape. Coordinated management of multiple land
parcels within a landscape, rather than isolated management
of single parcels, offers potential to maintain supply of
priority services at the landscape scale by avoiding risks
and harnessing opportunities through matching soils with
particular land-use practices. Introducing new land uses in
any given landscape not only offers scope for increasing
landscape complexity [63, 64] but also offers more flexibility
in decisions relating to landscape-level delivery of multiple
services. This type of flexibility and responsiveness will be
needed as additional factors like climate change further
confound the challenge to managing soils sustainably in
changing agricultural landscapes.
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